"A Comparative Analysis between EGEE and GridWay Workload Management Systems"

J.L. Vázquez-Poletti

E. Huedo

R.S. Montero

I.M. Llorente

Universidad Complutense de Madrid

- Spain -

Index

- x What is a Grid Metascheduler?
- x Some Metaschedulers
- **¤** GridWay vs. EGEE WMS
 - ° Architectures
 - ° Comparison
 - ° Experiments
 - ° Results
- **x** Conclusions

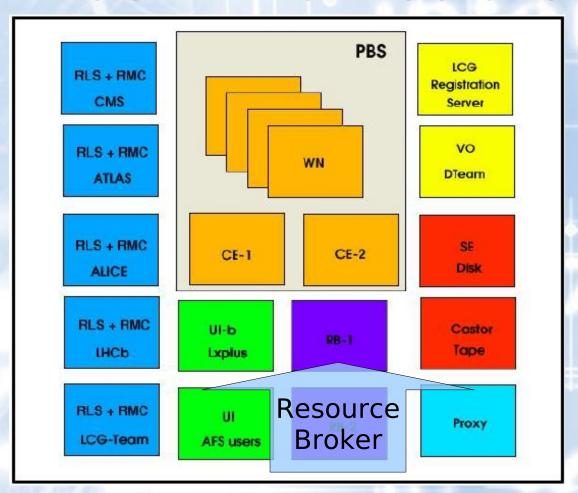
Meta...?

- **¤** Grid Middleware
- x What?
 - Resource discovery
 - Resource evaluation
 - Resource (local schedulers) assignation to grid jobs
- x How?
 - Scheduler activity (local/cluster level) coordination

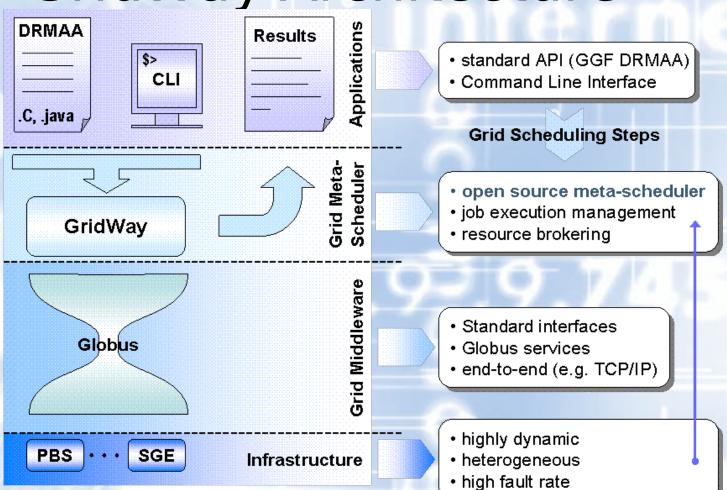
Some Metaschedulers

- x CSF: Round Robin based scheduling and non-advanced resource reservation
- x Nimrod/G: Auction mechanisms
- x Condor-G: Helper Mechanisms (ClassAd and DAGMan)
- ¤ GrADS y AppLeS: Application and System level environments are considered

GridWay vs. EGEE WMS?


x Before...

 Coordinated harnessing of EGEE and non-EGEE resources with GridWay


× Now...

- ° Two philosophies comparison
 - EGEE WMS -> Middleware LCG-2
- ° Over EGEE resources

LCG-2 Architecture

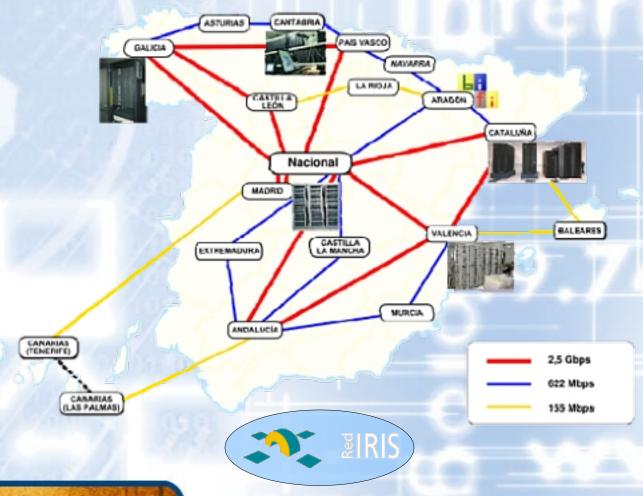
Application-Infrastructure decoupling

02/11/2006

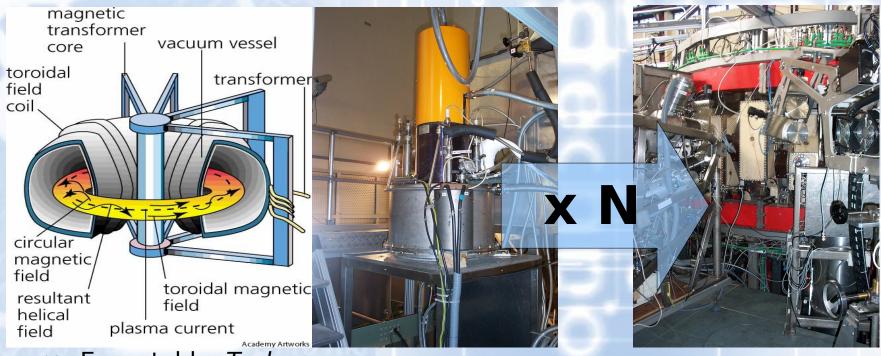
http://www.gridway.org/

Scheduling Capabilities

LCG-2	GridWay				
Jobs are treated in FIFO mode					
Dynamic scheduling using dynamic requirements and attributes					
Same attribute names as in Information Service	Attribute names independent from Information Service				
Access only to BDII Process only GLUE schema	Access to many Information Services (using Information MADs)				
Globus PreWS	Globus PreWS and WS				
	Opportunistic Migration (best resource)				
	Performance slowdown detection (queue waiting, less CPU than expected)				
Static requirements and ranking	Dynamic requirements and ranking				
Checkpointing through an API	Checkpointing must be implemented				
Accounting using APEL	Accounting using Berkeley DB				
Jobs dependencies (DAGMan)	Job dependencies (arguments)				

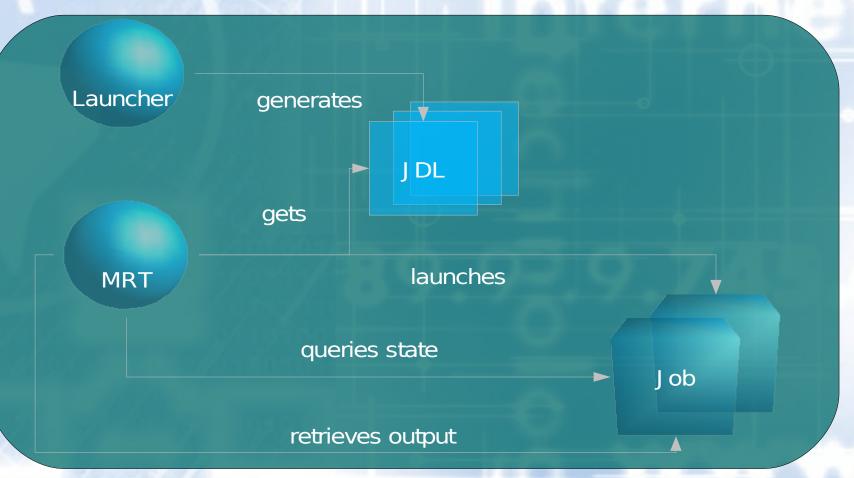

Failure Detection and Recovery

LCG-2	GridWay			
Error detection (Condor-G mechanisms)	Detection of: - Job cancelation - Remote system crash - Network disconnection			
Status saved in case of metascheduler crash				


User Interface Functionality

LCG-2	GridWay			
Simple jobs (also with dependencies)				
	- Array jobs - Complex jobs			
"Explicit Synchronization" (active polling)	Real Synchronization			
EDG WMS API (C++ and Java)	DRMAA API (C and Java) – GGF Standard			
	Command line interface similar to that found in LRMS (SGE, PBS)			

Grid Infrastructure


MAssive RAy TRAcing in Fusion Plasmas

- x Executable: Truba
 - ° 1,8 MB 9' (Pentium 4 3,20 Ghz) 50 Executions
- x Input files =~ 70 KB

Enabling Grids for E-sciencE

lcg2.1.69 UI C++ API

Experimental Results

(minutes)	Exec	./Job	Tran	sf./Job	Total	Product.	
(illillutes)	Mean	Dev.	Mean	Dev.	IULAI	(per hour)	Job
LCG-2	10,33	11,38	0,42	0,06	195	15,38	1,82
GridWay	36,80	16,23	0,87	0,51	120	25,00	0,52

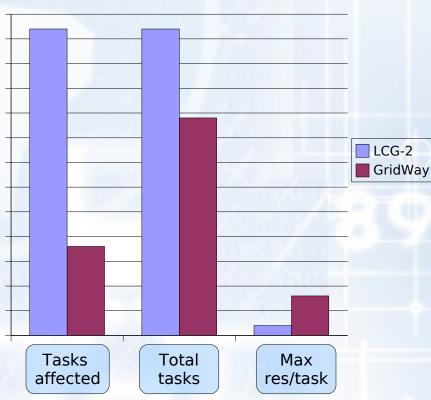
Some Details

- ¤ GridWay takes more advantage of available resources
 - Scheduling capabilities over dynamic resources
- x LCG-2 problems:
 - Lack of Opportunistic Migration
 - Lack of Performance Slowdown Detection
 - ° Jobs assigned to busy resources

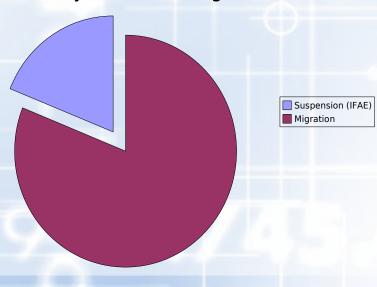
Level of Parallelism

$$U = \frac{T_{exe}}{T}$$

x T_{exe}: Sum of all execution times


x T: Total time

GridWay 14,91


LCG-2 6,89

As real as...

Resubmissions / Reschedules

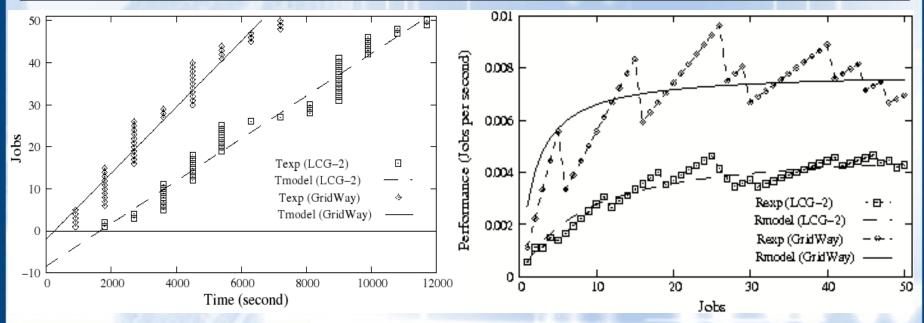
GridWay: Rescheduling reasons

During the experiment with GridWay 1 task failed (and was rescheduled)

Performance Analysis

- $rac{r}{\infty}$: Asymptotic performance Maximum rate of performance (Tasks/s)
- $^{\rm m}$ $^{\rm m}$ $^{\rm m}$: Half-performance length Number of required to obtain half of the performance

$$n(t) = r_{\infty}t - n_{1/2}$$


System performance

$$r(n) = n(t)/t = \frac{r_{\infty}}{1 + n_{1/2}/n}$$

n = number of tasks

Performance Values

	r_{∞}	$ n_{1/2} $
LCG-2	0,0051 Tasks/s (18,19 Tasks/h)	8,33
GridWay	0,0079 Tasks/s (28,26 Tasks/h)	1,92

So?

- - High productivity with EGEE resources
 - ° Additional mechanisms:
 - Opportunistic migration
 - Performance slowdown detection
- x And... LCG-2 has other interesting components!

Thank you very much!

