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ABSTRACT

In this paper we analyze the deployment of generic clustered
services on top of a virtualized infrastructure layer that com-
bines a VM manager (the OpenNebula engine) and a cloud
resource provider (Amazon EC2). The use of this virtualiza-
tion layer between the service and the physical infrastructure
extends the classical benefits of VM platforms to distributed
infrastructures. Additionally, the integration of the cloud in
this layer allows us to give additional capacity to the services
using an external provider, thus complementing the local in-
frastructure without notice from the users or affecting the
service workload. This flexible approach, which separates
the resource provisioning from the service management, pro-
vides important benefits: elastic service capacity to adapt it
to its dynamic workload; physical infrastructure partition-
ing to isolate it from other running services; and support for
heterogeneous configurations tailored for each service class.
The feasibility of the proposed approach is analyzed for two
different clustered services: a classical computing cluster and
a web server.
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1. INTRODUCTION

Recently, virtualization has brought about a new utility
computing model called cloud computing, for the on-demand
provisioning of virtualized resources as a service. The Ama-
zon Elastic Compute Cloud (Amazon EC2, see [1]) is proba-
bly the best example of this new paradigm for elastic capac-
ity provisioning. Thanks to virtualization, the clouds can be
used efficiently to supplement the capacity of local services
with outsourced resources.

This resource provisioning model can be seamlessly inte-
grated with the in-house physical infrastructure when it is
combined with a virtual machine (VM) management system.
A VM manager is responsible for the efficient management
of the virtual infrastructure as a whole, by providing ba-
sic functionality for the deployment, control and monitoring
of VMs on a distributed pool of resources. Usually, these
VM managers also offer high availability capabilities and
scheduling policies for VM placement and physical resource
selection.

The use of this virtualization layer between the service
and the physical infrastructure extends the classical bene-
fits of VM platforms (isolation, encapsulation, hardware in-
dependence, support for heterogeneous software stacks, etc.)
to distributed infrastructures, thus enabling new extra ca-
pacities, such as on demand resource provisioning, server
consolidation, workload balance, dynamic partitioning and
resizing of the physical infrastructure, etc.

One of the main goals of this work is to show the benefits
of this architecture, which totally decouples the infrastruc-
ture management from the service management, and enables
the dynamic provisioning of virtual resources on demand, to
adapt the infrastructure to the service requirements. This
approach is fully transparent for the service itself, and inde-
pendent of the type of service. Furthermore, this provision-
ing model can be integrated with external cloud providers, to
provide additional elastic capacity to the virtual infrastruc-
ture when the service demands increase or to satisfy peak
demand periods.

In order to validate and prove the feasibility of the pro-
posed architecture, we analyze the deployment of two cluster-
based services of a disparate nature on top of this virtual-
ization layer, namely: a batch-processing computing cluster,
and a transactional web server platform. Cluster-based ar-
chitectures are usually used to deliver high-performing, scal-
able and fault-tolerant services [2]. The appearance of cloud



computing provides a potential avenue for adding an extra
flexibility to these cluster-based services. Clustered services
can be scaled on-demand by adding worker nodes from the
cloud. By managing the redundancy on local and cloud re-
sources high availability can be increased. Since the system
is built out of cloud resources using an utility cost model
the cost-effectiveness of the clustered service is greatly im-
proved.

In Section 2 we briefly describe the main components and
characteristics of the proposed architecture for the elastic
management of cluster-based services. Then in Section 3
we detail the experimental environment used in this paper.
We also analyze in Section 4 the performance of the virtual
service in the execution of representative benchmarks. Sec-
tion 5 reviews related work, and the paper ends with some
conclusions in Section 6.

2. ELASTIC MANAGEMENT OF CLUSTER-

BASED SERVICES

Typically, a cluster-based service consists of a front-end
server, which usually acts as a service end-point and work-
load balancer, and a variable number of back-end servers (or
worker nodes), interconnected with a LAN, that serve the
user requests. This architecture has been applied to imple-
ment a wide range of services, from network services (e.g.
search engines) to batch processing services like computing
clusters. However, these cluster based services present sev-
eral limitations.

Successful Internet-based business models are totally de-
pendent on the efficiency of modern web platforms. One
of the main difficulties these web platforms is their adap-
tation to variable user demands, what usually leads to an
over-provisioning of the cluster, in order to satisfy peak de-
mand periods. That entails a strong investment on back-end
computers, which are most of the time underutilized, a large
power consumption, and many administrative efforts.

Computing clusters have been used for decades as the
primary computational platform for scientific applications.
Although cluster architectures and related tools have been
considerably improved, these system present some inherent
difficulties, namely: (i) support for heterogeneous configura-
tions (e.g. different versions of the same program or library);
(ii) isolation of different workloads; and (iii) performance
partition of the cluster.

The above pathologies of these two cluster-based services
can be mitigated if the underlying cluster is virtualized. A
cluster can be easily virtualized by putting the front-end
and worker nodes into VMs. In this work, the function-
ality needed to deploy, control, and monitor these VMs is
provided by the OpenNebula [3, 4] virtual infrastructure en-
gine. OpenNebula provides a uniform management layer
regardless of the underlying virtualization technology.

In this way, OpenNebula can be easily integrated with
cloud services by using a specific Amazon EC2 plug-in. The
plug-in assumes that a suitable Amazon machine image (AMI)
has been previously packed and registered in the S3 storage
service, so when a given VM is to be deployed in EC2 its
AMI counterpart is instantiated. The EC2 plug-in then con-
verts the general requests made by OpenNebula core, such
as deploy or shutdown, using the EC2 API. Figure 1 de-
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picts the virtual cluster components, OpenNebula and its
interaction with the Amazon cloud.
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Figure 1: Distributed virtual infrastructure running
on top of a geographically distributed physical in-
frastructure consisting of resources from the private
infrastructure and external cloud providers.

The separation of resource provisioning, managed by Open-
Nebula, from service management, provides the following
benefits:

e FElastic cluster capacity. The capacity of the cluster
can be modified by deploying (or shutting down) vir-
tual worker nodes on demand, either in local physical
resources or in remote EC2 resources.

e Cluster partitioning. The physical resources of the
data center could be used to execute worker nodes
bound to different cluster-based services, and thus iso-
lating their workloads and partitioning the performance
assigned to each one.

e Heterogeneous configurations. The virtual worker nodes
of a service can have multiple (even conflicting) soft-
ware configurations. The service images can be main-
tained with a minimal operational cost, following an
install once deploy many approach.

The above management is absolutely transparent to the user
or the service workload that is being executed in the virtual
cluster, as they are unaware of the physical resource (and its
location) that is hosting each VM. So, the users and services
preserve their uniform view of all the virtual worker nodes.

3. EXPERIMENTAL ENVIRONMENT

The physical infrastructure used in this work consists of
five hosts (HostO to Host4), which are interconnected by a
Gigabit Ethernet LAN. Each physical host node has a dual
2.0 GHz Xeon processor and 8GB of RAM. The remote VMs,
deployed on Amazon EC2, are based on an EC2 small stan-
dard instance, equivalent to 1.0-1.2 GHz Xeon processor.

The Host0 acts as the front-end of the physical pool and it
is also connected to the Internet. This host runs the Open-
Nebula engine, which has the ability to deploy, manage and
monitor local VMs on any host from the physical pool (us-
ing the XEN hypervisor) and also remote VMs on Amazon
EC2.

The deployment of VMs (either local or remote) by Open-
Nebula can be controlled manually or can be done automat-
ically by the scheduler module. In this case, the scheduling
policy limits the number of VMs per physical host to a given



threshold. When this limit is reached and the cluster needs
to grow, OpenNebula will deploy on-demand remote VMs,
hosting new worker nodes on Amazon EC2.

The virtual computing cluster consists of a front-end node
and a variable set of worker nodes, as shown in figure 2. Job
submission and execution within the cluster is managed by
Sun Grid Engine (SGE) software [5]. The virtual cluster
front-end (SGE master host) has been deployed locally in
the Host0, since it needs to have Internet connectivity to be
able to communicate with Amazon EC2 virtual machines.
This cluster front-end acts also as NFS and NIS server for
every worker node in the cluster.

Job submission
requests

Front-end server node
(SGE master host)

Service LAN

(J0IC IGG

Virtualized back-end nodes (SGE worker nodes)

-

OpenNebuIa

‘ Hypemsor (XEN) ‘ Hyperwsor (XEN)

Physncal resource pool

Figure 2: Virtual computing cluster infrastructure

On the other hand, the virtual web server cluster con-
sists of a server front-end that runs the Nginx reverse proxy
software and distributes the user HT'TP requests among the
different virtual back-end servers, which run the Nginx web
server, as shown in figure 3. Nginx is a lightweight open
source web server, which provides efficient low-overhead HTTP
and reverse proxy handling. Nginx includes a simple built-in
load balancer module (upstream module) for distributing re-
quest among back-end servers based on a simple round-robin
algorithm. However, there are other third party modules for
Nginx that provide more sophisticated load balancing tech-
niques.

Figure 4 shows the network infrastructure used for im-
plementing both virtualized cluster services. Every virtual
back-end node communicates with the front-end trough the
service LAN. The local back-end nodes and the front-end
are directly connected to this network by means of a virtual
bridge configured in every physical host. On the other hand,
the remote back-end nodes (deployed on Amazon EC2) are
connected to the service LAN by means of a virtual private
network (VPN) tunnel, using the OpenVPN software [6].
This tunnel is established between each remote node (Open-
VPN client) and the cluster front-end (OpenVPN server). It
is obvious that the VPN software can introduce some extra
latencies in the communication between the front-end and
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Figure 3: Virtual web server cluster infrastructure

the remote back-end nodes, however, it also involves im-
portant benefits. First, all back-end nodes (either local or
remote) are accessed in a similar way through the private
local area network, which provides higher transparency to
the cluster architecture. Second, although virtual nodes de-
ployed on Amazon EC2 have a public network interface, they
can be configured to only accept connections through the
private interface implemented by the OpenVPN tunnel; this
configuration provides the same protection degree to the re-
mote back-end nodes as to the local ones, since the front-end
can apply the same filtering and firewalling rules to prevent
them from unauthorized or malicious access. Finally, com-
munications between the front-end and the remote back-end
nodes are encrypted inside the OpenVPN tunnel, so privacy
is guaranteed through the public Internet connection.

4. PERFORMANCE ANALYSIS

In this section we present a performance analysis for both
cluster-based services: the batch-processing computing clus-
ter, and the clustered web server platform.

4.1 Computing cluster performance

We present some application level benchmarks to study
the behavior of the computing computing cluster from the
application’s point of view (see [7] for a detailed benchmark-
ing of the Amazon Web Services). In particular, we will use
the Embarrassingly Distributed (ED) benchmark from the
NAS Grid Benchmarks [8, 9] (NGB) suite. The ED bench-
mark models a typical HTC (High Throughput Computing)
application, which consists of multiple independent runs of
the same program, but with different input parameters.

Let us first analyze the performance degradation intro-
duced by the virtualization layer. Table 1 shows the results
of running one iteration of the ED benchmark, for different



Amazon EC2
OpenVPN clients
Internet
c "
OpenVPN Tunnels
1Bridg
Front-end Node { | Physical
* Host 0
OpenVPN Server
L— Bridge |
I LAN (Gigabit Ethernet)

Physical
Host 3

Physical
Host 4

Physical
Host 1

Physical
Host 2

Figure 4: Network infrastructure for the virtual

cluster.

problem sizes (classes A, B, and C), on a physical host and
on a virtual machine deployed in the same physical host.
As we can observe, the overhead of execution time due to
virtualization is, in the worst case, around 15%.

Table 1: Execution times for the ED benchmark on
physical and virtualized hosts

Execution Time (sec.) Virtualiz.
Benchmark | Phys. Host | Virt. Machine | Overhead
ED Class A 135 144 6.7%
ED Class B 585 637 8.9%
ED Class C 2432 2806 15.4%

Figure 5 shows the dynamic performance (jobs per second
or throughput) of three different cluster configurations: (i)
all the cluster nodes deployed in the EC2; (ii) all the cluster
deployed locally; and (iii) an hybrid configuration with local
and EC2 worker nodes. For each configuration, the bench-
marking measurements consist of the execution of 32 jobs
from the ED family, class A. Throughput is computed as
the number of completed job per second over time, as more
jobs get completed.

As expected, the EC2 cluster presents a lower perfor-
mance, about half of the performance of the local cluster.
This lower throughput is due to the lower performance pro-
file of the EC2 instance compared to the local nodes. Ad-
ditionally, these results show a sustained increment in the
performance of the cluster with a growing number of EC2
nodes. It is interesting to note that no additional configu-
rations in the cluster nor in the benchmark were introduced
to perform these tests.

4.2 Web server cluster performance

Regarding the virtual web server cluster architecture pre-
sented in the previous section, it is obvious that communica-
tion delays between the front-end and back-end servers will
be significantly higher for remote back-end nodes deployed
on Amazon EC2, than for local back-end nodes deployed on
local resource pool, due to the intrinsic delay of the Internet,
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Figure 5: Experimental performance of the ED
benchmark for a local cluster, an EC2 cluster, and
for a hybrid cluster configuration.

and the extra overhead introduced by the OpenVPN tunnel.
These extra latencies can have a negative impact on cluster
performance, hence it is essential to evaluate if scaling out
the web cluster with external cloud resources actually gets
a sustained and significant performance improvement. Oth-
erwise, the solution presented would be useless.
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Figure 6: Web cluster throughput for 300 HTTP
requests (different file sizes)

For this purpose, we have measured the cluster through-
put (number of requests served per second) for different clus-
ter configurations (see figure 6): 4 local nodes (4L), 8 local
nodes (8L), and different combinations of local (L) and re-
mote (R) nodes (4L+4R, 4L+8R, and 4L+16R respectively).
For this experiment, we have achieved a fixed number of
client HTTP requests (300 requests, with a concurrency of
10 simultaneous requests) of static files, sized from 1KB to
1MB.

We can observe that the 8L configurations outperforms
the 4L+4R configuration in all cases. This is mainly due
to the extra communication latencies of the remote nodes.
However, the behaviour of the 8L configuration can be out-
performed with four local nodes and eight or more remote



nodes (4L+8R and 4L+16R configurations). The graph-
ics show clearly that, in spite of the extra communication
latencies, we can obtain a sustained improvement in cluster
throughput by adding an increasing number of remote nodes
from the cloud provider to the cluster.

It is important to note that in these experiments we have
considered only HTTP requests of static files. In a more
general scenario, HT'TP clients can request dynamic con-
tents that can involve certain computational load on the
back-end web servers. This computational latency affects
local and remote nodes equally, so it can result in a bet-
ter relative performance for those configuration that include
remote nodes from the cloud provider.

S. RELATED WORK

Over the last few years, virtualization has been widespread
adopted in many organizations and data centers as a solu-
tion to implement low cost and elastic server platforms. In
particular, virtual cluster implementation is one of the most
explored use cases in data center virtualization, specially in
the case of computing clusters. Traditionally, these methods
consist of overlaying a custom software stack on top of an
existing middleware layer, see for example the My-Cluster
Project [10] or the Falkon system [11]. These approaches
essentially shift the scalability issues from the application
to the overlaid software layer, whereas the proposed solu-
tion transparently scales both the application and the com-
putational cluster. There are some interesting works that
integrate a local resource management system with VMs to
provide on a per-job basis a pre-configured execution en-
vironment, see for example [12]. A similar approach has
been implemented at Grid level using the Globus GridWay
Metascheduler [13].

Since Amazon EC2 started to popularize IaaS clouds, sev-
eral solutions have been developed to create clouds. Some of
these solutions, like Globus Nimbus [14] and Eucalyptus [15],
fall under the category of cloud toolkits, offering turn-key so-
lutions to transforming existing infrastructure into an IaaS
cloud. Eucalyptus is compatible with Amazon’s EC2 inter-
face and is designed to support additional client-side inter-
faces. Globus Nimbus exposes EC2 and WSRF' interfaces
and offers self-configuring virtual cluster support. However,
these tools do not support dynamic allocation and load bal-
ancing of computing resources among virtual machines, and
the dynamic scaling of virtual clusters using resources from
remote cloud providers.

The integration of local physical resources with external
resources from a cloud provider to grow specific services is
being explored in several projects. Those only use virtual
machines for the cloud part of the service as a way to provide
service elasticity. For example, the BioTeam [16] has de-
ployed the Univa UD UniCluster Express in an hybrid setup,
which combines local physical nodes with virtual nodes de-
ployed in the Amazon EC2. Our approach, which was in-
troduced in [17], additionally includes virtualization in the
local site, so providing a flexible and agile management of
the whole infrastructure, that may include resources from
remote providers.

Finally, regarding to the deployment of web severs us-
ing cloud resources, Amazon EC2 has proposed recently the
Scarl hosting environment [18], which allows network ad-
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ministrators to create virtual server farms, using prebuilt
component, for auto-scaling web sites.

6. CONCLUSIONS

In this work we have analyzed the deployment of two dif-
ferent cluster-based services (a computing cluster and a web
server cluster) on top of a virtualized infrastructure, with
the capacity of integrating external cloud resources. This
flexible approach, which separates the resource provisioning
from the service management, provides important benefits:
elastic cluster capacity to adapt the cluster to its dynamic
workload; cluster partitioning to isolate it from other run-
ning services; and support for heterogeneous configurations
tailored for each application class.

Performance results show that, in spite of the observed
communication overheads, in both cases we can obtain a
sustained performance increment when adding a growing
number of remote nodes from the cloud provider to the clus-
ter. That proves the feasibility of the proposed architecture
and provisioning model, and its capacity to support service
elasticity.

7. ACKNOWLEDGMENTS

We would like to thank Javier Fontdn and Tino Vazquez
for their support to the development of the present work.

REFERENCES

[1] Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2.

[2] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,
and P. Gauthier. Cluster-based scalable network
services. SIGOPS Oper. Syst. Rev., 31(5):78-91, 1997.

[3] OpenNebula. http://opennebula.org.

[4] B. Sotomayor, R. Montero, I. Llorente, and I. Foster.
Capacity Leasing in Cloud Systems using the
OpenNebula Engine. In Workshop on Cloud
Computing and its Applications (CCA08).

[6] Sun Grid Engine. http://gridengine.sunsource.net/.

[6] OpenVPN. http://openvpn.net.

[7] S. Garfinkel. An Evaluation of Amazon’s Grid
Computing Services: EC2, S3, and SQS. Technical
Report TR-08-07, Center for Research on
Computation and Society, Hardvard University, 2007.

[8] R. F. Van der Wijngaart and M. A. Frumkin. NAS
Grid Benchmarks Version 1.0. Technical Report
NAS-02-005, NASA Advanced Supercomputing
(NAS), 2002.

[9] M. A. Frumkin and R. F. Van der Wijngaart. NAS

Grid Benchmarks: A Tool for Grid Space Exploration.

J. Cluster Computing, 5(3):247-255, 2002.

E. Walker, J. Gardner, V. Litvin, and E. Turner.

Creating personal adaptive clusters for managing

scientific jobs in a distributed computing environment.

In Proceedings of the IEEE Challenges of Large

Applications in Distributed Environments, 2006.

I. Raicu, Y. Zhao, C. Dumitrescu, 1. Foster, and

M. Wilde. Falkon: a Fast and Light-weight tasK

executiON farmework. In Proceedings of the

IEEE/ACM SuperComputing, 2007.

(10]

(11]



[12]

[13]

[14]

W. Emeneker, D. Jackson, J. Butikofer, and

D. Stanzione. Dynamic Virtual Clustering with Xen
and Moab. Lecture Notes in Computer Science, 2006.
M. Rodriguez, D. Tapiador, J. Fontan, E. Huedo,

R. Montero, and I. Llorente. Dynamic Provisioning of
Virtual Clusters for Grid Computing. In Proceedings
of the 3rd Workshop on Virtualization in
High-Performance Cluster and Grid Computing
(VHPC"08), in conjuction with EuroPar, 2008.

T. Freeman and K. Keahey. Flying Low: Simple
Leases with Workspace Pilot. In Proceedings of the
FEuroPar, 2008.

24

(15]

(16]

(17]

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff, and D. Zagorodnov. The
Eucalyptus Open-source Cloud-computing System. In
Proc. of Cloud Computing and Its Applications, 2008.
BioTeam. Howto: Unicluster and Amazon EC2.
Technical report, BioTeam Lab Summary, 2008.

I. Llorente, R. Moreno-Vozmediano, and R. Montero.
Cloud Computing for on-Demand Grid Resource
Provisioning. In Advances in Parallel Computing, 10S
Press (in press), 20009.

J. Fronckowiak. Auto-Scaling Web Sites Using
Amazon EC2 and Scalr. In Amazon EC2 Articles and
Tutorials, 2008.



