Grids & e-Science 2009 June 18th, Santander, Spain

Clouds, Grids & Virtual Machines

Ruben Santiago Montero

dsa-research.org

Distributed Systems Architecture Research Group Universidad Complutense de Madrid

Objectives

- Brief Overview of Clouds
- The laaS approach for Infrastructure Provisioning
- Management of Virtual Infrastructures
- laaS for the dynamic provisioning of virtual clusters in Grids
- Grids & Clouds: Trends and Opportunities
- OpenNebula Tutorial

2/22

Cloud Computing in a Nutshell

What

Who

Software as a Service

On-demand access to any application

End-user (does not care about hw or sw)

Platform as a Service

Platform for building and delivering web applications

Developer

(no managing of the underlying hw & swlayers)

📆 **Windows** 'Azure'

Delivery of a *raw* computer infrastructure

System Administrator (complete management of the computer infrastructure)

The laaS Clouds: A Four-Point Checklist

- Simple Interface
- Raw Infrastructure Resources
 - Total control of the resources
 - Capacity leased in the form of Vms
 - Complete Service-HW decoupling
- Pay-as-you-go
 - A single user can not get all the resources
- Elastic & "infinite" Capacity

NOTE: This applies to any laaS Cloud (private, public...)

Service Deployment using laaS

The Anatomy of an laaS Cloud

Virtual Infrastructure Manager

- VMs are great!!...but something more is needed
 - Where did/do I put my VM? (scheduling & monitoring)
 - How do I provision a new cluster node? (*clone & context*)
 - What MAC addresses are available? (networking)
- Provides a uniform view of the resource pool
- Life-cycle management and monitoring of VM
- The VIM integrates Image, Network and Virtualization

Virtual Infrastructure Manager: Image Management

- VM Images Sources:
 - Master images in local repositories
 - Appliance supplier
 - Creation on the fly
- Clones have to be contextualized (Context VBD)

Virtual Infrastructure Manager: Networking

- VMs interconnected through one or more networks
 - Isolated, layer 2 LANs
 - Virtual networks are dynamically created
 - Medium size networks (x.x.x.x/20) with limited public IPs
- TCP/IP services are not responsibility of the VM Manager

9/22

Virtual Infrastructure Manager: Life-cycle

- Resource Selection: Where do I place the VM?
 - Capacity planning (consolidation)
 - Placement requirements (e.g. affinity)
 - Placement Heuristics (e.g. Green IT, AR...)
- Resource Preparation: What do I need for the VM?
 - Network preparation
 - Image cloning & contextualization
- VM Creation: How do I start a VM?
 - Interface with different hypervisors
- VM Monitoring: How is the VM doing?
- VM Migration: Is there a better resource for the VM?
 - Adjust placement to better fit to the infrastructure target
- VM Termination: Do I need to save any VM image?

Virtual Infrastructure Manager: OpenNebula

www.OpenNebula.org

- Flexible & Open Design
 - Third-party components
 - Easily adapted & extended
- Management of Virtual Services
 - Image, Network & Context
- Integrated with cloud providers
- Open Source Apache2
- Included in Ubuntu 9.04 (server)

Grids & Virtual Machines

Some Limitations of Current Grids

- High degree of heterogeneity (software & hardware)
- High operational costs
- Isolate and partition resources contributed to the Grid
- Specific environment requirements for different Vos
- Users simply do not feel like adopting our execution models (pilot jobs...)

Grids are difficult to maintain, operate and use

12/22

Grids & Virtual Machines

Cluster users

User Requests

- "used-to" LRMS interface
- Virtualization overhead

OpenNebula (VIM)

Infrastructure Layer

dsa-research.org

Grids & Virtual Machines

Cluster users

Grids & Virtual Machines

Cluster users

Grids & Virtual Machines

A Complete Grid Middleware Stack

- Unmodified Applications (Grid or local)
- •Interfaces preserved (qsub, DRMAA..)

Applications

Meta-schedulers (GridWay, Condor/G...)

- Virtual resources are exposed by GM
- Dynamic scheduling
- Fault detection & recovery

gLite, UNICORE, Globus...

Cluster Frontend (SGE...)

- WNs register to different queues
- Multiple VO-specific clusters

OpenNebula (VIM)

Computing Service Layer

- Infrastructure consolidation
- Infrastructure partitioning
- Infrastructure adaptation

Infrastructure Layer

A Complete Grid Middleware Stack

- Unmodified Applications (Grid or local)
- •Interfaces preserved (qsub, DRMAA..)

Applications

Meta-schedulers

gLite, UNICORE, Glo

Cluster Fronte

(GridWay, Condor/G...)

Virtual resources are exposed by GM mic scheduling detection & recovery

Grid Middleware Layer

- WNs register to different queues
- Multiple VO-specific clusters

Computing Service Layer

- Infrastructure consolidation
- Infrastructure partitioning
- Infrastructure adaptation

Gridiciuster as a service!!!!

Infrastructure Layer

Grids, Clouds and Virtual Machines

20/22

Tutorial: Hybrid Deployment of a Virtual Cluster

Grids, Clouds & Virtual Machines: Opportunities

- Virtualization, cloud, and grid are complementary technologies and will coexist and cooperate at different levels of abstraction
- Virtualization can solve many obstacles for Grid adoption
- Virtualization and cloud do NOT require any modification within service layers (end-user perspective)
- Separation between service and infrastructure layers will allow the application of the utility model to scientific computing in any form (HPC MPI)
- Share Hardware not Services (LRMS)!!!

Thanks and More Info...

More info, downloads, mailing lists at www.OpenNebula.org

OpenNebula is partially funded by the "RESERVOIR– Resources and Services Virtualization without Barriers" project EU grant agreement 215605

The OpenNebula Team

- Ignacio M. Llorente (llorente@dacya.ucm.es)
- Ruben S. Montero (rubensm@dacya.ucm.es)
- Rafel Moreno (rmoreno@dacya.ucm.es)
- Tino Vazquez (tinova@fdi.ucm.es)
- Javier Fontan (jfontan@fdi.ucm.es)

THANK YOU FOR YOUR ATTENTION

QUESTIONS?