Experiences on Grid Resource Selection
Considering Resource Proximity *

Eduardo Huedo!, Rubén S. Montero?, and Ignacio M. Llorente?!

! Laboratorio de Computacién Avanzada, Centro de Astrobiologia (CSIC-INTA),
28850 Torrején de Ardoz, Spain.
2 Departamento de Arquitectura de Computadores y Automética, Universidad
Complutense, 28040 Madrid, Spain.

Abstract. Grids are by nature highly dynamic and heterogeneous en-
vironments, and this is specially the case for the performance of the
interconnection links between grid resources. Therefore, grid resource
selection should take into account the proximity of the computational re-
sources to the needed data in order to reduce the cost of file staging. This
fact is specially relevant in the case of adaptive job execution, since job
migration requires the transfer of large restart files between the compute
hosts. In this paper, we discuss the extension of the Grid W ay framework
to also consider dynamic resource proximity to select grid resources, and
to decide if job migration is feasible and worthwhile. The benefits of the
new resource selector will be demonstrated for the adaptive execution of
a computational fluid dynamics (CFD) code.

1 Introduction

Grids bring together resources distributed among different administration do-
mains to offer a dramatic increase in the number of available compute and stor-
age resources that can be delivered to applications. The Globus middleware [1]
provides the services and libraries needed to enable secure multiple domain oper-
ation with different resource management systems and access policies. It supports
the submission of applications to remote hosts by providing resource discovery,
resource monitoring, resource allocation, and job control services.

However, application execution on grids continues requiring a high level of ex-
pertise due to its complex nature. The user is responsible for manually perform-
ing all the job submission stages in order to achieve any functionality: resource
discovery and selection; and job preparation, submission, monitoring, migration
and termination [2]. We have presented in [3] a new Globus experimental frame-
work that allows an easier and more efficient execution of jobs on a dynamic
grid environment in a “submit and forget” fashion. Adaptation to changing
conditions is achieved by implementing automatic application migration follow-
ing performance degradation, “better” resource discovery, requirement change,
owner decisions or remote resource failure.

* This research was supported by Ministerio de Ciencia y Tecnologia (research grant
TIC 2003-01321) and Instituto Nacional de Técnica Aeroespacial (INTA).

The most important step in job scheduling is resource selection, which in turn
relies completely in the information gathered from the grid. Resource selection
usually takes into account the performance offered by the available resources, but
it should also consider the proximity between them. The size of the files involved
in some application domains, like Particle Physics or Bioinformatics, is very
large. Hence the quality of the interconnection between resources, in terms of
bandwidth and latency, is a key factor to be considered in resource selection [4].
This fact is specially relevant in the case of adaptive job execution, since job
migration requires the transfer of large restart files between the compute hosts.
In this case, the quality of the interconnection network has a decisive impact on
the overhead induced by job migration.

The architecture of the Grid Way framework and its main functionalities are
briefly described in Section 2. In Sections 3 and 4 we discuss the extension of the
Grid Way framework to also consider dynamic resource proximity to select grid
resources, and to decide if job migration is feasible and worthwhile. The benefits
of the new resource selector will be demonstrated in Section 5 for the adaptive
execution of a computational fluid dynamics (CFD) code on a research testbed.
Finally, in Sections 6 and 7 we describe related and future work, and give some
conclusions about the brokering strategy presented in this research.

2 The Grid Way Framework

Probably, one of the most challenging problems that the grid community has
to deal with is the fact that grids present unpredictable changing conditions,
namely: high fault rate, and dynamic resource availability, load and cost. Conse-
quently, in order to obtain a reasonable degree of both application performance
and fault tolerance, a job must be able to migrate among the grid resources
adapting itself according to their dynamic characteristics.

The core of the Grid Way framework is a personal submission agent that
performs all the steps involved in job submission [2]. Adaptation to changing
conditions is achieved by supporting automatic job migration. Once a job is
initially allocated, it is dynamically rescheduled when the following events occur:

— A “better” resource is discovered

— The remote host or its network connection fails

— The submitted job is cancelled or suspended

— A performance degradation is detected

— The requirements or preferences of the application changed (self-migration)

The architecture of the submission agent is depicted in figure 1. The user
interacts with the framework through a request manager, which handles client
requests and forwards them to the dispatch manager. The dispatch manager
periodically wakes up and tries to submit pending jobs to grid resources, it is also
responsible for deciding if the migration of rescheduled jobs is worthwhile or not.
Once a job is allocated to a resource, a submission manager and a performance
monitor are started to watch over its correct and efficient execution.

REQUEST MANAGER o

2

\vi SUBMISSION AGENT
Job Control Structures N
\
\

1
! GRAM request

RESOURCE
SELECT

GRAM callback

Resource
Requirements |~~~ -

Rank B S --
Expression

JOB FILES

Executable

Input/Output
Restart

PERFORMANCE
DEGRADATION
EVALUATOR ! Performance |
Profile |

| Resource !
| Requirements
Rank
| Expression |

! -~ [Performance
|, Profile

Fig. 1. The architecture of the Grid Way framework.

The flexibility of the framework is guaranteed by a well-defined interface for
each submission agent component. Moreover, the framework has been designed
to be modular, to allow extensibility and improvement of its capabilities. The
following modules can be set on a per job basis:

— resource selector, which builds a prioritized list of candidate resources

— performance evaluator, which is used to evaluate the application performance
— prolog, which prepares the remote system and performs input file staging
— wrapper, which executes the job and returns its exit code

— epilog, which performs output file staging and cleans up the remote system

3 Resource Selection Considering Proximity to Data

Due to the heterogeneous and dynamic nature of the grid, the end-user must
establish the requirements that must be met by the target resources (discovery
process) and a criteria to rank the matched resources (selection process). The
attributes needed for resource discovery and selection must be collected from
the information services in the grid testbed, typically Globus MDS. Resource
discovery is usually based on static attributes (operating system, architecture,
memory size...) taken from MDS GIIS (Grid Information Index Service), while
resource selection is based on dynamic attributes (disk space, processor load,
free memory...) taken from MDS GRIS (Grid Resource Information Service).
The dynamic network bandwidth and latency between resources will be also
considered in the resource brokering scheme. Different strategies to obtain those

network performance attributes can be adopted depending on the services avail-
able in the testbed. For example, Globus MDS could be configured to provide
such information by accessing the Network Weather Service [5] or by activating
the reporting of GridFTP statistics [6]. Alternatively, the end-user could provide
its own network probe scripts or static tables.

The brokering process of the Grid Way framework is shown in figure 2. Ini-
tially, available compute resources are discovered by accessing the MDS GIIS
server and, those resources that do not meet the user-provided requirements
are filtered out. At this step, an authorization test (via GRAM ping request) is
also performed on each discovered host to guarantee user access to the remote
resource. Then, the dynamic attributes of each host is gathered from its local
MDS GRIS server. This information is used by an user-provided rank expression
to assign a rank to each candidate resource. Finally, the resultant prioritized list
of candidate resources is used to dispatch the job.

Job template
RESOURCE INFORMATION

Filtered LDAP search

Globus MDS

DISCOVERY

Candidate resource list jistrations

J]Ranked candidate list

Fig. 2. The brokering process scheme of the Grid Way framework.

The new selection process presented in this paper considers both dynamic
performance and proximity to data of the computational resources. In particular,
the following circumstances will be considered in the resource selection stage:

— The estimated computational time on the candidate host when the job is
submitted from the client or migrated from other execution host.

— The proximity between the candidate host and the client, to reduce the cost
of job submission, job monitoring and file staging.

— The proximity between the candidate host and a remote file server, to reduce
the transfer costs of input or output files stored in such server.

— The proximity between the candidate host and the current or last execution
host, to reduce the migration overhead.

4 Performance Model

In order to reflect all the circumstances described previously, each candidate
host (hy,) will be ranked using the total submission time (lowest is best) when
the job is submitted or migrated to that host at a given time (¢,). In this case,
we can assume that the submission time can be split into:

Tsub(hn; tn) = Tewe(hn; tn) + war(hn; tn) (1)

where Toge(hn, tyn) is the estimated computational time and Ty s (hy,ty,) is the
estimated file transfer time.

Let us first consider a single-host execution, the computational time of a
CPU-intensive serial application on host h at time ¢ can be estimated by:

if CPU(t) > 1

_Op .
Tepu(h,t) = { FLOPY . = 2
po(l) {70 if CPU(1) < 1)

where FFLOPS is the peak performance achievable by the host CPU, CPU () is
the total free CPU at time ¢, as provided by the MDS default scheme, and Op
is the number of floating point operations of the application.

However, the above expression is not accurate when the job has been exe-
cuting on multiple hosts and then is migrated to a new one. In this situation
the amount of computational work that have already been performed must be
considered. Let us suppose an application that has been executing on hosts
hg...hnp—1 at times ty...t,—1 and then migrates to host h, at time ¢,, the
overall computational time can be estimated by:

e:ce hn,t Z teze (Z Tcpue:;;e“ -)) Tcpu(hn, tn) (3)

where Ty (h, t) is calculated using expression 2, and ¢, is the time the job has
been executing on host h;, as measured by the framework Note that, when n is
0, expressions 2 and 3 are equivalent.

Similarly, the following expression estimates the total file transfer time:

D t
Ty pr(hnstn) Z txfr + Z o AL j = client, file server,exec host

(hns js tn)
(4)
where bw(hy, ha, t) is the bandwidth between hosts hy and h, at time ¢, Datap, 4,
is the file size to be transferred between them, and tfv #r 18 the file transfer time
on host h;, as measured by the framework.

When the job is rescheduled due to a resource discovery timeout, the dis-
patch manager chooses the lowest ranked (lowest estimated submission time)
candidate host for a migration only if it has a lower rank than the rank of the
current execution host when the job was submitted; otherwise the migration is
rejected. Therefore, the job will be migrated only if migration is considered to be

profitable. However, when the job is rescheduled due to a remote host failure or
an user request, the dispatch manager always grants the migration to the lowest
ranked host, even if it has a higher rank than the last execution host.

5 Experiments

The behavior of the resource selection strategy previously described is demon-
strated in the execution of a CFD code in our heterogeneous research testbed,
summarized on Table 1. The target application solves the 3D incompressible
Navier-Stokes equations using an iterative multigrid method [7].

Table 1. Characteristics of the machines in the research testbed.

Name Model OS Speed Memory
ursa.dacya.ucm.es Sun Blade 100 Solaris 8 500MHz 256MB
draco.dacya.ucm.es Sun Ultra 1 Solaris 8 167MHz 128MB

columba.dacya.ucm.es Intel Pentium MMX Linux 2.4 233MHz 160MB
cepheus.dacya.ucm.es Intel Pentium Pro Linux 2.4 200MHz 64MB
solea.quim.ucm.es Sun Enterprise 250 Solaris 8 296MHz 256MB

In the following experiments, the client is ursa, which holds an input file
with the simulation parameters, and the file server is columba, which holds the
executable and the computational mesh. The output file with the velocity and
pressure fields is transferred back to the client, ursa, to perform post-processing.
Table 2 shows the available machines in the testbed, their corresponding CPU
performance (in MFLOPS), and the maximum bandwidth (in MB/s) between
them and the hosts involved in the experiment.

Table 2. Candidate machines in the testbed along with their CPU performance and
bandwidth between them and the machines involved in the experiment (client=ursa,
file server=columba and exec host=draco).

h CPU bw(h, client) bw(h, file server) bw(h, exec host)
draco 175 0.4 0.4 00
columba 225 0.4 00 0.4
cepheus 325 0.4 0.4 0.4

solea 350 0.2 0.2 0.2

Table 3. Estimated and measured times for a complete execution without migration.

ho Teze(ho, o) Tufr (ho, to) Tsus(ho,to) Measured time
draco 171 20 191 200
columba 133 10 143 146
cepheus 92 20 112 120
solea 86 40 126 134

Table 4. Estimated and measured times for a migrated execution from draco
(ho=draco, Tepe(ho,to)=171, t,.=65, t3;,=10).

h1 Teze(hi,t1) Tyfr(h1,t1) Tsup(h1,t1) Measured time
columba 148 30 178 184
cepheus 122 40 162 170
solea 118 70 188 196

Table 3 shows the estimated submission time (1), computational time (3)
and transfer time (4) for a single-host execution on each of the available hosts.
Resource selection based only on the estimated computational time would allo-
cate the application to solea (lowest Te,.). However, when the resource selection
strategy takes into account the file transfer time, the job is allocated to cepheus
(lowest Tsyp). The measured submission time presents a reduction of about 10%
compared with the resource selection based only on CPU performance.

The influence of the file transfer size is even more relevant in case of an
adaptive execution, as shown in Table 4. In this case a migration from draco
to each of the available hosts in the testbed is evaluated. When only the CPU
performance is considered in the resource selection process, the job is migrated
to solea (lowest Te;e). However, if resource proximity is also considered, the
application would migrate to cepheus (lowest Ty,p) that implies a reduction of
the submission time of about 14%, compared with the resource selection based
only on CPU performance.

6 Related Work

The selection stage of computational resources has been widely studied in the
literature. For example, the resource selection service presented in [8] uses an
extension of the Condor matchmaking algorithm called set matching to provide
selection of resource sets. However, it is focused on distributed HPC applications
and it only takes into account the proximity between the resources within a
resource set. Also, a framework capable to migrate applications based on load
conditions is proposed in [9], although it considers the migration overhead as

a constant. Finally, several mechanisms for storage resource selection [10] and
data replication [11] based on proximity have been proposed. We apply some of
these ideas to the selection of computational resources, taking into account the
possibility of job migration to deal with the dynamic nature of the grid.

7 Conclusions and Future Work

In this work we have analyzed the relevance of resource proximity in the re-
source selection process, in order to reduce the cost of file staging. In the case of
adaptive job execution the quality of the interconnection network has also a de-
cisive impact on the overhead induced by job migration. In this way, considering
resource proximity to the needed data is, at least, as important as considering
resource performance characteristics. We expect that resource proximity would
be even more relevant for greater file sizes and more heterogeneous networks.

We are currently applying the same ideas presented here to develop a storage
resource selector module. The storage resource selection process is equivalent to
the one presented in figure 2, although the discovery process is performed by
accessing the Globus Replica Catalog. The resource selection is based on the
bandwidth between the selected compute resource and the candidate storage
resources, along with the values gathered from the MDS GRIS.

References

1. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Intl.
J. of Supercomputer Applications 11 (1997) 115-128

2. Schopf, J.M.: Ten Actions when Superscheduling. Technical Report GFD-1.4, The
Global Grid Forum: Scheduling Working Group (2001)

3. Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution
on Grids. Intl. J. of Software — Practice and Experience (2004) (in press).

4. Allcock, W., et al.: Globus Toolkit Support for Distributed Data-Intensive Science.
In: Proc. of Computing in High Energy Physics. (2001)

5. Wolski, R., Spring, N., Hayes, J.: The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. J. of Future Gen-
eration Computing Systems 15 (1999) 757-768

6. Vazhkudai, S., Schopf, J., Foster, I.: Predicting the Performance of Wide-Area Data
Transfers. In: Proc. of Intl. Parallel and Distributed Processing Symp. (2002)

7. Montero, R.S., Llorente, I.M., Salas, M.D.: Robust Multigrid Algorithms for the
Navier-Stokes Equations. Journal of Computational Physics 173 (2001) 412-432

8. Liu, C., Yang, L., Foster, 1., Angulo, D.: Design and Evaluation of a Resource Selec-
tion Framework for Grid Applications. In: Proc. of the Symp. on High-Performance
Distributed Computing. (2002)

9. Vadhiyar, S., Dongarra, J.: A Performance Oriented Migration Framework for the
Grid. In: Proc. of the Intl. Symp. on Cluster Computing and the Grid. (2003)

10. Vazhkudai, S., Tuecke, S., Foster, I.: Replica Selection in the Globus Data Grid. In:
Intl. Workshop on Data Models and Databases on Clusters and the Grid. (2001)

11. Lamehamedi, H., Szymanski, B.K., Deelman, E.: Data Replication Strategies in
Grid Environments. In: Proc. of 5th Intl. Conf. on Algorithms and Architectures
for Parallel Processing. (2002)

