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Abstract

In order to achieve a reasonable degree of performance and reliabil-
ity, Metascheduling has been revealed as a key functionality of the grid
middleware. The aim of this paper is to provide a comparative analysis
between two major grid scheduling philosophies: a semi-centralized ap-
proach, represented by the EGEE Workload Management System, and a
fully distributed approach, represented by the GridW ay Metascheduler.
The distributed approach follow a loosely-coupled philosophy for the Grid
resembling the end-to-end principle, which has fostered the spectacular
development and diffusion of the Internet and, in particular, Web tech-
nologies in the past decade. The comparative is both theoretical, through
a functionality checklist, and experimental, through the execution of a fu-
sion physics plasma application on the EGEE infrastructure. This paper
not only includes a standard analysis with the obtained times, but also a
complex analysis based on a performance model.
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1 Introduction

The growing computational needs of nowadays projects have permitted the evo-
lution to a new paradigm called Grid Computing. The ability to have ap-
plications draw computing power from a global resource pool to achieve high
performance has become a new challenge for distributed-computing and Inter-
net technologies. Several research centers share their computing assets in grids,
which dramatically increase the number of processing and storage resources
applications can access.

Different grid infrastructures are being deployed in the context of growing
national and international research projects. Among the intervening elements of
a computional grid, the Metascheduler is gathering most attention as a way to
meet the challenging needs of several application domains. The term Metasched-
uler can be defined as a grid middleware that discovers, evaluates and allocates
resources for grid jobs by coordinating activities between multiple heterogeneous
schedulers that operate at local or cluster level [1]. In general, the scheduling
process includes the following phases: resource discovery and selection; and job
preparation, submission, monitoring, migration and termination [2].

Although we can find several philosophies for the Grid, discussed in Sec-
tion 2, as well as different implementations of the Metascheduler, some of them
enumerated in Section 3, the objective of this paper is to compare GridW ay [3]
and the EGEE Workload Management System (WMS) as two representative
implementations. A short overview of their architectures can be found in Sec-
tion 4 along with a comparative analysis of the functionality provided by both
solutions. Then, Section 5 evaluates the fine-grain metrics and performance
obtained by the two alternatives in the execution of a fusion physics plasma
application on the EGEE infrastructure. Finally, the paper ends up with some
conclusions and future work in Section 6.

2 A Loosely-coupled Philosophy for the Grid

A Grid infrastructure is usually decomposed into the following layers [4]: Grid
applications and portals; user-level Grid middleware; core Grid middleware;
and Grid fabric. The two internal layers are called the middleware, since they
connect applications with resources, or Grid fabric. In a loosely-coupled Grid,
it is important to keep these layers separated and independent with a limited
and well defined set of interfaces and protocols between them (Figure 1).

The main characteristics of these environments are [4] autonomy (of the mul-
tiple administration domains), heterogeneity, scalability and dynamism. These
properties completely determine the way that scheduling and execution on Grids
have to be done. For example, scalability and autonomy prevent the deploy-
ment of centralized resource brokers with total control over client requests and
resource status. On the other hand, the dynamic resource characteristics in
terms of availability, capacity and cost make essential the ability to adapt job
scheduling and execution to these conditions.
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The Globus Toolkit [5] has become a de facto standard core middleware in
Grid Computing. Globus services allow secure and transparent access to re-
sources across multiple administrative domains, and serve as building blocks
to implement the stages of Grid scheduling [2]. Globus architecture follows an
hourglass model, which is indeed an end-to-end principle [6]. Therefore, in-
stead of succumbing to the temptation of tailoring the core Grid middleware
to its needs (since in such case the resulting infrastructure would be a highly
distributed cluster), the loosely-coupled philosophy follows the end-to-end prin-
ciple. Clients should have access to a wide range of resources provided through
a limited and standardized set of protocols and interfaces. In the Grid, these
are provided by the core Grid middleware, i.e. Globus. Just as, in the Internet,
they are provided through the IP protocol.

The application of the end-to-end principle to Grid computing requires user-
level middleware, such as GridW ay, in the client side to make it easier and more
efficient the execution of applications. Such client middleware should provide
the end user with portable programming paradigms and common interfaces,
which are being standardized by the Open Grid Forum (OGF), see, for example
the Distributed Resource Management Application API (DRMAA) [7] and the
Simplified API for Grid Application (SAGA) [8].

The EGEE project is creating the largest production-level Grid Infrastruc-
ture in the world, which provides a level of performance and reliability never
achieved before. A very restrictive set of requirements has been established for
organizations that wish to take part in it. EGEE defines the user-level Grid
middleware, the core Grid middleware and the Grid fabric, and so these layers
are tightly related. EGEE uses the LCG (LHC Computing Grid)1 middleware,
LCG-2.

This architecture presents some limitations in terms of heterogeneity, as it
has fixed configuration for clusters. The scalability of its deployment is also
limited, as the middleware should be installed on the compute nodes, and
they should have network connectivity. Also, LCG’s focus is mainly on par-
ticle physics applications and its development is highly dependant on a single
organization, CERN (the European Organization for Nuclear Research). Nev-
ertheless, it is expected that the new EGEE middleware, gLite2, will overcome
to some extent some of these limitations.

3 Related Work

Among the several implementations of the Metascheduler, the authors found
representative CSF, Condor-G, VIOLA MetaScheduling Service and Gridbus
Service Broker. CSF (Community Scheduler Framework) [9] is a WSRF-compliant
Metascheduler built upon the Globus Toolkit. Depending if the access to a
specific GRAM adapter is desired, the installation of LSF3 is needed. It sup-

1http://lcg.web.cern.ch/
2http://www.glite.org/
3http://www.platform.com/Products/Platform.LSF.Family/Platform.LSF/
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ports advance reservation booking and offers round-robin and reservation based
scheduling algorithms.

Condor-G [10] is not conceived for supporting scheduling policies, but on
the other hand, it supplies mechanisms that may be useful for a Metascheduler
standing above, like ClassAd and DAGMan. ClassAd [11] (Classified Adver-
tisement Language) allows the user to decide the resources for the job in the
matchmaking process. DAGMan [12] (Directed Acyclic Graph Manager) is a
workflow manager where interdependencies between jobs or data can be speci-
fied.

VIOLA [13] (Vertically Integrated Optical Testbed for Large Applications)
is a project which aims to take benefit of an optical testbed using advanced
techniques and services4. Its MetaScheduling Service stands on UNICORE [14]
and provides support for complex distributed applications, as well as automa-
tion of co-allocation of computational and network resources. Web-services
allow to either implement adapters for local resource managers, and access the
MetaScheduling Service itself.

Gridbus Service Broker [15] accesses transparently to various low level mid-
dleware solutions like Globus Toolkit, XGrid [16], UNICORE and Alchemi [17].
Its scheduling strategies consider both job deadline and budget specified by
the user, in order to optimize the resource usage. On the other hand, cus-
tom scheduling algorithms can be implemented by means of writing a custom
scheduler.

4 Grid Scheduling Infrastructures

The EGEE WMS and GridW ay are representative metascheduling technolo-
gies of different strategies to deploy a grid scheduling infrastructure. GridW ay
follows the loosely-coupled Grid principle described in Section 2, mainly char-
acterized by: autonomy of the multiple administration domains, heterogeneity,
scalability and dynamism. A GridW ay instance is installed in each organiza-
tion involved in the partner grid to provide scheduling functionality for intra-
organization users (site-level scheduling). On the other hand, EGEE WMS
provides a higher centralized strategy as one or more scheduling instances can
be installed in the grid infrastructure, each providing scheduling functionality
for a number of VOs (VO-level scheduling).

The EGEE WMS is the result of previous projects (Datagrid, CrossGrid).
The present version of the EGEE WMS is based on the LCG-2 middleware and
it is migrating to a new one called gLite which inherits many of the former
elements and functionalities. LCG-2’s WMS architecture, which is represented
in Figure 2, is highly centralized and each functionality is provided by almost
a different machine, as it is conceived as a network service. The EGEE WMS
components are the following: The User Interface (UI), which is from where the
user sends the jobs; the Resource Broker (RB), which is based in Condor-G and
uses most of its functionality; the Computing Element (CE) and the Worker

4http://www.viola-testbed.de/
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Nodes (WN), which are the cluster frontend and the cluster nodes respectively,
as it is established in the fixed configuration dictated by LCG-2’s architecture;
the Storage Element (SE), which is used for job files storage; the Logging and
Bookkeeping service (LB), which registers job events [18].

After the user initiates his use of the Grid by authenticating from the UI and
the job parameters are defined, the RB receives the input files through an input
sandbox. The RB contacts the Information Service, where resource (CE and SE)
information is published. If needed by the job, the Catalog Service is also queried
by the RB. Then, the Job Submission Service receives an expanded version of the
job description, result of the scheduling decisions taken by the RB (matchmaking
process), so it submits the job to the chosen CE. In the meanwhile, the RB
submits to that CE the input sandbox and its contact information. The job
then is sent to a WN where it is executed. When the job is done, the ouput
sandbox is sent back to the RB and then, to the user when requested. In any
case, there are several alternative brokering services to submit the job.

GridW ay works on top of Globus services, performing job execution man-
agement and resource brokering, allowing unattended, reliable, and efficient
execution of jobs, array jobs, or complex jobs on heterogeneous, dynamic and
loosely-coupled Grids formed by Globus resources. GridW ay’s modular archi-
tecture, represented in Figure 3, is conformed by the GridW ay Daemon (GWD)
and different Middleware Access Drivers (MADs) to access different Grid Ser-
vices (resource information, job execution and file transfer), all of them in just
one host, as GridW ay is conceived as a client tool. GridW ay performs all the
job scheduling and submission steps transparently to the end user adopting job
execution to changing Grid conditions by providing fault recovery mechanisms,
dynamic scheduling, migration on-request and opportunistic migration. A typ-
ical job cycle in GridW ay is as explained ahead. After the user provides the
GWD with the job description, the resource selection is performed. Once a
decision is made, the needed execution and transfer MADs are loaded. The
first stage is the prolog, where the remote system is prepared by creating a
job directory and staging the input files. Then comes the wrapper where the
real job execution takes place. Finally, during the epilog stage, the output files
are staged back and the remote directory is cleared. GridW ay allows the de-
ployment of organization-level metaschedulers that provide support for multiple
intra-organization users in each scheduling instance. There is one scheduling in-
stance for each organization and all instances compete with each other for the
available resources.

4.1 Scheduling Capabilities

Both LCG-2 WMS and GridW ay treat jobs in a FIFO way and support dy-
namic scheduling, providing a way to filter and evaluate resources based on
dynamic attributes, by means of requirement and rank expressions. In LCG-2
the names of these attributes are the same as retrieved from the information
service. Nevertheless, in GridW ay, these expressions are based on common re-
source attributes, independent from the information service, providing another
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way of decoupling. While LCG-2 RB accesses only the BDII servers and only
processes the GLUE Schema, GridW ay’s different information MADs allow to
access the most common information services. Considering execution and trans-
fer functionalities, and using the adoption of interfaces and protocols based on
Web Services (WS) for this comparison, both LCG-2 and GridW ay support
Globus pre-WS services, but only GridW ay allows access to Globus WS ser-
vices [19].

GridW ay supports opportunistic migration. That is, each scheduling cycle
evaluates the benefits of migrating submitted jobs to new available resources
(recently added or freed) by comparing rank values. In LCG-2, this functionality
is not supported and the ranking only affects submission.

Considering performance slowdown detection, GridW ay takes count of the
suspension time in remote batch systems and requests a migration when it
exceeds a given threshold. Moreover, jobs are submitted together with a light-
weight self monitoring system. The job will migrate when it doesn’t receive as
much CPU as the user expected. None of the performance slowdown detection
mechanisms given by GridW ay are implemented in LCG-2. The monitoring
in the LCG-2 architecture is provided by the LB, which records only basic job
states and mixes them with events originated in other components.

With GridW ay, an application can take decisions about resource selection
as its execution evolves by modifying its requirement and rank expressions and
requesting a migration. In LCG-2 RB instead, these expressions are only set at
the beginning.

In LCG-2, the PBS Event Logging (APEL) is employed for distributed ac-
counting [20]. GridW ay gives the user local accounting functionalities, standing
on the Berkeley Database.

4.2 Fault Detection & Recovery Capabilities

The LCG-2 RB incorporates error detection mechanisms provided by Condor-
G [21]. On the other hand, GridW ay detects job cancellation (when the job exit
code is not specified), remote system crash and network disconnection (both
when the polling of the job fails). In all of these cases, GridW ay requests a
migration for the job [22].

LCG-2 WMS supports checkpointing by providing an API to allow appli-
cations to be instrumented to save the state of the process (represented by a
list of variable and value pairs) at any moment during the execution of a job.
Also, it provides the mechanisms to restart the computation from checkpointed
data (previously saved state). If a job fails, the WMS automatically reschedules
the job and resubmits it to another compatible resource. There, the last state
is automatically retrieved and the computation is restarted. The user can also
retrieve the saved state for a later manual resubmission, where the user can spec-
ify if the job must start from this retrieved checkpoint data. With GridW ay,
user-level checkpointing or architecture independent restart files managed by the
programmer must be implemented. Migration is implemented by restarting the
job on the new candidate host. If the checkpointing files are not provided, the
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job should be restarted from the beginning. These checkpoints are periodically
retrieved to the client machine or a checkpoint server.

Also the system running the scheduler could fail. GridW ay persistently saves
its state in order to recover or restart the jobs when the system is restarted.
LCG-2 RB relies on Condor-G, which stores persistently all relevant state for
each submitted job in the scheduler’s job queue [10].

4.3 User Interface Functionality

Both GridW ay and LCG-2 RB allow single jobs. The LCG-2 RB can handle
jobs with dependencies (DAGMan functionality) and interactive jobs. On the
other hand, GridW ay allows array jobs and jobs with dependencies. For pro-
viding this last job type support, GridW ay gives the user a functionality to
synchronize jobs. In the case of LCG-2, synchronization must be implemented
by a periodical polling (active wait), and job dependencies is supported by the
Condor’s DAGMan tool [20]. A DAGMan process is locally spawned for each
Direct Acyclic Graph (DAG) submitted to Condor-G.

Focusing on the command line interface, both GridW ay and LCG-2 RB
give the user full control of his jobs. Anyway, GridW ay incorporates commands
which allow the user to migrate and synchronize jobs, functionalities not pro-
vided by LCG-2.

Also, GridW ay offers C and Java implementations of the DRMAA Ap-
plication Programming Interface, which is a Open Grid Forum (OGF) stan-
dard [23, 24]. The EDG WMS API given by LCG-25 is not standard.

4.4 Installation & Configuration Issues

Both GridW ay and LCG-2 RB are modular. The LCG-2 RB is a network
service and stands over a great list of external dependencies (requires more
other services than Globus): Condor-G, MySQL, etc. GridW ay stands on the
Globus middleware at the client side and could be extended or used as a building
block for more complex architectures that implement service-level agreements
(SLAs) or advanced reservation. Also, LCG-2 is encouraged to be installed in
Scientific Linux machines. Nevertheless, other flavors of Linux are being used.

Analyzing security mechanisms, LCG-2 takes them from the Globus Toolkit
GSI and also implements the VOMS, where an user name and role are used (it
manages the authorization information in the scope of the VO). VOMS allows
a fine grained control of the use of the resources both to the users’ organization
and to the resource owners [25].

GridW ay can be installed to implement several Grid architectures, namely:
enterprise Grids, to enable diverse resource sharing to improve internal collab-
oration and achieve a better return from IT investment; partner Grids (like
the EGEE infrastructure described here) to provide large-scale, secure and reli-
able sharing of resources among partner organizations; and utility Grids [26] to

5http://www.to.infn.it/grid/workload management/apiDoc/edg-wms-api-index.html
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provide access to the latest computing platform and technology and still be flex-
ible enough to adjust capacity as required without needing to purchase costly
hardware.

5 Experimental Conditions and Results

The Grid infrastructure used for the experiments is the corresponding to the
test Virtual Organization at the Southwest Federation (SWETEST VO) of the
EGEE project (Table 1). All Spanish sites are connected by RedIRIS, the
Spanish Research and Academic Network, whose interconnection links of the
different nodes are shown in Figure 4.

The target application, called Truba, performs the tracing of a single ray of a
microwave beam launched inside a fusion reactor [27]. Each experiment involves
the execution of 50 instances of the Truba application. The experiments were
performed with a development version of Truba, whose average execution time
on a Pentium 4o f 3.20 GHz is 9 minutes. Truba’s executable file size is 1.8 MB,
input file size is 70 KB, and output file size is about 549 KB.

For the EGEE WMS experiments, it has been developed a framework us-
ing the lcg2.1.69 User Interface C++ API, which provides support to submit,
monitor and control each single ray tracing application to the grid. This frame-
work works in the following way: First of all, a launcher script generates the
JDL files needed. Then, the framework launches all the single ray tracing jobs
simultaneously, periodically querying each job’s state. And finally, it retrieves
the job’s output. The scheduling decisions are of course delegated to the EGEE
WMS.

GridW ay only relies on Globus services, so it could be used in any Grid
infrastructure based on the Globus Toolkit, both pre-WS and WS [28]. In the
case of EGEE (LCG-2), Globus behaviour has been slightly modified, but it
does not loose its main protocols and interfaces, so GridW ay can be used in a
standard way to access LCG-2 resources [29].

In both cases, the jobs were submitted from Universidad Complutense de
Madrid. The RB employed for the experiments with LCG-2 was located at the
IFIC site and used an eager scheduling policy.

5.1 Experimental Results

Table 2 shows a summary of the performance exhibited by the two scheduling
systems in the execution of the fusion application. Additionally, Figure 5 shows
the mean execution time per site and Figure 6, the mean transfer time per site.
As can be seen, GridW ay presents a higher transfer time, because additional
jobs are submitted for the prolog and epilog stages [3]. However, the experiments
were conducted with a GridWay version previous to 4.7, in which this issue was
solved. On the other hand, the standard deviation of raw performance metrics
can be interpreted as an indicator of the heterogeneity in the grid resources and
interconnection links [29]. Finally, the lower overhead induced by GridW ay
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shows the benefits of its lighter approach and the functionality for performance
slowdown detection.

The EGEE WMS spent 195 minutes (3.25 hours) to execute the 50 jobs,
giving a productivity equal to 15.38 jobs/hour. GridW ay spent 120 minutes
(2 hours) to execute the same workload, giving a productivity equal to 25
jobs/hour. The conclusion is that GridW ay takes better advantage of the avail-
able resources due to its superior scheduling capabilities on dynamic resources.
In fact, during the experiments with the EGEE WMS, several problems de-
scribed before were evidenced. The LCG-2 RB does not provide support for
opportunistic migration and slowdown detection, and jobs are assigned to busy
resources.

Additionally, the achieved level of parallelism [30] can be obtained by using
the following expression:

U =
Texe

T
, (1)

being Texe the sum of job execution times and T the turnaround time. The
level of parallelism achieved by GridW ay was higher than the level achieved by
the EGEE WMS (14.91 and 6.89 respectively).

Not all jobs ended successfully at the first try. In the case of the EGEE WMS,
31 jobs were affected and they had to be resubmitted. However, with GridW ay,
only 1 job failed, but there were 21 migrations mostly due to suspension timeouts
(too much delay in a queue), and better resource discovery (too much time
allocated to a resource when better resources are waiting to be used).

A methodology to analyze the performance of computational Grids in the
execution of high throughput computing applications has been proposed in [31].
This performance model enables the comparison of different platforms in terms
of the following parameters: asymptotic performance (r∞), which is the max-
imum rate of performance in tasks executed per second, and half-performance
length (n1/2), which is the number of tasks required to obtain half of the asymp-
totic performance. A first order characterization of a grid by means of these
parameters is:

n(t) = r∞t− n1/2. (2)

Then, the performance of the system, jobs completed per second, can be defined
with a finite number of tasks with:

r(n) = n(t)/t =
r∞

1 + n1/2/n
, (3)

where n is the number of jobs. The parameters of the model, r∞ and n1/2, are
obtained by linear fitting to the experimental results obtained in the execution
of the applications.

Figure 7 and Figure 8 show the experimental performance obtained with the
two workload management systems, along with that predicted by Eq. (2) and
Eq. (3). With EGEE WMS, r∞ was 0.0051 jobs/second (18.19 jobs/hour) and
n1/2 was 8.33. With GridW ay, r∞ was 0.0079 jobs/second (28.26 jobs/hour)
and n1/2 was 1.92. From the different values of n1/2, it can be deduced that
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GridW ay needs less jobs to obtain half of the asymptotic performance due to
an earlier job allocation in the resources.

6 Conclusions and Future Work

Metascheduling has been proved to be a needed step in the evolution of grid
middleware. In this paper, some implementations of the Grid Metascheduler
concept have been reviewed. Due to continuity in the research line, the authors
have chosen to compare exhaustively the EGEE WMS and GridW ay. The
target application to be ported onto the Grid in order to gain experimental
results pertains to fusion physics, a new Grid technology demanding area.

There has been demonstrated that GridW ay offers a Metascheduling alter-
native for users, application developers and Grid managers, to the LCG-2 RB
available in the EGEE distribution. GridW ay provides compatibility to applica-
tions with DRM systems that implement the DRMAA standard. The command
line interface is similar to that found on local resource managers to submit, kill,
migrate, monitor and synchronize single, array and interdependent jobs. More-
over, deployment and maintenance of GridW ay is not only easy and fast, also a
wide variety of platforms is supported. Finally, GridW ay achieves lower over-
head and higher productivity than the EGEE WMS, mostly because it reduces
the number of job submission stages and provides mechanisms, not given by the
LCG-2 RB, such as opportunistic migration and performance slowdown detec-
tion that considerably improve the usage of the resources. Nevertheless, LCG-2
provides other components that weren’t considered in this article, such as data
management.

As future work, GridW ay will continue its evolution, standing on its mod-
ular architecture. Its commitment is to support the access to the different
middleware provided by EGEE (see Figure 9).
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Tables

Table 1: EGEE grid resources employed during the experiment.

Site Processor Speed (GHz) Nodes DRMS
CESGA Intel Pentium III 1.1 46 PBS
IFAE Intel Pentium 4 2.8 11 PBS
IFIC AMD Athlon 1.2 127 PBS
INTA-CAB Intel Pentium 4 2.8 4 PBS
LIP Intel Xeon 2.8 25 PBS
PIC Intel Pentium 4 2.8 172 PBS
USC Intel Pentium III 1.1 100 PBS
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Table 2: Performance metrics for both platforms.

Texe (m) Txfr (m) T Prod. Ovh.
Mean Dev. Mean Dev. (m) (j/h) (m/j)

LCG-2 30.33 11.38 0.42 0.06 195 15.38 1.82
GridW ay 36.80 16.23 0.87 0.51 120 25.00 0.52
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Figures

Figures referenced in this paper:
Figure 1: Loosely-coupled Grid layers.
Figure 2: Architecture of LCG-2’s WMS.
Figure 3: Architecture of GridW ay.
Figure 4: Topology and bandwidths of RedIRIS-2.
Figure 5: Mean Texe per Site.
Figure 6: Mean Txfr per Site.
Figure 7: Measurements of r∞ and n1/2 parameters for both platforms.
Figure 8: Experimental and predicted performance.
Figure 9: Interaction of GridW ay with different EGEE middleware.
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Figure 4: Topology and bandwidths of RedIRIS-2.
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Figure 5: Mean Texe per Site.
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Figure 6: Mean Txfr per Site.
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Figure 7: Measurements of r∞ and n1/2 parameters for both platforms.
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Figure 8: Experimental and predicted performance.
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Figure 9: Interaction of GridW ay with different EGEE middleware.
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