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¿Do the scientific community really 
need robust methods for their 

simulation codes? 

Motivation
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“Civilization advances by extending the 
number of important operations which 
we can perform without thinking about 
them.”

Alfred North Whitehead
An Introduction to Mathematics, 1911

Motivation
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Progress in numerical simulation requires the effective 
combination of advances in:

• Algorithm development
• Understanding the underlying physics
• Computer hardware

Objectives
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The need for speed:

• The design cycle for aerospace vehicles must be 
significantly shortened

• CFD will continue to replace a larger portion of wind 
tunnel and flight testing

Introduction to the Presentation
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¿Can we obtain an optimal
(algorithmic and architectural) solver 

for CFD problems?

Introduction to the Presentation
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Bran98

Introduction to the Presentation



Objectives
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Personal opinion:

It does not exist a key method optimal for all cases

Introduction to the Presentation
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We present one alternative based on implicit schemes and 
semicoarsening

There are many possible paths towards faster CFD

• Precondiotining
• Separation of elliptic and hyperbolic parts
• ...

Introduction to the Presentation



Objectives
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In particular, we present one building block to achieve 
optimal CFD by relieving

Bran98

Introduction to the Presentation



Global Vision of the Presentation

ISCR-CASC-LLNL Ignacio Martín Llorente

10/106

Part 1: Multigrid for the diffussion problem

Part 2: Extension to the convection problem

Part 3: Extension to the incompressible Navier-
Stokes equations

Algorithmic and Architectural issues of

on structured grids

Introduction to the Presentation



Definition of Algorithmic Properties
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Properties that describe the efficiency of an iterative method:
� Convergence rate: Reduction in error per cycle

� Computational work per cycle: Operation count to execute one cycle

What is a robust method?

=> Method able to efficiently solve a wide range of problems

We should define it more precisely by setting up a set of suitable test 
problems

=> Multigrid technique with a convergence rate independent of:

� Grid size

� Anisotropy

� And for our case example: Reynolds number and yaw angle

Introduction to the Presentation



Definition of Architectural Properties
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Properties that are essential to use the full potential of current and 
future computing systems in each single iteration

� Memory usage: Memory waste

� Parallel efficiency: How the parallel setting is exploited?

� Parallel scalability: Is the parallel efficiency maintained for a higher 
number of processors?

� Cache-memory exploitation: Space and temporal locality in the 
memory accesses in order to reduce the number of cache misses

Parallel scalability is quite important in solving very large systems on 
massively parallel computers

=> How does the solver perform as both the number of 
processors and the grid size are increased?

Introduction to the Presentation



Ways to increase the problem size with the number of processors

Accuracy critical scaling model
Memory-bounded (isomemory) (SuNi90) 

Efficiency-bounded (isoefficiency) (GrGK93) 
Time-bounded (isotime) (Gustafson, Gust88)

Time critical scaling model
Fixed-size (Amdahl’s law)

Each scaling model has its own scalability metrics (LlTi97, LlTV96):

We focus on memory-bounded scaling model

Definition of Architectural Properties
• Definitions of Scalability
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Definition of Architectural Properties
• Definitions of Scalability for the Memory-Bounded Scaling Model
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Is the efficiency maintained as the problem size is increased linearly with the number of 
processors (memory-bounded)? 
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Is the execution time maintained as the problem size is increased linearly with the number of 
processors (memory-bounded)? 

From (N,p) to a system n times larger (nN,np):
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If the computational complexity of the algorithm is linear O(N) then T(nN,1) = n T(N,1) and 
SE(p,np)= ST(p,np)

WE PROPOSE TWO SCALIBILITY METRICS FOR MEMORY-BOUNDED SCALING:

Iterative cycle working out of cache

(scaled efficiency)

Introduction to the Presentation
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Details of this research in

I. M. Llorente and F. Tirado, Relationships between Efficiency an 
Execution Time of Full Multigrid Methods on Parallel Computers, 

IEEE Transactions on Parallel and Distributed Systems, Vol. 8, Nº 6, 
1997, pp. 562-573

Definition of Architectural Properties

I. M. Llorente, F. Tirado and L. Vázquez, Some Aspects about the 
Scalability of Scientific Applications on Parallel Computers, Parallel 

Computing, Vol. 22, pp. 1169-1195, 1996

Introduction to the Presentation



Objectives of the First Part
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¿Can we obtain an optimal solver for 
the diffussion operator on highly

stretched grids?

PART 1: Multigrid for the Diffussion Problem



Outline of the First Part
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PART 1: Multigrid for the Diffussion Problem

Introduction
• Description of the model problem
• Components of multigrid
• Anisotropies in the discrete operator
• What is a robust solver?
• Review of robust alternatives

Comparation of two robust alternatives
• Convergence factor
• Memory requirements
• Cache-memory exploitation
• Convergence rate per work unit

Parallel implementation
• Parallel architectures
• Parallel implementation of the alternating-plane approach
• Parallel implementation of the semicoarsening approach
• Architectural advantages of the 1-D decomposition

Conclusions of the first part



Introduction
• Description of the Model Problem
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� 3-D Anisotropic Diffussion Equation on a rectangular domain with Dirichlet
Boundary Conditions

),,(2

2

2

2

2

2
zyxS

zyx φ
φγφβφα =

∂
+

∂
+

∂
∂∂∂

� Discretized by a Finite volume cell-centered 7-point operator
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PART 1: Multigrid for the Diffussion Problem



Introduction
• Components of Multigrid
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Two fundamental principles:

¾ relaxation : standard iterative method / smoother
It is used to eliminate oscillatory components of the error

¾ coarse grid correction
On a coarser grid, low-frequency components appear more oscillatory

I

I

I h
2h

I 2h
h2h

h

2h
h

standard coarsening : 
doubling the mesh size in 
all coordinate directions

¾ FAS (Full approximation scheme) scheme
It can be applied to solve non-linear equations

PART 1: Multigrid for the Diffussion Problem



General FAS ( γ1 ,γ2 ) – V cycle for the solution of the system

L0 u0 = f0

• Pre-smoothing : Apply γ1 sweeps of the smoothing method on L0lul0 = f0

FOR level = 1 TO L-1

• Computation of residual rlevel-1 = flevel-1 - Llevel-1 ulevel-1

• Restriction of residual rlevel=   R rlevel-1

• Restriction of current approximation u’level =  R ulevel-1

• Computation of right-hand side flevel- = rlevel + Llevel u’level

• Pre-smoothing : Apply γ1 sweeps of the smoothing method on Llevelulevel = flevel

FOR level = L-2 TO 1

• Correction of current approximation ulevel = ulevel +  P  (ulevel+1 - u’level+1) 

• Post-smoothing : Apply γ2 sweeps of the smoothing method on Llevelulevel = flevel

Introduction
• Description Components of Multigrid
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Connection 
between  grid 

levels

PART 1: Multigrid for the Diffussion Problem



ISCR-CASC-LLNL Ignacio Martín Llorente

21/106

� Our discrete operator
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• Computational Anisotropy :
Use of a exponential stretched 
grid in the three dimensions.

•Physical Anisotropy : 
Different coefficients in 
each direction

Introduction
• Anisotropies in the Discrete Operator

PART 1: Multigrid for the Diffussion Problem



Introduction
• Anisotropies in the Discrete Operator
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Grid stretching in order to pack points into regions with large gradients

PART 1: Multigrid for the Diffussion Problem



Introduction
• What is a Robust Solver?
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• The convergence of standard multigrid (point smoother combined with full 
coarsening) deteriorates dramatically in presence of anisotropies

• Brandt’s fundamental block relaxation rule states that all strongly coupled 
unknowns (coordinates with relative larger coefficients) should be relaxed 
simultaneously

¾Implicit (line or plane) relaxation combined with full coarsening

• However if 

• The nature of the anisotropy is not known beforehand, or
• The aspect ratios or the equation coefficients differ with each other 

throughout the computational domain

=> A robust solver is needed

PART 1: Multigrid for the Diffussion Problem



Introduction
• Review of Robust Alternatives
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Alternating-direction plane smoothers in combination with full coarsening
(Bran84, LlMe00, …)

X , Y and Z coarsening

Explore
all possibilities

ST
RUCTURED

 GRIDS 9

/ Resolution of the 2-D problems
/ Parallel implementation of the 2-D 

solvers

PART 1: Multigrid for the Diffussion Problem

☺ Fast convergence rate that improves 
with stretching

GEO
MET

RIC 9
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Block smoothing in combination with semicoarsening
(DMRR89, Scha98, BrFJ00, ...)

X coarsening

ST
RUCTURED

 GRIDS 9

/ Resolution of the 2-D problems
/ The 2-D problem size remains fixed in the 

coarsening process (memory waste and 
higher work per cycle)

☺ 1-D parallel implementation
☺ Easier to implement than the 

alternating-plane approach

PART 1: Multigrid for the Diffussion Problem

Introduction
• Review of Robust Alternatives

GEO
MET

RIC 9
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Recombination of the corrections of more than one semicoarsening grid
multiple semicoasening

(Muld89, OvRo93,...)

ST
RUCTURED

 GRIDS 9

/ Difficult 3-D generalization
/ Recombination operator
/ Memory waste

☺ Two level parallelism

PART 1: Multigrid for the Diffussion Problem

Introduction
• Review of Robust Alternatives

GEO
MET

RIC 9
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Standard coarsening combined with a semicoarsened smoother
flexible multiple semicoasening

(Oost95, Stub97, ...)

X and Y coarsening with line relaxation

ST
RUCTURED

 GRIDS 9

/ Memory management☺ Easier parallel implementation

PART 1: Multigrid for the Diffussion Problem

Introduction
• Review of Robust Alternatives

GEO
MET

RIC 9
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Point-wise smoothing combined with a fully adaptive coarsening process
algebraic multigrid

(BrMR82, RuSt87, CFHJ00, ...)

UNST
RUCTURED

 GRIDS 9

/ Parallel implementation
/ Setup time
/ Data management

☺ Black box

An Algebraic Multigrid Tutorial, Van Emde Henson 

PART 1: Multigrid for the Diffussion Problem

Introduction
• Review of Robust Alternatives

ALG
EB

RAIC 9



Comparation of Two Robust Alternatives
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We focus on:

¾ Alternating-plane smoother combined with full coarsening (LlMe00, …)

¾ Plane smoother combined with semicoarsening (PSEL01, …)

Results obtained with:

• Homogeneous problem with random initial guess
• V(1,1) cycle 
• Restriction done by full weighted operator
• Trilinear (plane alternating) and linear (semicoarsening) interpolation for the

prologator
• Zebra plane relaxation

PART 1: Multigrid for the Diffussion Problem



Comparation of Two Robust Alternatives
• Convergence Factor
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Computational Anisotropy : 3-D exponential stretched grid

• Each semi-coarsening approach exhibits the same convergence factor. There is no 
privileged direction

• The alternating-plane smoother improves its convergence factor as the stretching grows 

Alternating-plane

PART 1: Multigrid for the Diffussion Problem

Grid stretching

Convergence Factor

Simulations for the isotropic equation on 
a 64x64x64 grid with different stretching 
factors.
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• Best Semi-coarsening procedure the one that keeps coupling of connected unknowns

• Alternating-plane smoother becomes a direct solver for high anisotropies

Physical Anisotropy: Coefficients are increased in two directions

Alternating-plane and semicoarsening solving the connected unknowns

PART 1: Multigrid for the Diffussion Problem

c=1 a = b = 1,10,100,1000,10000

Convergence Factor

Simulations for the anisotropic equation 
on a uniform 64x64x64 grid

Comparation of Two Robust Alternatives
• Convergence Factor
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Problem size

• Memory requirements of the semi-coarsening approach are about twice as large as the 
alternating-plane approach

Comparation of Two Robust Alternatives
• Memory Requirements

Alternating-plane

PART 1: Multigrid for the Diffussion Problem
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• Execution Time per Cycle

Factors to consider:
¾ Floating point operations per Multigrid cycle 
¾ Cache memory exploitation

PART 1: Multigrid for the Diffussion Problem

Floating point operations per Multigrid cycle: 
• 26 % larger on the alternating-plane approach

Alternating-plane
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Memory data storage
• Plane YZ ( X= constant )
Suitable for X-semi-coarsening

• Plane XZ ( Y= constant )
Suitable for Y-semi-coarsening

• Plane XY ( Z= constant )
Suitable for Z-semi-coarsening

PART 1: Multigrid for the Diffussion Problem

Comparation of Two Robust Alternatives
• Execution Time per Cycle

Cache memory exploitation
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Millions of L2 cache Misses
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Cache memory exploitation 
• Y-Semicoarsening and X-Semicoarsening have the same behavior (L2 cache block size).
• Z-Semicoarsening produces more L2 cache misses due to the memory storage scheme.

• SGI O2 Workstation
L2 : 1-MB unified -Ofast=ip32_10k

• SGI Origin 2000 system (O2K)
L2 : 4-MB unified -Ofast=ip27

Comparation of Two Robust Alternatives
• Execution Time per Cycle

X and Y semicoarsening

Cost per cycle : 38% larger on the alternating-plane approach

PART 1: Multigrid for the Diffussion Problem

64x64x64 grid32x32x32 grid
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Simulations for the isotropic equation on 
a 64x64x64 grid with different stretching 
factors

Comparation of Two Robust Alternatives
• Convergence Rate per Work Unit

Definitive metric

Work Unit: Time consumed in computing the system metrics on the finest level

PART 1: Multigrid for the Diffussion Problem

• The alternating-plane approach reduces the same amount of error in less time

Grid stretching

Convergence Factor per Work Unit (O2K)
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SGI Origin 2000: 32 MIPS R10000

Parallel Implementation
• Parallel Architectures

PART 1: Multigrid for the Diffussion Problem

CRAY T3E: 48 Alpha 21164
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• Parallel Implementation Alternatives

PART 1: Multigrid for the Diffussion Problem

MG+ DD : Grid partitioning 

• Domain decomposition is applied at each level

¾ It retains the convergence of the sequential algorithm

¾ It implies more communication overheads than domain decomposition 
approaches since exchanges of data are required on each grid level

DD + MG : Domain decomposition

• Domain decomposition is applied on the finest grid and multigrid inside each 
block

¾ It deteriorates the convergence of the sequential algorithm

¾ It implies fewer communications since exchanges of data are only 
required on the finest grid level
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• Regardless of the data partitioning applied, it requires the solution of tridiagonal systems of 
equations distributed among the processors  because the combination of alternating-line 
smoothers and full coarsening is applied to solve the planes

• Solving the line is the most time consuming task of our code (around 80 %)

• An alternating-line 2D solver can be used for estimating the parallel efficiency of the 
whole application

Parallel Implementation
• Parallel Implementation of the Alternating-Plane Approach

PART 1: Multigrid for the Diffussion Problem

Distributed y-lines solved by:
• Pipelined Gaussian Elimination 
• Cyclic Reduction 
• Wang’s algorithm

Local x-lines solved by 
Gaussian Elimination

x

y
Let us study the efficiency of these 
methods on parallel computers for 

128x128 and 1024x1024 2-D 
systems (1-D partitioning)
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• Parallel Implementation of the Alternating-Plane Approach

PART 1: Multigrid for the Diffussion Problem
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Pipelined Gaussian Elimination (PGE)

• High efficiencies for large 2D problems
• Current memory limits do not allow 3D problems to be solved where their corresponding 

2D planes are big enough to obtain satisfactory efficiencies
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• Parallel Implementation of the Alternating-Plane Approach

PART 1: Multigrid for the Diffussion Problem
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Cyclic Reduction

• High efficiencies for large 2D problems
• Current memory limits do not allow 3D problems to be solved where their corresponding 

2D planes are big enough to obtain satisfactory efficiencies
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• Parallel Implementation of the Alternating-Plane Approach

PART 1: Multigrid for the Diffussion Problem
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Wang’s algorithm

• High efficiencies for large 2D problems
• Current memory limits do not allow 3D problems to be solved where their corresponding 

2D planes are big enough to obtain satisfactory efficiencies
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Details of this research in

PART 1: Multigrid for the Diffussion Problem

Parallel Implementation
• Parallel Implementation of the Alternating-Plane Approach

D. Espadas, M Prieto, I. M. Llorente and F.Tirado, Solution of 
Alternating-line Processes on Modern Parallel Computers, In 
Proceedings of the 28th. International Conference on Parallel 

processing, ICPP '99. Aizu-Wakamatsu (Japan), September 1999. 
Published by the IEEE Computer Society, pp. 208-215
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• A 1-D data decomposition on the semicoarsened direction can be chosen so that a 
parallel tridiagonal solver is not needed

PART 1: Multigrid for the Diffussion Problem

Parallel Implementation
• Parallel Implementation of the Semicoarsening Approach
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PART 1: Multigrid for the Diffussion Problem

Parallel Implementation
• Parallel Implementation of the Semicoarsening Approach

Cray T3E Origin 2000

• Can the efficiency be improved?

One V-cycle for the isotropic 
equation on a 64x64x64 grid
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The efficiency deteriorates for a large number of processors due to the load 
imbalance below the critical level (level with one plane per processor)

Parallel Implementation
• Parallel Implementation of the Semicoarsening Approach

PART 1: Multigrid for the Diffussion Problem

P0 P1 P3P2

P0 P1 P3P2
Number of idle Processors is doubled
in each level below the critical one

Critical level
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Agglomeration on Coarsest Grid (MoDe99, ...):

¾ Grids below the critical level are solve on a single processor
) It could reduce the communication overhead

¾ It increases the execution time because the plane-wise smoother is very expensive

Parallel Superconvergent Multigrid (FrMc88, …):

¾ It keeps the processor busy below the critical level using multiple coarse grids
) It could improve the convergence rate

¾ It increases the execution time because of the time needed for merging the solutions

U-cycle Method (XiSc97, …):

¾ It solves the problem on the critical level by applying an certain number of sweeps
) It could avoid idle processors

¾ It increases the execution time in the simulation because convergence rate of each 
cycle becomes lower

Parallel Implementation
• Parallel Implementation of the Semicoarsening Approach

PART 1: Multigrid for the Diffussion Problem

Alternatives to relieve the load imbalance



ISCR-CASC-LLNL Ignacio Martín Llorente

48/106

PART 1: Multigrid for the Diffussion Problem

Parallel Implementation
• Parallel Implementation of the Semicoarsening Approach

U-cycle approach

• The number of grid levels has been fixed so that each processor has one plane on 
the coarsest level (critical level)

P0 P1 P3P2

• Critical Level for 4 processors

• Coarsest level fixed by the number of 
processors used

¾May be too large to keep the 
convergence rate
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PART 1: Multigrid for the Diffussion Problem

Parallel Implementation
• Parallel Implementation of the Semicoarsening Approach

Cray T3E

• Higher efficiency than the pure V-cycle! (0.92 vs. 0.7 for 16 processors) 
• What about the convergence rate?

• Realistic efficiency

One U-cycle for the isotropic 
equation on 32x32x32 and 

64x64x64 grids
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PART 1: Multigrid for the Diffussion Problem

Parallel Implementation
• Parallel Implementation of the Semicoarsening Approach

• Lower efficiency than the pure V-cycle! (0.3 vs. 0.7 for 16 processors) 

Cray T3E

Realistic efficiency using  U-
cycles reaching a residual norm 

of 10-12 on a 64x64x64 grid
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Hybrid Smoother:

1. The number of levels can be defined and is a trade-off between algorithmic and 
architectural properties

¾ The higher the number of levels the higher the convergence rate
¾ The smaller the number of levels the higher the parallel efficiency

2. It uses as smoother:

¾ Zebra smoother in and above the critical level
¾ Damped Jacobi in and below that level

It improves the granularity of the smoother but deteriorates its convergence rate

PART 1: Multigrid for the Diffussion Problem

Parallel Implementation
• Parallel Implementation of the Semicoarsening Approach

Trade-off between algorithmic and architectural properties
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PART 1: Multigrid for the Diffussion Problem

Parallel Implementation
• Parallel Implementation of the Semicoarsening Approach

• Therefore going down to the coarsest level is not the most efficient choice
• The efficiency for the hybrid approach on 16 processors is higher (0.87 vs. 0.7 for 

pure V-Cycle and vs. 0.3 for the U-Cycle)

Cray T3E Origin 2000

Realistic efficiency using  
Hybrid-cycles reaching a 
residual norm of 10-12 on 

a 64x64x64 grid
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Details of this research in

PART 1: Multigrid for the Diffussion Problem

D. Espadas, M Prieto, I. M. Llorente and F.Tirado, Solution of 
Alternating-line Processes on Modern Parallel Computers, In 
Proceedings of the 28th. International ConfICPP '99). Aizu-

Wakamatsu (Japan), September 1999. Published by the IEEE 
Computer Society, pp. 208-215
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• Communication- computation ratio

• Communications grow proportionally to the size of the boundaries
• Computations grow proportionally to the size of its entire partition

Perimeter-surface ratio in 2D
Surface-volume ratio in 3D

• Traditional wisdom says that 3-D decomposition of 3-D problems (for example a 
Poisson multigrid solver with point smoothing) leads to a lower inherent 
communication-to-computation ratio

• The impact becomes greater as the number of processors increases

256x256x256 problem

n
n/√p
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PART 1: Multigrid for the Diffussion Problem

2-D decomposition on 32-processor SGI Origin 2000

22 % better than the 1-D decomposition
8  %  better than the 3-D decomposition

¾Data partitioning is a trade-off between the improvement of the message data 
locality and the efficient exploitation of the underlying communication system

¾Using up to 32 processors, in both systems, an appropriate 2-D decomposition, 
where boundaries with poor spatial locality are not needed, solves that trade-off

We should also note that a lower-dimensional partitioning program

is easier to code

allows the implementation of fast sequential algorithms in 
the non-partitioned directions

execution time is similar to 2-D or 3-D
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PART 1: Multigrid for the Diffussion Problem

Details of this research in

M. Prieto, I. M. Llorente and F. Tirado, Data Locality Exploitation in 
the Decomposition of Regular Domain Problems, IEEE Transactions 
on Parallel and Distributed Systems, Vol. 11, Nº 11, 2000, pp. 1141-

1150

M. Prieto, I. M. Llorente and F. Tirado, A Revision of Regular Domain 
Partitioning, SIAM News Vol 33 Number 1, January-February 2000 
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• The alternating-plane approach presents:
• Higher convergence rates that improves with the anisotropy strength
• Lower memory requirements
• Higher execution time per cycle

• In summary, better convergence per work unit

• However, its parallel implementation is not efficient since it requires the 
solution of distributed 2-D systems (difficult and poor efficient implementation)

• The 1-D parallel version of the semicoarsening approach is more efficient using 
a tradeoff between the V- and U-cycles (hybrid smoother)

PART 1: Multigrid for the Diffussion Problem
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¿Can we obtain an optimal solver for 
the convection operator?

a
φ y

hx

hy

PART 2: Extension to the Convection Problem

Objectives of the Second Part
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PART 2: Extension to the Convection Problem

Outline of the Second Part

Introduction
• Multigrid for convection problems
• Model problem

Our approach
• Narrow discretization
• Cross-characteristic interaction

Results
• Convergence rate
• Parallel efficiency

Conclusions of the second part
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Multigrid is highly efficient to solve elliptic operators

However, it fails to solve nonelliptic operators

In many cases, the nonelliptic part is represented by the convection operator
For example, Navier-Stokes solved by multigrid based on a distributive smoother
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+

∂

∂
+

∂

∂

Downstream marching is the more efficient sequential solver for this operator
☺ Solve linear upwind operators in one sweep
☺ Solve nonlinear operators in few sweeps

However:
/ A defect-correction scheme must be applied if the discretization is not fully 

upwind
/ Very low parallel efficiency due to the sequential marching

PART 2: Extension to the Convection Problem
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NARROW DISCRETIZATION

+

SEMICOARSENING

+

CORRECTION OF OPERATORS TO MAINTAIN THE SAME CROSS-
CHARACTERISTIC INTERACTION IN ALL GRIDS

+

FOUR-COLOR PLANE IMPLICIT SMOOTHER

PART 2: Extension to the Convection Problem

[Disk99]
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• The discretization follows the characteristic line of the operator

• The full-dimensional operator is obtained by replacing values at ghost points by 
weighted averages at adjacent genuine grid points
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¿What is the cross-characteristic interaction (CCI)?
• The CCI induced by a discrete operator is estimated by the coefficients of the 

lowest pure cross-characteristic derivatives appearing in the first differential 
approximation

• In our simpler case, CCI appears only because on interpolation in the y-z plane

Main difficulty in constructing an efficient solver for nonelliptic operators:
• Poor coarse-grid approximation to fine-grid characteristic error components
• The coarse-grid CCI is lower than required in a narrow discretization on a 

semicoarsened grid

Solution:
• We supply additional terms (explicit CCI) in coarse-grid discretizations so the 

total coarse-grid CCI would be the same as on the fine grid

PART 2: Extension to the Convection Problem
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Solver 1: With explicit CCI terms
Solver 2: Without explicit CCI terms

Residual versus work unitsResidual versus work units

Grid-independent convergence rate 0.09 for any 
angles of nonalinment

PART 2: Extension to the Convection Problem

a
bty =

a
ctz =
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PART 2: Extension to the Convection Problem

• What about the convergence rate?
•Realistic efficiency

Efficiency of one Hybrid-cycle
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It deteriorates the convergence properties

The Realistic Parallel Efficiency considers the execution time to reach the final 
solution (to reach a certain residual norm)

PART 2: Extension to the Convection Problem

Results
• Parallel Efficiency
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Again the best choice is a trade-off between the parallel and numerical properties

PART 2: Extension to the Convection Problem

Results
• Parallel Efficiency

Realistic efficiency using  
Hybrid-cycles reaching a 

residual norm of 10-12
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PART 3: Extension to Navier-Stokes

Details of this research in

I. M. Llorente, M. Prieto-Matias and B. Diskin, An Efficient Parallel
Multigrid Solver for 3-D Convection Dominated Problems, in press, 

Parallel Computing 
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• We have proposed a multigrid algorithm to solve in a parallel setting a convection 
operator that is sequential in nature

• Such operator appears in many practical problems in CFD 
• For example, distributive smoothers

• We have studied different alternatives to implement the solver on a parallel 
computer 

• The 1-D decomposition with a hybrid smoother appears to be a tradeoff between 
parallel and convergence properties

• Satisfactory efficiencies (higher than 0.8) are obtained up to 32 processors

PART 2: Extension to the Convection Problem
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¿Can previous conclusions be 
extended for the incompressible 

Navier-Stokes Equations? 

PART 3: Extension to Navier-Stokes
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PART 3: Extension to Navier-Stokes

Introduction
• Description of the problem
• Multigrid approach
• The coupled smoother
• The plane smoother

Boundary layer of a flat plate at yaw
• Domain
• Boundary conditions
• Non-zero yaw angle

Results
• Validation with Blasius theory
• Convergence rate
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PART 3: Extension to Navier-Stokes

Parallel implementation
• 1-D decomposition
• 2-D decomposition
• Parallel architecture
• Analysis of the interconnection alternatives
• Analysis of the execution node alternatives
• Scalability

Relation to the MG/NAS parallel benchmark
• Description of MG/NAS
• Our code as a benchmark
• Comparation to our code

Conclusions of the third part



Introduction
• Description of the Problem

ISCR-CASC-LLNL Ignacio Martín Llorente

75/106

0u
uRe

1pu)u(
=⋅∇

Δ+−∇=∇⋅

• Dimensionless steady-state incompressible Navier-Stokes equations: 

• Discrete system obtained using a finite 
volume technique

• Discretization over an orthogonal 
structured grid

• Staggered arrangement of 
unknowns

• The second-order operator is obtained 
using a QUICK scheme [HaHG92] 
solved via defect-correction inside 
the multigrid cycle [OGWW98]

PART 3: Extension to Navier-Stokes
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• Multigrid strategy : Full Multi-Grid (FMG). 

• Coarsest Finest.

• Reduce the algebraic errors below the discretization error in one FMG cycle.

• Multigrid Cycle: Solve each level of the FMG algorithm

• FAS (Full Approximation Scheme)

• Grids scanned with a F(γ1,γ2) cycle
Iterations of the smoother upwards 

Iterations of the smoother downwards 

Iterations of the smoother to solve 
the Coarsest level.

PART 3: Extension to Navier-Stokes
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• The solution is updated via under-relaxation

• We have chosen a coupled smoother [Vank86] instead of the distributive alternative [BrYa92] 
9 All variables involved in each control-volume are updated simultaneously
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• Relax simultaneously the momentum and continuity equations
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• We have compared different robust smoothers: alternating-plane vs. semicoarsening 
[MoLS01] and the combination of semicoarsening and plane implicit presents much better 
properties

• All the velocity components and pressures contained within the plane are updated

• Example YZ-Plane:
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Introduction
• The Plane Smoother
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• An 2-D direct exact solver is not needed for the planes

• The 2-D system is approximately solved with one cycle of a robust 2-D multigrid 

algorithm

• The 2-D algorithm is the combination of line smoothing with semicoarsening

PART 3: Extension to Navier-Stokes



X

Y

Z

Y
Geometrically stretched near the plate 
edges due to high residuals and errors

Geometrically stretched in x direction to 
capture the boundary layer

Boundary Layer of a Flat Plate at Yaw
• Domain

ISCR-CASC-LLNL Ignacio Martín LlorentePART 3: Extension to Navier-Stokes

cascade of square plates 
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Boundary Layer of a Flat Plate at Yaw
• Boundary Conditions

• Region of a favorable pressure 
gradient that accelerates the 
velocity at the outlet in order to 
match the wrong outflow 
condition

ISCR-CASC-LLNL Ignacio Martín LlorentePART 3: Extension to Navier-Stokes

• The outflow boundary condition 
is derived using Goldstein's 
calculations of the velocity 
distribution in the wake of a
finite 2-D flat plate [Gold33]

• The low pressure zone in the 
wake of the plate disappears

81/106



Boundary Layer of a Flat Plate at Yaw
• Non-zero Yaw Angle

The two problems associated with this simulation
are boundary layers and entering flows with non-

aligned characteristics

Periodicity in the velocity field 

Boundary conditions are obtained by 
rotating Goldstein's calculations 
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Results
• Validation with Blasius Theory
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• We will confine Re<105 and assume 
that the wake remains laminar at a 
distance of 2L behind the trailing 
edge

ISCR-CASC-LLNL Ignacio Martín LlorentePART 3: Extension to Navier-Stokes

84/106Results
• Validation with Blasius Theory



• The convergence attained within the first five cycles is below 0.1 for 
both smoothers and yaw angles for Reynolds numbers bellow 10000

Results
• Convergence Rate
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Results
• Convergence Rate
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Upwind stencil

No dependencies No dependencies

QUICK stencil

1-D decomposition on the semicoarsened direction

•Traditional Zebra order of planes is not possible (correction of the convective terms)

• Planes scanned in a 4-c fashion

Zebra Ordering of Planes Tri-Plane Ordering of Planes

Planes solved 
simultaneously 

PART 3: Extension to Navier-Stokes

Parallel Implementation
• 1-D Decomposition



• U-cycle

• The planes are solved with Semi-coarsening + Line Smoothing 
(the line solvers are not distributed)

Parallel Implementation
• 2-D Decomposition

ISCR-CASC-LLNL Ignacio Martín LlorentePART 3: Extension to Navier-Stokes
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Objectives of the study:

• Fast Ethernet vs. Giganet-VIA

• Single node vs. dual node 
computing

• Scalability

Parallel Implementation
• Parallel Architecture
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MpiPro and Porland Group compiler
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Simulations using Dual-Nodes and a 32x128x128 grid

Parallel Implementation
• Analysis of the Interconnection Alternatives
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VIA

TCP

T
T

Drop in Efficiency due to the higher interconnection latency and lower bandwidth

Speedup = 
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Parallel Implementation
• Analysis of the Execution Node Alternatives
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Simulations using VIA and a 32x128x128 grid

Drop in Efficiency due to both a single network card and memory sharing
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VIA

TCP

T
T

Speedup = 



Parallel Implementation
• Scalability
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The scaled efficiency is bounded away from zero, so the pair algorithm-architecture is scalable 
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• Description of MG/NAS
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PART 3: Extension to Navier-Stokes

Goal of the NAS Parallel Benchmark (www.nas.nasa.gov):
• Estimate the performance of a real CFD application on a parallel system by solving 

the following MPI-based source kernels: EP, MG, CG, FT, IS, LU, SP and BT

The NAS-MG multigrid benchmark solves Poisson's equation in 3-D with periodic boundary 
conditions using multigrid V-cycles on a uniform 256x256x256 grid (class-B, 20 cycles)

Grid partitioning is applied in the parallel implementation
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PART 3: Extension to Navier-Stokes

MG/NAS
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Number of processors

Ti
m

e

VIA single
VIA double
TCP single
TCP double
O2K
T3E

VIA single VIA double TCP single TCP double O2K T3E
1 248,23 248,23 248,23 248,23 207,49
2 123,3 174,38 133,55 174,67 143,12
4 68,4 97,23 79,5 105,36 82,75 52,1
8 31,52 44,71 40,13 53,15 41,85 22,4
16 18,33 26,82 24,26 34,73 22,23 12,9
32 17,28 23,11

The poor data locality in the message passing affects more strongly to the MIPS 10000 processor performance
(10 MB/seg with poor data locality, see PrLT00)   
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PART 3: Extension to Navier-Stokes

Navier Stokes

0

500
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1500

2000
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1 10 100

Number of processors

Ti
m

e

VIA single
VIA double
TCP single
TCP double
O2K

VIA single VIA double TCP single TCP double O2K
1 2236,87 2236,87 2236,87 2236,87 1898,5
2 1163,19 1217,47 1060,31 1209,43 753,5
4 547,66 644,394 588,974 707,026 484
8 294,025 351,678 350,033 425,145 242

16 152,238 187,349 183,912 235,054 129,5
32 110,956 144,248 59

The plane implicit smoother exhibits a higher locality



ISCR-CASC-LLNL Ignacio Martín Llorente

97/106

PART 3: Extension to Navier-Stokes

Our code shows a higher computation to communication ratio

Relation to the MG/NAS Parallel Benchmark
• Comparation to Our Code
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• Textbook Multigrid Convergence is attained for the mode problem (flat 
plate at yaw):

• Independent of Grid Size

• High Stretching Factors

• Reynolds number up to 105

• Parallel version of the smoother exhibits similar convergence properties 
to the lexicographic order with good scalability

• Coral shows better performance than O2K and of course much better 
performance-cost ratio

• Real CFD codes shows a higher computation to communication ratio and 
higher memory access locality than the NAS/MG kernel due to the need 
of implicit smoothers. So our code characterizes better the CFD work 
load

PART 3: Extension to Navier-Stokes

Conclusions of the Third Part
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PART 3: Extension to Navier-Stokes

Details of this research in

R. S. Montero, I. M. Llorente and M. D. Salas, Robust Multigrid 
Algorithms for the Navier-Stokes Equations, in press, Computational 

Physics, Academic Press

R. S. Montero, I. M. Llorente and M. D. Salas, Semicoarsening and 
Implicit Smoothers for the Simulation of a Flat 

Plate at Yaw, ICASE Report No. 2001-13

Conclusions of the Third Part
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• Flow over rectangular bodies sitting on a flat plate to study the flow field over a MEMS 
(MEMS= micro-electronic-mechanical systems) device or over buildings

• Turbulence model

• Multiblock grids with two levels of parallelism MPI-OpenMP (LlDM00)

• Distributive smoothers for Navier-Stokes

• Non-cartesian grids

• Incompressible Navier-Stokes
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THANKS FOR YOUR 
ATTENTION!
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