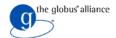


Grid Scheduling Architectures with Globus GridWay and Sun Grid Engine

Sun Grid Engine Workshop 2007 Regensburg, Germany September 11, 2007

Ignacio Martin Llorente
Javier Fontán Muiños
Distributed Systems Architecture Group
Universidad Complutense de Madrid



Contents

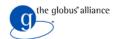
1. Computing Resources

- 1.1. Parallel and Distributed Computing
- 1.2. Types of Computing Platforms
- 1.3. Local Resource Management Systems

2. Globus GridWay Infrastructures

- 2.1. Integration of Different Administrative Domains
- 2.2. The Globus Toolkit
- 2.3. The GridWay Meta-scheduler
- 2.4. Grid Scheduling Architectures

3. SGE Transfer Queues to Globus and GridWay


- 3.1. Interfaces for Grid Infrastructures
- 3.2. From the Cluster to the Grid

4. Demonstrations

- 3.1. Enterprise Grid
- 3.2. Transfer Queue to GridWay

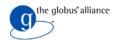
1.1. Parallel and Distributed Computing

Goal of Parallel and Distributed Computing

• *Efficient* execution of computational or data-intensive applications

Types of Computing Environments

High Performance Computing (HPC) Environments


- Reduce the execution time of a single distributed or shared memory parallel application (MPI, PVM, HPF, OpenMP...)
- Performance measured in floating point operations per second
- Sample areas: CFD, climate modeling...

High Throughput Computing (HTC) Environments

- Improve the number of executions per unit time
- Performance measured in number of jobs per second
- Sample areas: HEP, Bioinformatics, Financial models...

1.2. Types of Computing Platforms

Centralized Coupled

- Network Links
- Administration
- Homogeneity

Decentralized Decoupled

SMP (Symmetric Multi-processors)

MPP (Massive Parallel Processors)

Clusters

Network Systems
Intranet/Internet

High Performance Computing

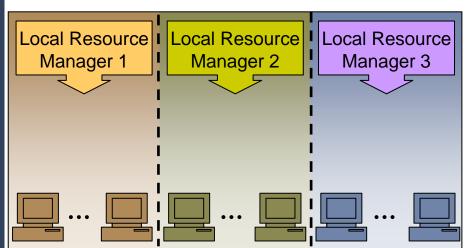
High Throughput Computing

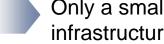
1.3. Local Resource Management Systems


Management of Computing Platforms

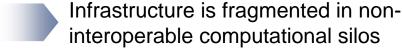
- Computing platforms are managed by Local Resource Management (LRM) Systems
 - 1 Batch queuing systems for HPC servers
 - Resource management systems for dedicated clusters
 - 3 Workload management systems for network systems
- There aim is to maximize the system *performance*

Independent Suppliers	Open Source	OEM Proprietary
2 Platform Computing	2 Altair	1 IBM
3 LSF	Open PBS	Load Leveler
2 Altair	3 Iniversity of Wisconsin	1 Cray
PBS Pro	Condor	NQE
	2 Sun Microsystems	
	3 SGE	5/34





1.3. Local Resource Management Systems


LRM Systems Limitations

- Do not provide a common interface or security framework
- Based on proprietary protocols
- Non-interoperable computing vertical silos within a single organization
 - Requires specialized administration skills
 - Increases operational costs
 - Generates over-provisioning and global load unbalance

Only a small fraction of the infrastructure is available to the user

Contents

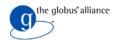
1. Computing Resources

- 1.1. Parallel and Distributed Computing
- 1.2. Types of Computing Platforms
- 1.3. Local Resource Management Systems

2. Globus GridWay Infrastructures

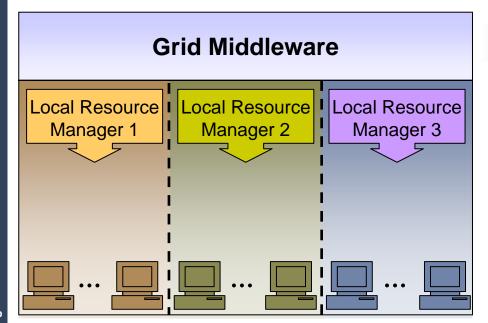
- 2.1. Integration of Different Administrative Domains
- 2.2. The Globus Toolkit
- 2.3. The GridWay Meta-scheduler
- 2.4. Grid Scheduling Architectures

3. SGE Transfer Queues to Globus and GridWay


- 3.1. Interfaces for Grid Infrastructures
- 3.2. From the Cluster to the Grid

4. Demonstrations

- 3.1. Enterprise Grid
- 3.2. Transfer Queue to GridWay



2.1. Integration of Different Administrative Domains

"Any problem in computer science can be solved with another layer of indirection... But that usually will create another problem." David Wheeler

A New Abstraction Level

"A (computational) grid offers a common layer to (1) integrate heterogeneous computational platforms (vertical silos), that may belong to different administrative domains (systems managed by single administrative authority), by defining a consistent set of abstraction and interfaces for access to, and management of, shared resources"

Common Interface for Each Type of Resources: User can access a wide set of resources.

Computational, storage and network.

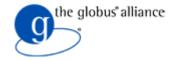
2.1. Integration of Different Administrative Domains

Grid Middleware (a computational view)

 Services in the Grid Middleware layer: Security, Information & Monitoring, Data Management, Execution and Meta-scheduling

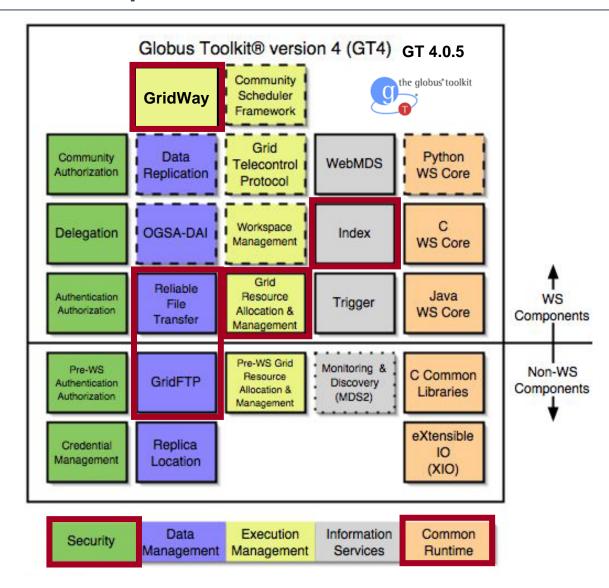
Open Source Software Distributions

www.omii.ac.uk



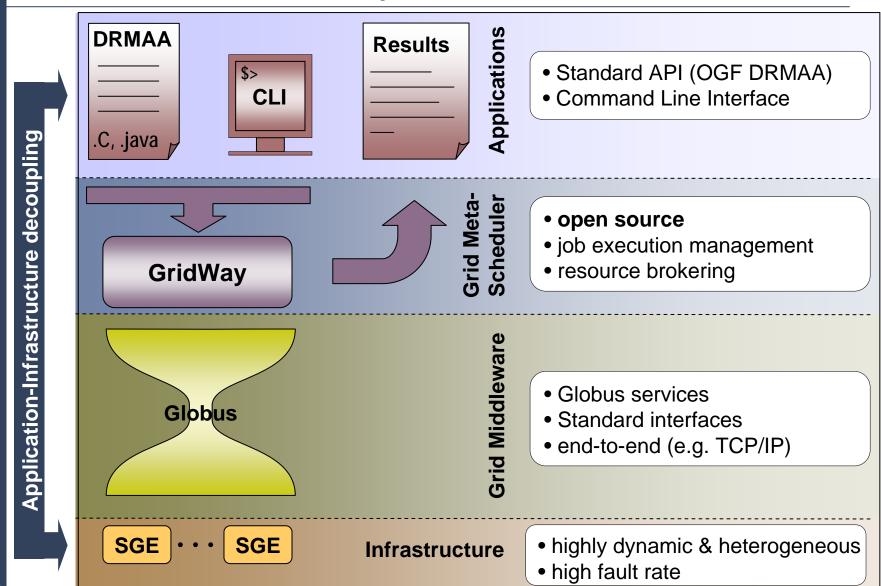
www.gridbus.org

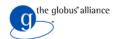
- Most widely used grid middleware
- Software distribution that integrates a selected group of Globus
 Alliance technologies (Open Source Community)



2.2. The Globus Toolkit

Components for a Computational Grid




GridWay 2.3. The GridWay Meta-scheduler

Global Architecture of a Computational Grid

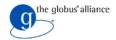
GridWay 2.3. The GridWay Meta-scheduler

Benefits

Integration of computational platforms (Organization)

- Establishment of a uniform and flexible infrastructure
- Achievement of greater utilization of resources, which could be heterogeneous
- Higher application throughput

Support for the existing platforms and LRM Systems (Sys. Admin.)


- Allocation of grid resources according to management specified policies
- Analysis of trends in resource usage
- Monitoring of user behavior

Familiar CLI and standard APIs (End Users & Developers)

- High Throughput Computing Applications
- Workflows

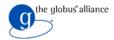
2.3. The GridWay Meta-scheduler

Features

Workload Management

- Advanced (Grid-specific) scheduling policies
- Fault detection & recovery
- Accounting
- Array jobs and DAG workflows

User Interface

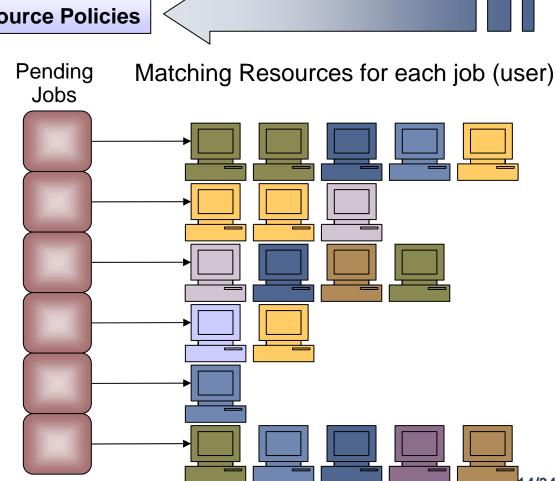

- OGF standards: JSDL & DRMAA (C and JAVA)
 - Your DRMAA application also runs on Globus infrastructures!
- Command line interface, similar to that found on local LRM Systems

Integration

- Straightforward deployment as new services are not required
- Interoperability between different infrastructures

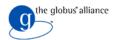
2.3. The GridWay Meta-scheduler

Grid-specific Scheduling Policies


Resource Policies

- Rank Expressions
- Fixed Priority
- User Usage History
- Failure Rate

Grid Scheduling = Job + Resource Policies

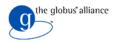


- Fixed Priority
- Urgent Jobs
- User Share
- Deadline
- Waiting Time

GridWay 2.3. The GridWay Meta-scheduler

The GridWay Project

GridWay is a Globus Project


- Released under Apache license v2.0
- Adhering to Globus philosophy and guidelines for collaborative development
- Welcoming code and support contributions from individuals and corporations around the world

History of the Project

- The project started in 2002
- Since January 2005,
 - 5 stable software releases
 - More than 1.000 downloads from 80 different countries (25% Industry and 75% Academia and Research)
- Best-effort support provided (contract support is also available)
- Widely used: Success stories at http://www.gridway.org

GridWay 2.4. Deployment Alternatives

Centralized Coupled

- Network Links
- Administration
- Homogeneity

Decentralized Decoupled

SMP (Symmetric Multi-processors)

MPP (Massive Parallel Processors)

Clusters

Network Systems Intranet/Internet

Grid Infrastructures



High Performance Computing

High Throughput Computing

GridWay 2.4. Deployment Alternatives

Enterprise Grid Infrastructures

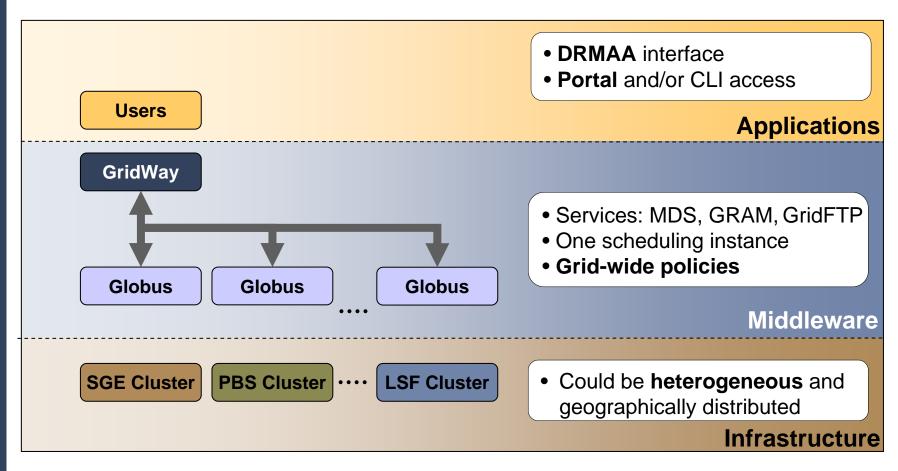
Characteristics

 "Small" scale infrastructures (campus/enterprise) with one meta-scheduler instance providing access to resources within the same administration domain that may be running different LRMS and be geographically distributed

Goal & Benefits

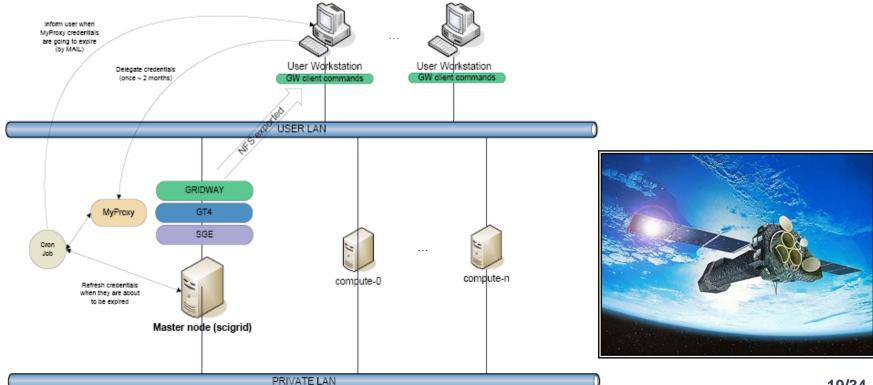
- Integrate multiple systems, that could be heterogeneous, in ar uniform/centralized infrastructure
- Decoupling of applications and resources
- Improve return of IT investment
- Performance/Usage maximization

Scheduling


 Centralized meta-scheduler that allows the enforcement of Grid-wide policies (e.g. resource usage) and provides centralized accounting

GridWay 2.4. Deployment Alternatives

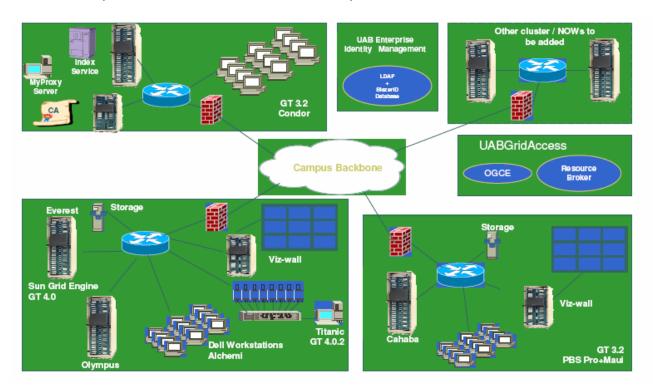
Deploying Enterprise Grids with GridWay


GridWay 2.4. Deployment Alternatives

Enterprise Grids: Examples

European Space Astronomy Center

- Data Analysis from space missions (DRMAA)
- Site-level meta-scheduler
- Several clusters



2.4. Deployment Alternatives

Enterprise Grids: Examples

UABGrid, University of Alabama at Birmingham

- Bioinformatics applications
- Campus-level meta-scheduler
- 3 resources (PBS, SGE and Condor)

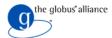
GridWay 2.4. Deployment Alternatives

Partner Grid Infrastructures

Characteristics

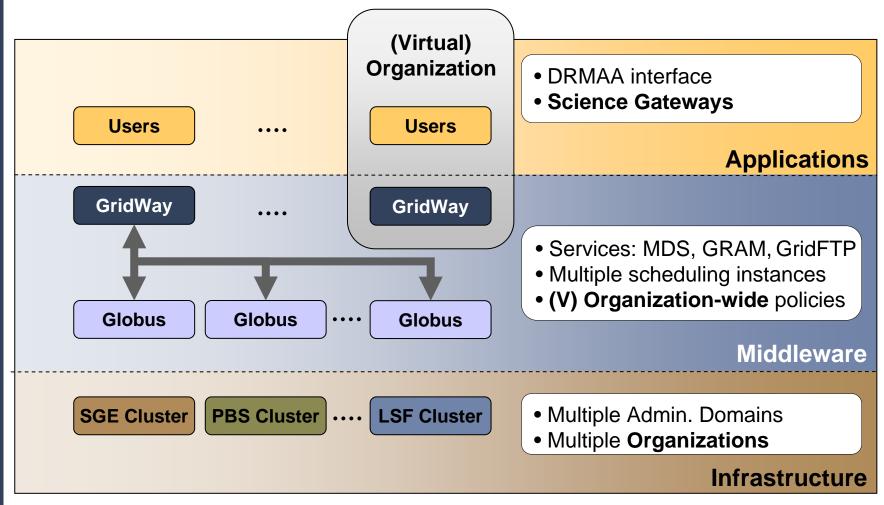
• "Large" scale infrastructures with one or several meta-scheduler instances providing access to resources that belong to different administrative domains (different organizations or partners)

Goal & Benefits


- Large-scale, secure and reliable sharing of resources between partners or supply-chain participants
- Support collaborative projects
- Access to higher computing power to satisfy peak demands

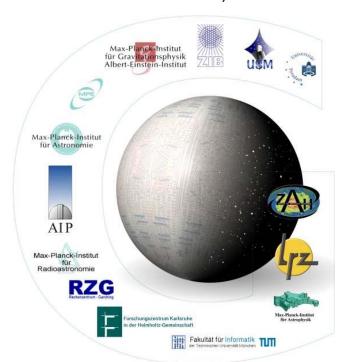
Scheduling

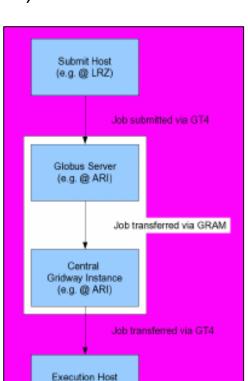
 Decentralized scheduling system that allows the enforcement of organization-wide policies




GridWay 2.4. Deployment Alternatives

Deploying Partner Grids with GridWay

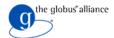



GridWay 2.4. Deployment Alternatives

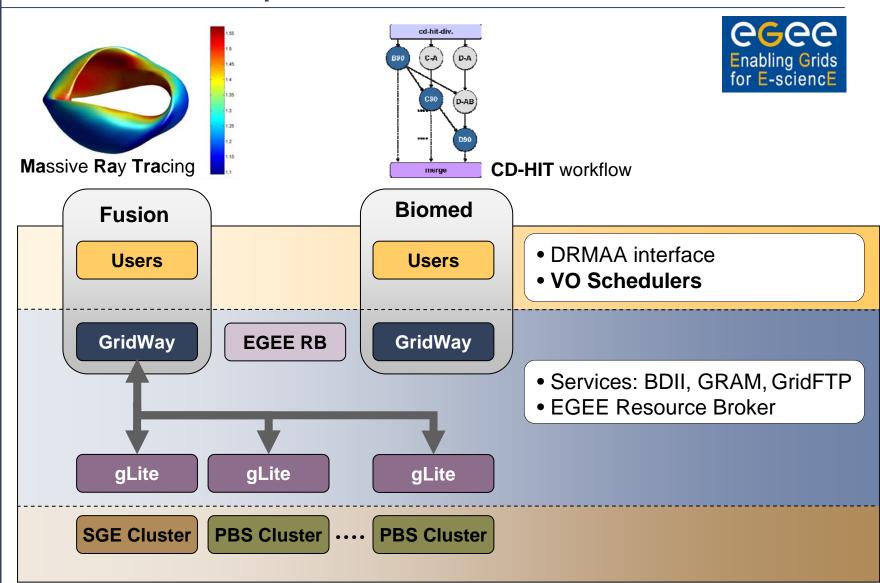
Partner Grids: Examples

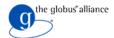
AstroGrid-D, German Astronomy Community Grid

- Collaborative management of supercomputing resources & astronomy-specific resources
- Grid-level meta-scheduler (GRAM interface)
- 22 resources @ 5 sites, 800 CPUs



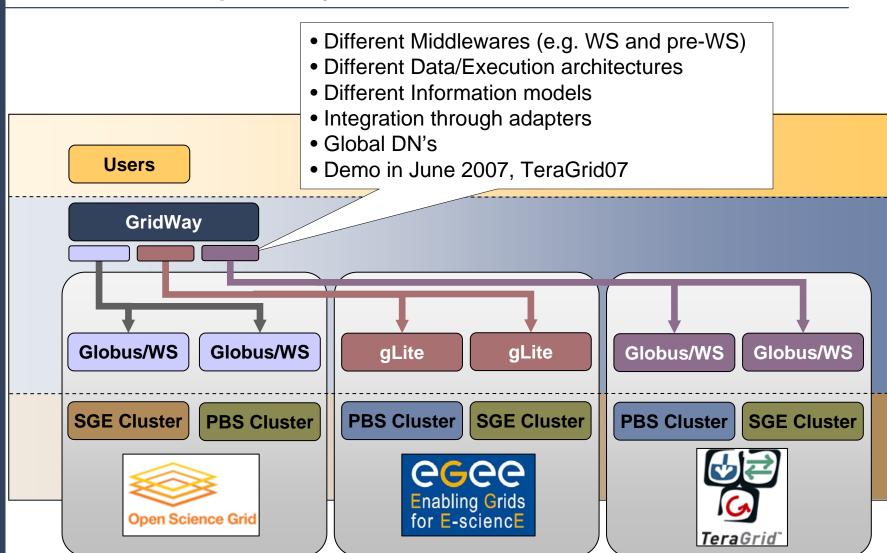
(e.g. @ RZG)

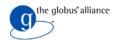




GridWay 2.4. Deployment Alternatives

Partner Grids: Examples




GridWay 2.4. Deployment Alternatives

A Tool for Interoperability

Contents

1. Computing Resources

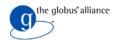
- 1.1. Parallel and Distributed Computing
- 1.2. Types of Computing Platforms
- 1.3. Local Resource Management Systems

2. Globus GridWay Infrastructures

- 2.1. Integration of Different Administrative Domains
- 2.2. The Globus Toolkit
- 2.3. The GridWay Meta-scheduler
- 2.4. Grid Scheduling Architectures

3. SGE Transfer Queues to Globus and GridWay

- 3.1. Interfaces for Grid Infrastructures
- 3.2. From the Cluster to the Grid


4. Demonstrations

- 3.1. Enterprise Grid
- 3.2. Transfer Queue to GridWay

3. SGE Transfer Queues to Globus and GridWay

3.1. Interfaces for Grid Infrastructures

Interfaces Provided by Existing Grid Infrastructures

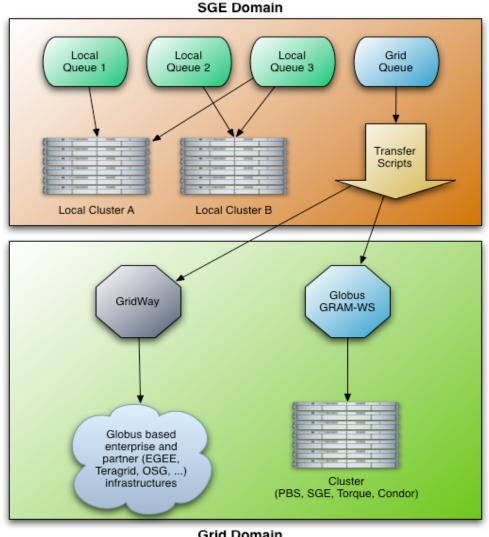
Grid specific commands & API's

- Applications must be ported to the Grid
- Process (submission, monitoring...) must be adapted to the Grid
- New interfaces (e.g. portal) to simplify Grid use

LRMS-like commands & API's => GridWay

- A familiar environment to interact with a computational platform
- SGE-like environment for Computational Grids
- Process still need to be adapted
- Applications would greatly benefit from standards (DRMAA)

Transfer Queues: Seamless access to the Grid



3. A Taxonomy for Grid Scheduling Architectures

GridWay 3.2. From the Cluster to the Grid

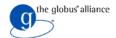
From SGE to a Grid Infrastructure or a Cluster (the other way)

3. A Taxonomy for Grid Scheduling Architectures

GridWay 3.2. From the Cluster to the Grid

Transfer Queues: Seamless access to the Grid

- Access to a grid infrastructure (or remote cluster) on demand driven by SGE scheduling policies
- End users keep the same SGE interface
- Applications running on SGE are able to access the Grid


Transfer Queues: Limitations

 Requirements of system configuration (software, data...) on remote resources for job execution

Contents

1. Computing Resources

- 1.1. Parallel and Distributed Computing
- 1.2. Types of Computing Platforms
- 1.3. Local Resource Management Systems

2. Globus GridWay Infrastructures

- 2.1. Integration of Different Administrative Domains
- 2.2. The Globus Toolkit
- 2.3. The GridWay Meta-scheduler
- 2.4. Grid Scheduling Architectures

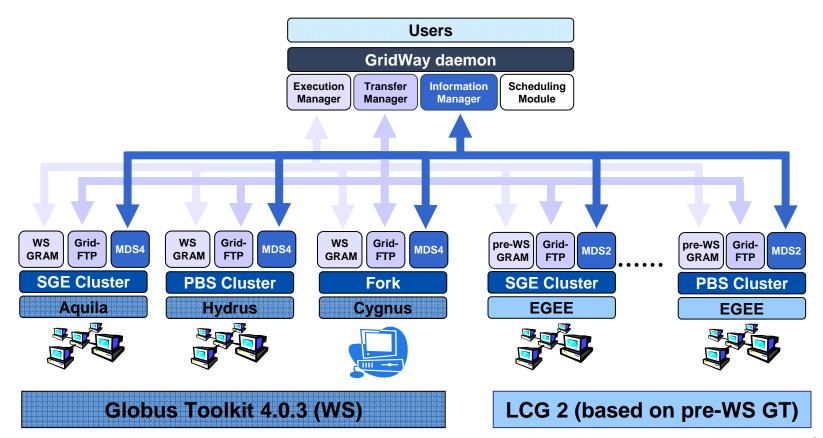
3. SGE Transfer Queues to Globus and GridWay

- 3.1. Interfaces for Grid Infrastructures
- 3.2. From the Cluster to the Grid

4. Demonstrations

- 3.1. Enterprise Grid
- 3.2. Transfer Queue to GridWay

4. Demonstrations

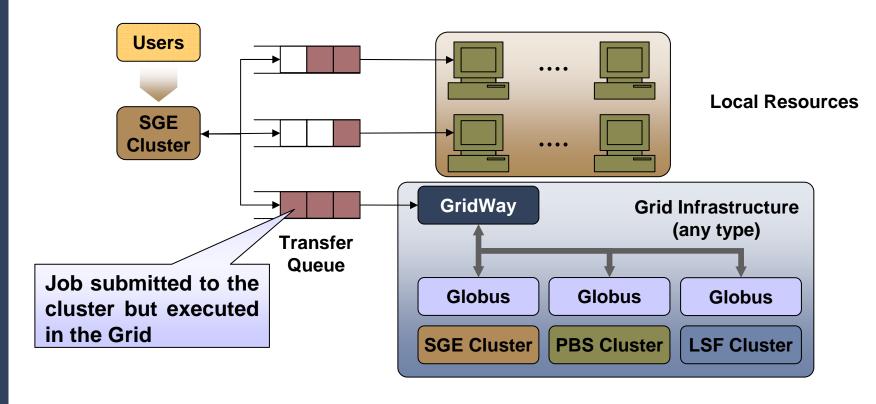

4.1. Enterprise Grid

Testbed Configuration

Information Manager: Static Discovery & Dynamic Monitoring (MDS2 & MDS4)

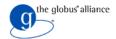
Execution Manager: Pre-WS and WS GRAM

Transfer Manager: GridFTP



4. Demonstrations

GridWay 4.2. Transfer Queue to GridWay


Testbed Configuration

Globus GridWay and SGE

Conclusions

Globus GridWay for SGE Users

Benefits

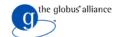
- Integration of SGE clusters within the organization
- Sharing of SGE clusters between partner organizations
- Provision of computing services to other organizations
- Inter-operability with other LRMS

Deployment Alternatives

- Enterprise grid with a single meta-scheduling instance
- Partner grids with several meta-scheduling instances
- Utility grids to access on demand to remote grids or clusters

Interface Alternatives

- SGE-like CLI, DRMAA API and Portal
- Transfer queues



Thank you for your attention!


Globus GridWay and SGE

Backup Slides

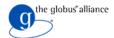
2.4. Deployment Alternatives

Utility Grid Infrastructures

Characteristics

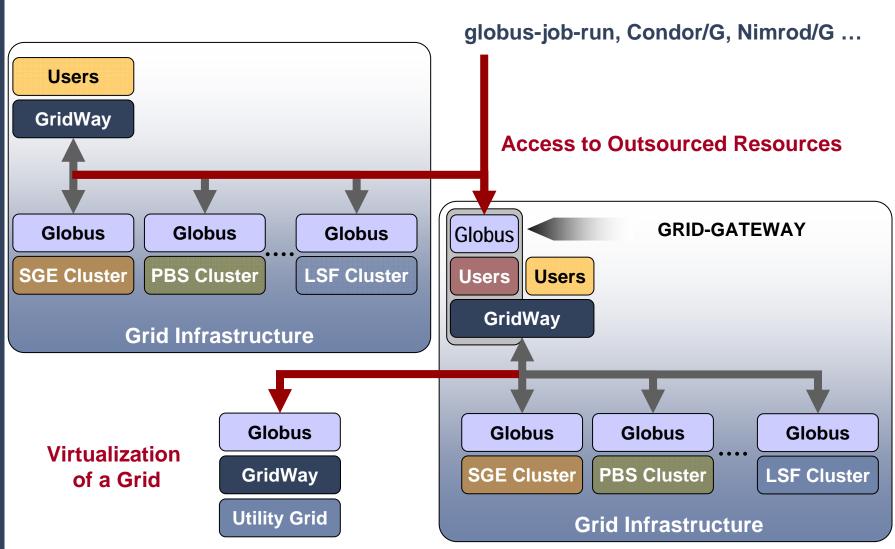
- Multiple meta-scheduler layers in a hierarchical structure
- Resource provision in a utility fashion (provider/consumer)

Goal & Benefits


- Supply resources on-demand, making resource provision more adaptive
- Access to unlimited computational capacity
- Transform IT costs from fixed to variable
- Seamless integration of different Grids (The Grid)

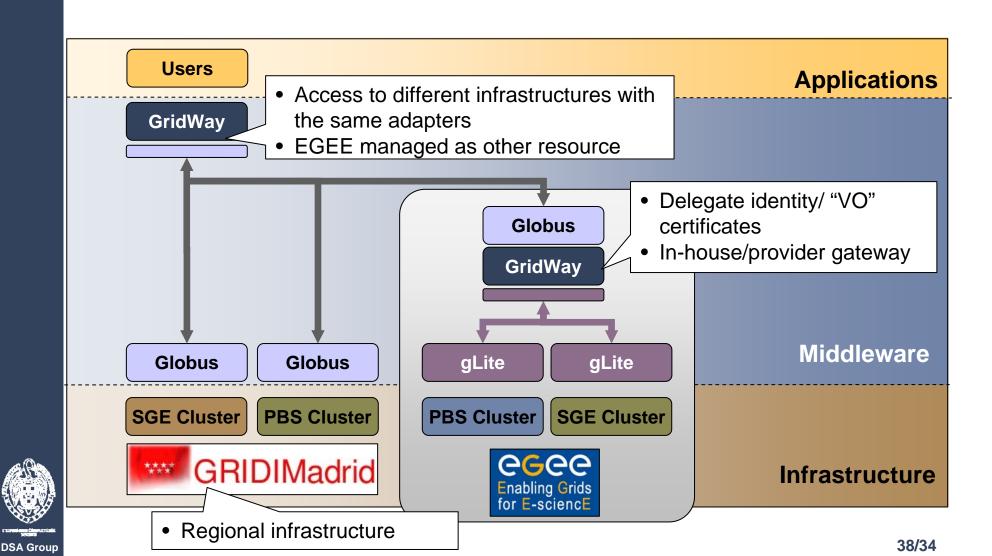
Scheduling

- Each Grid is handled as any other resource
- Characterization of a Grid as a single resource
- Use standard interfaces to virtualize a Grid infrastructure



GridWay 2.4. Deployment Alternatives

Deploying Utility Grid Infrastructures with GridWay



GridWay 2.4. Deployment Alternatives

Utility Grids: Example

