

Grid Scheduling Architectures with Globus Workshop on Scheduling WS 07

Workshop on Scheduling WS 07 Cetraro, Italy July 28, 2007

Ignacio Martin Llorente Distributed Systems Architecture Group Universidad Complutense de Madrid

Contents

- **1.1. Parallel and Distributed Computing**
- **1.2. Types of Computing Platforms**
- **1.3. Local Resource Management Systems**
- 2. Grid Middleware
 - 2.1. Integration of Different Administrative Domains
 - 2.2. The Globus Toolkit
 - 2.3. The GridWay Meta-scheduler
- 3. A Taxonomy for Grid Scheduling Architectures
 - 3.1. The Taxonomy
 - 3.2. Multiple Administrative Domains
 - 3.3. Multiple Grid Infrastructures
 - 3.4. From the Cluster to the Grid

GridWa

1.1. Parallel and Distributed Computing

Goal of Parallel and Distributed Computing

• Efficient execution of computational or data-intensive applications

Types of Computing Environments

High Performance Computing (HPC) Environments

- Reduce the execution time of a single distributed or shared memory parallel application (MPI, PVM, HPF, OpenMP...)
- Performance measured in floating point operations per second
- Sample areas: CFD, climate modeling...

High Throughput Computing (HTC) Environments

- Improve the number of executions per unit time
- Performance measured in number of jobs per second
- Sample areas: HEP, Bioinformatics, Financial models...

1.3. Local Resource Management Systems

Management of Computing Platforms

- Computing platforms are managed by Local Resource Management (LRM) Systems
 - 1 Batch queuing systems for HPC servers
 - 2 Resource management systems for dedicated clusters
 - 3 Workload management systems for network systems
- There aim is to maximize the system performance

Independent Suppliers	Open Source	OEM Proprietary
2 Platform Computing	2 Altair	1 IBM
3 LSF	Open PBS	Load Leveler
2 Altair	Jniversity of Wisconsin	1 Cray
PBS Pro	Condor	NQE
	2 Sun Microsystems	
	3 SGE	5/38

GridWay 1.3. Local Resource Management Systems

LRM Systems Limitations

- Do not provide a common interface or security framework
- Based on proprietary protocols
- Non-interoperable computing vertical silos within a single organization
 - Requires specialized administration skills
 - Increases operational costs
 - Generates over-provisioning and global load unbalance

Contents

GridWa

- 1. Computing Resources
 - 1.1. Parallel and Distributed Computing
 - 1.2. Types of Computing Platforms
 - 1.3. Local Resource Management Systems
- 2. Grid Middleware
 - **2.1. Integration of Different Administrative Domains**
 - 2.2. The Globus Toolkit
 - 2.3. The GridWay Meta-scheduler
- 3. A Taxonomy for Grid Scheduling Architectures
 - 3.1. The Taxonomy
 - 3.2. Multiple Administrative Domains
 - 3.3. Multiple Grid Infrastructures
 - 3.4. From the Cluster to the Grid

2.1. Integration of Different Administrative Domains GridWay

"Any problem in computer science can be solved with another layer of indirection... But that usually will create another problem." David Wheeler

A New Abstraction Level

"A (*computational*) grid offers a common layer to integrate heterogeneous computational platforms (vertical silos) and/or administrative domains by defining a consistent set of abstraction and interfaces for access to, and management of, shared resources"

GridWay 2.1. Integration of Different Administrative Domains

Grid Middleware (a computational view)

- Services in the Grid Middleware layer
 - Security
 - Information & Monitoring
 - Data Management
 - Execution
 - Meta-scheduling
- Open Source Software Distributions

Open Source Software Communities

gthe globus alliance Th

The Globus Alliance (dev.globus.org)

GridWay 2.2. The Globus Toolkit

The Globus Alliance Community

Open-Source Software Community = Open-Source Software + Open Development Processes

- **Open Community Project** based on Apache Jakarta model:
 - Control of each individual project is in hands of the committers
 - Public development infrastructure for each project: CVS, bugzilla, mailing list, and Wiki
 - Each project goes through an incubation process before becoming a Globus project

The Globus Toolkit

• Software distribution that integrates a selected group of Globus technologies

• GT **provides basic services** to allow secure remote operation over multiple administrative domains with different LRM systems and access policies.

GridWay 2.3. The GridWay Meta-scheduler

Global Architecture of a Computational Grid

GridWay 2.3. The GridWay Meta-scheduler

Benefits

Integration of non-interoperable computational platforms (Organization)

- Establishment of a uniform and flexible infrastructure
- Achievement of greater utilization of resources and higher application throughput

Support for the existing platforms and LRM Systems (Sys. Admin.)

- Allocation of grid resources according to management specified policies
- Analysis of trends in resource usage
- Monitoring of user behavior

Familiar CLI and standard APIs (End Users & Developers)

- High Throughput Computing Applications
- Workflows

GridWay 2.3. The GridWay Meta-scheduler

Features

Workload Management

- Advanced (Grid-specific) scheduling policies
- Fault detection & recovery
- Accounting
- Array jobs and DAG workflows

User Interface

- OGF standards: JSDL & DRMAA (C and JAVA)
- Analysis of trends in resource usage
- Command line interface, similar to that found on local LRM Systems

Integration

- Straightforward deployment as new services are not required
- Interoperability between different infrastructures

GridWay 2.3. The GridWay Meta-scheduler

GridWay Internals

0

- 1.1. Parallel and Distributed Computing
- 1.2. Types of Computing Platforms
- 1.3. Local Resource Management Systems

2. Grid Middleware

Contents

- 2.1. Integration of Different Administrative Domains
- 2.2. The Globus Toolkit
- 2.3. The GridWay Meta-scheduler

3. A Taxonomy for Grid Scheduling Architectures

- 3.1. The Taxonomy
- **3.2. Multiple Administrative Domains**
- **3.3. Multiple Grid Infrastructures**
- **3.4. From the Cluster to the Grid**

GridWa

GridWay 3.2. Multiple Administrative Domains

Single Meta-Scheduler Grids

Characteristics

- One meta-scheduler instance with access to resources that may belong to different administrative domains
- Small scale infrastructures (campus or enterprise) that may be geographically distributed in different sites

Goal & Benefits

- Integrate multiple heterogeneous systems and/or administrative domains in an *uniform/centralized* infrastructure
- Improve return of IT investment
- Cost minimization
- Performance/Usage maximization

Scheduling

• Centralized meta-scheduler that allows the enforcement of **Grid-wide policies** (e.g. resource usage)

the globus alliance

GridWay 3.2. Multiple Administrative Domains

Single Meta-Scheduler Grids: Examples

AstroGrid-D, German Astronomy Community Grid

- Collaborative management of supercomputing resources & astronomy-specific resources
- Grid-level meta-scheduler (GRAM interface)
- 22 resources @ 5 sites, 800 CPUs

GridWay 3.2. Multiple Administrative Domains

Single Meta-Scheduler Grids: Examples

UABGrid, University of Alabama at Birmingham

- Bioinformatics applications
- Campus-level meta-scheduler
- 3 resources (PBS, SGE and Condor)

GridWay 3.2. Multiple Administrative Domains

Multiple Meta-Scheduler Grids

Characteristics

- Multiple meta-scheduler instances with access to resources belonging to different administrative domains (different organizations or partners)
- Large scale, loosely-coupled infrastructures (Partner Grids) shared by several Virtual Organizations

Goal & Benefits

- Large-scale, secure and reliable sharing of resources
- Support collaborative projects
- Access to higher computing power to satisfy peak demands

Scheduling

• Decentralized scheduling system that allows the enforcement of organization-wide policies

DSA Grou

Deploying Multiple Meta-Scheduler Grids with GridWay

26/38

the globus alliance

g

the globus alliance 3. A Taxonomy for Grid Scheduling Architectures \checkmark GridWay 3.2. Multiple Administrative Domains **Multiple Meta-Scheduler Grids: Generic Examples SG User Other Sites / SGs** SG **Administrator** Gateway SG User **Other Partner** GridWay Grids Science DRMAA JAVA **Globus Services** GRAM, GridFTP, MDS SG User Resources

DSA Group

SG User

the globus alliance 3. A Taxonomy for Grid Scheduling Architectures \checkmark g," GridWay 3.2. Multiple Administrative Domains **Multiple Meta-Scheduler Grids: Examples** ecee cd-hit-div Enabling Grids C-A for E-sciencE Massive Ray Tracing **CD-HIT** workflow merge **Biomed** Fusion DRMAA interface Users Users VO Schedulers GridWay GridWay EGEE RB • Services: BDII, GRAM, GridFTP • EGEE Resource Broker gLite gLite gLite SGE Cluster PBS Cluster **PBS Cluster**

DSA Group

GridWay 3.3. Multiple Grid Infrastructures

Single Meta-Scheduler Layer Grids

Characteristics

- Single layer (one ore more meta-schedulers) with *plain* access to the underlying Grids
- (Virtual) Organizations involved in different Grid infrastructures

Goal & Benefits

- Integrate multiple Grids based on different middleware stacks
- Collaboration between trans-grid VOs

Scheduling

- Enforcement of organization-wide Grid-aware policies
- Adapters to interface different middleware stacks

GridWay 3.3. Multiple Grid Infrastructures

 \checkmark

DSA Group

Deploying Single Meta-Scheduler Layer Grids with GridWay

GridWay 3.3. Multiple Grid Infrastructures

DSA Grou

Single Meta-Scheduler Layer Grids: Example

GridWay 3.3. Multiple Grid Infrastructures

Multiple Meta-Scheduler Layer Grids

Characteristics

- Multiple meta-scheduler layers in a hierarchical structure
- Resource provision in a utility fashion (provider/consumer)

Goal & Benefits

- Supply resources on-demand, making resource provision more adaptive
- Access to *unlimited* computational capacity
- Transform IT costs from fixed to variable
- Seamless integration of different Grids (The Grid)

Scheduling

- Each Grid is handled as any other resource
- Characterization of a Grid as a single resource
- Use standard interfaces to virtualize a Grid infrastructure

the globus alliance

GridWay 3.3. Multiple Grid Infrastructures

DSA Group

Deploying Multiple Meta-Scheduler Layer Grids with GridWay

the globus alliance

g-

3.4. From the Cluster to the Grid

Interfaces Provided by Existing Grid Infrastructures

Grid specific commands & API's

- Applications must be ported to the Grid
- Process (submission, monitoring...) must be adapted to the Grid
- New interfaces (e.g. portal) to simplify Grid use

LRMS-like commands & API's

- A familiar environment to interact with a computational platform
- Some systems provide LRMS-like environment for Computational Grids
- Process still need to be adapted
- Applications would greatly benefit from standards (DRMAA)

Transfer Queues: Seamless access to the Grid

GridWay 3.4. From the Cluster to the Grid

Transfer Queues: Seamless access to the Grid

- Communicate LRM systems with meta-schedulers (the other way)
- Users keep using the same interface, even applications (e.g. DRMAA)

Thank you for your attention!

