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Abstract. Metascheduling is a key functionality of the grid middleware
in order to achieve a reasonable degree of performance and reliability,
given the changing conditions of the computing environment. In this
contribution a comparative analysis between two major grid scheduling
philosophies is shown: a semi-centralized approach, represented by the
EGEE Workload Management System, and a fully distributed approach,
represented by the GridW ay Metascheduler. This comparative is both
theoretical, through a functionality checklist, and experimental, through
the execution of a fusion plasma application on the EGEE infrastructure.

1 Introduction

The growing computational needs of nowadays projects have permitted the evo-
lution to a new paradigm called Grid Computing. Among the intervening ele-
ments of a computional grid, the Metascheduler is gathering most attention as
a way to meet these challenging needs. The term Metascheduler can be defined
as a grid middleware that discovers, evaluates and allocates resources for grid
jobs by coordinating activities between multiple heterogeneous schedulers that
operate at local or cluster level [1].

Several implementations of the Metascheduler can be found, such as CSF,
Silver, Nimrod/G, Condor-G, GHS, GrADS, MARS, AppLeS and Gridbus. From
these, we would like to remark the following: CSF supports advance reservation
booking and offers round-robin and reservation based scheduling algorithms.
Scheduling characteristics provided by Nimrod/G strive for the equilibrium be-
tween resource providers and resources consumers via auctioning mechanisms [2].
Condor-G is not conceived for supporting scheduling policies but in the other
hand, it supplies mechanisms, such as ClassAd and DAGMan, that may be useful
for a metascheduler standing above [3]. GrADS and AppLeS support schedul-
ing mechanisms that take into consideration both application and system level
environments [4, 5]. These solutions provide complementary functionality, which
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focuses on specific application domains and grid middlewares, contributing sig-
nificant improvement in the field.

The aim of the GridW ay metascheduler [6] is to provide Globus user com-
munity with a grid scheduling functionality similar to that found in local DRM
(Distributed Resource Management) systems. In a precedent contribution, we
showed how a joint testbed of EGEE (LCG-2 middleware) and non-EGEE re-
sources (Globus middleware) can be harnessed by GridW ay with good results [7].
The evaluation of the resulting infrastructure showed that reasonable levels of
performance and reliability were achieved. The objective of this contribution
is to compare two metascheduling philosophies by means of two representative
implementations: EGEE WMS (Workload Management System) and GridW ay
Metascheduler. In both cases, the experimental results are obtained on EGEE
computing resources.

The structure of this paper is as follows. In Section 2, a short architecture
overview of the EGEE WMS and the GridW ay Metascheduler can be found,
along with a comparative analysis of the functionality provided by both solu-
tions is shown. Then, Section 3 evaluates the performance obtained by the two
alternatives in the execution of fusion plasma application on the EGEE infras-
tructure. Finally in Section 4, the paper ends up with some conclusions.

2 Grid Scheduling Infrastructures

The EGEE WMS and GridW ay are representative metascheduling technologies
of different strategies to deploy a grid scheduling infrastructure. GridW ay fol-
lows the loosely-coupled Grid principle [8], mainly characterized by: autonomy of
the multiple administration domains, heterogeneity, scalability and dynamism. A
GridW ay instance is installed in each organization involved in the partner grid to
provide scheduling functionality for intra-organization users (site-level schedul-
ing). On the other hand, EGEE WMS provides a higher centralized strategy as
one or more scheduling instances can be installed in the grid infrastructure, each
providing scheduling functionality for a number of VOs (VO-level scheduling).

The EGEE WMS is the result of previous projects (Datagrid, CrossGrid).
The present version of the EGEE WMS is based on the LCG-2 middleware and
it is migrating to a new one called gLite which inherits many of the former el-
ements and functionalities. LCG-2’s architecture is highly centralized and each
functionality is provided by almost a different machine, as it is conceived as
a network service. The EGEE WMS components are the following: The User
Interface (UI), which is from where the user sends the jobs; the Resource Bro-
ker (RB), which is based in Condor-G and uses most of its functionality; the
Computing Element (CE) and the Worker Nodes (WN), which are the cluster
frontend and the cluster nodes respectively, as it is established in the fixed con-
figuration dictated by LCG-2’s architecture; the Storage Element (SE), which
is used for job files storage; the Logging and Bookkeeping service (LB), which
registers job events [9].



For this contribution’s purpose, we have studied the RB, where the user
submits the job and its matching is performed. Here, the RB can adopt an
eager or lazy policy for scheduling the jobs. While with the eager policy the
job will likely end up in a queue, with lazy scheduling the job is held until
a resource becomes available. Then the job is sent to the chosen CE and, from
there, executed in a corresponding WN. In any case, there are several alternative
brokering services to submit the job.

GridW ay works on top of Globus services, performing job execution manage-
ment and resource brokering, allowing unattended, reliable, and efficient execu-
tion of jobs, array jobs, or complex jobs on heterogeneous, dynamic and loosely-

coupled Grids formed by Globus resources. GridW ay’s modular architecture is
conformed by the GridW ay Daemon (GWD) and different Middleware Access
Drivers (MADs) to access different Grid Services (information, execution and
transfer), all of them in just one host, as GridW ay is conceived as a client tool.
GridW ay performs all the job scheduling (using a lazy approach) and submis-
sion steps transparently to the end user adopting job execution to changing Grid
conditions by providing fault recovery mechanisms, dynamic scheduling, migra-
tion on-request and opportunistic migration. GridW ay allows the deployment
of organization-level meta-schedulers that provide support for multiple intra-
organization users in each scheduling instance. There is one scheduling instance
for each organization and all instances compete with each other for the available
resources.

2.1 Scheduling Capabilities

Both LCG-2 WMS and GridW ay treat jobs in a FIFO way and support dy-
namic scheduling, providing a way to filter and evaluate resources based on
dynamic attributes, by means of requirement and rank expressions. In LCG-2
the names of these attributes are the same as retrieved from the information
service. Nevertheless, in GridW ay, these expressions are based on common re-
source attributes, independent from the information service, providing another
way of decoupling. While LCG-2 RB accesses only the BDII servers and only
processes the GLUE Schema, GridW ay’s different information MADs allow to
access the most common information services. Considering execution and trans-
fer functionalities, both LCG-2 and GridW ay support Globus Pre-WS services,
but only GridW ay allows access to Globus WS services [10].

GridW ay supports opportunistic migration. That is, each scheduling cycle
evaluates the benefits of migrating submitted jobs to new available resources
(recently added or freed) by comparing rank values. In LCG-2, this functionality
is not supported and the ranking only affects submission.

Considering performance slowdown detection, GridW ay takes count of the
suspension time in remote batch systems and requests a migration when it ex-
ceeds a given threshold. Moreover, jobs are submitted together with a light-
weight self monitoring system. The job will migrate when it doesn’t receive as
much CPU as the user expected. None of the performance slowdown detection
mechanisms given by GridW ay are implemented in LCG-2. The monitoring in



the LCG-2 architecture is provided by the LB, which records only basic job
states and mixes them with events originated in other components.

With GridW ay, an application can take decisions about resource selection
as its execution evolves by modifying its requirement and rank expressions and
requesting a migration. In LCG-2 RB instead, these expressions are only set at
the beginning.

LCG-2 WMS supports checkpointing by providing an API to allow appli-
cations to be instrumented to save the state of the process (represented by a
list of variable and value pairs) at any moment during the execution of a job.
Also, it provides the mechanisms to restart the computation from checkpointed
data (previously saved state). If a job fails, the WMS automatically resched-
ules the job and resubmits it to another compatible resource. There, the last
state is automatically retrieved and the computation is restarted. The user can
also retrieve the saved state for a later manual resubmission, where the user can
specify if the job must start from this retrieved checkpoint data. With GridW ay,
user-level checkpointing or architecture independent restart files managed by the
programmer must be implemented. Migration is implemented by restarting the
job on the new candidate host. If the checkpointing files are not provided, the
job should be restarted from the beginning. These checkpoints are periodically
retrieved to the client machine or a checkpoint server.

In LCG-2, the PBS Event Logging (APEL) is employed for distributed ac-
counting [11]. GridW ay gives the user local accounting functionalities, standing
on the Berkeley Database.

Dependency in job submission is supported in LCG-2 RB by the Condor’s
DAGMan tool [11]. A DAGMan process is locally spawned for each Direct
Acyclic Graph (DAG) submitted to Condor-G. GridW ay also provides support
for job dependencies.

2.2 Fault Detection & Recovery Capabilities

The LCG-2 RB incorporates error detection mechanisms provided by Condor-
G [12]. On the other hand, GridW ay detects job cancellation (when the job exit
code is not specified), remote system crash and network disconnection (both
when the polling of the job fails). In all of these cases, GridW ay requests a
migration for the job [13].

Also the system running the scheduler could fail. GridW ay persistently saves
its state in order to recover or restart the jobs when the system is restarted.
LCG-2 RB relies on Condor-G, which stores persistently all relevant state for
each submitted job in the scheduler’s job queue [3].

2.3 User Interface Functionality

Both GridW ay and LCG-2 RB allow single jobs. The LCG-2 RB can handle jobs
with dependencies (DAGMan functionality) and interactive jobs. On the other
hand, GridW ay allows array jobs, jobs with dependencies and complex jobs.



For providing complex job support, GridW ay gives the user a functionality to
synchronize jobs. In the case of LCG-2, this must be implemented by a periodical
polling (active wait).

Focusing in the command line interface, both GridW ay and LCG-2 RB give
the user full control of his jobs. Anyway, GridW ay incorporates commands which
allow the user to migrate and synchronize jobs, functionalities not provided by
LCG-2.

Also, GridW ay offers C and Java implementations of the DRMAA Applica-
tion Programming Interface, which is a Global Grid Forum (GGF) standard [14].
The EDG WMS API given by LCG-21 is not standard.

3 Experimental Conditions and Results

The grid infrastructure used for the experiments is the corresponding to the
Test Virtual Organization at the Southwest Federation (SWETEST VO) of the
EGEE project (Table 1). All Spanish sites are connected by RedIRIS, the Spanish
Research and Academic Network, whose interconnection links of the different
nodes are shown in Figure 1.

Fig. 1. Topology and bandwidths of RedIRIS-2.

1 http://www.to.infn.it/grid/workload management/apiDoc/edg-wms-api-index.html



The target application, called Truba, performs the tracing of a single ray of a
microwave beam launched inside a fusion reactor [15]. Each experiment involves
the execution of 50 instances of the Truba application. The experiments were
performed with a development version of Truba, whose average execution time
on a Pentium 4 3.20 GHz is 9 minutes. Truba’s executable file size is 1.8 MB,
input file size is 70 KB, and output file size is about 549 KB.

For the EGEE WMS experiments, we have developed a framework using the
lcg2.1.69 User Interface C++ API, which provides support to submit, monitor
and control each single ray tracing application to the grid. This framework works
in the following way: First of all, a launcher script generates the JDL files needed.
Then, the framework launches all the single ray tracing jobs simultaneously,
periodically querying each job’s state. And finally, it retrieves the job’s output.
The scheduling decisions are of course delegated to the EGEE WMS.

GridW ay only relies on Globus services, so it could be used in any Grid
infrastructure based on the Globus Toolkit, both PreWS and WS [10]. In the
case of EGEE (LCG-2), Globus behaviour has been slightly modified, but it
does not loose its main protocols and interfaces, so GridW ay can be used in a
standard way to access LCG-2 resources [7].

Table 1. EGEE grid resources employed during the experiment.

Site Processor Speed Nodes DRMS

CESGA Intel Pentium III 1.1 GHz 46 PBS
IFAE Intel Pentium 4 2.8 GHz 11 PBS
IFIC AMD Athlon 1.2 GHz 127 PBS
INTA-CAB Intel Pentium 4 2.8 GHz 4 PBS
LIP Intel Xeon 2.8 GHz 25 PBS
PIC Intel Pentium 4 2.8 GHz 172 PBS
USC Intel Pentium III 1.1 GHz 100 PBS

In both cases, the jobs were submitted from Universidad Complutense de
Madrid. The RB employed for the experiments with LCG-2 was located at the
IFIC site and used an eager scheduling policy.

3.1 Experimental Results

Table 2 shows a summary of the performance exhibited by the two scheduling
systems in the execution of the fusion application. As can be seen, GridW ay
presents a higher transfer time, because of the reverse-server transferring model
used for file staging [6] (which has been replaced in version 4.7 for solving this
issue). Moreover, the standard deviation of raw performance metrics can be
interpreted as an indicator of the heterogeneity in the grid resources and inter-
connection links [7]. Finally, the lower overhead induced by GridW ay shows the



benefits of its lighter approach and the functionality for performance slowdown
detection.

Table 2. Performance metrics for both platforms, times are in minutes and produc-
tivity is in jobs/hour

Execution/Job Transfer/Job Turnaround Productivity Overhead/Job
Framework Mean Dev. Mean Dev.

LCG-2 30.33 11.38 0.42 0.06 195 15.38 1.82
GridW ay 36.80 16.23 0.87 0.51 120 25.00 0.52

The EGEE WMS spent 195 minutes (3.25 hours) to execute the 50 jobs,
giving a productivity equal to 15.38 jobs/hour. GridW ay spent 120 minutes (2
hours) to execute the same workload, giving a productivity equal to 25 jobs/hour.
We can conclude that GridW ay takes better advantage of the available resources
due to its superior scheduling capabilities on dynamic resources. In fact, during
the experiments with the EGEE WMS, several problems described before were
evidenced. The LCG-2 RB does not provide support for opportunistic migration
and slowdown detection, and jobs are assigned to busy resources.

Additionally, the achieved level of parallelism [16] can be obtained by using
the following expression:

U =
Texe

T
, (1)

being Texe the sum of job execution times and T the turnaround time. The level
of parallelism achieved by GridW ay was higher than the level achieved by the
EGEE WMS (14.91 and 6.89 respectively).

Not all jobs ended successfully at the first try. In the case of the EGEE WMS,
31 jobs were affected and they had to be resubmitted. However, with GridW ay,
only 1 job failed, but there were 21 migrations mostly due to suspension timeouts
(too much delay in a queue), and better resource discovery (too much time
allocated to a resource when better resources are waiting to be used).

A methodology to analyze the performance of computational Grids in the
execution of high throughput computing applications has been proposed in [17].
This performance model enables the comparison of different platforms in terms
of the following parameters: asymptotic performance (r∞), which is the max-
imum rate of performance in tasks executed per second, and half-performance
length (n1/2), which is the number of tasks required to obtain half of the asymp-
totic performance. A first order characterization of a grid by means of these
parameters is:

n(t) = r∞t − n1/2. (2)

Then, we can define the performance of the system, jobs completed per second,
with a finite number of tasks with:

r(n) = n(t)/t =
r∞

1 + n1/2/n
, (3)



where n is the number of jobs. The parameters of the model, r∞ and n1/2, are
obtained by linear fitting to the experimental results obtained in the execution
of the applications.

Figure 2 and Figure 3 show the experimental performance obtained with the
two workload management systems, along with that predicted by Eq. (2) and
Eq. (3). With EGEE WMS, r∞ was 0.0051 jobs/second (18.19 jobs/hour) and
n1/2 was 8.33. With GridW ay, r∞ was 0.0079 jobs/second (28.26 jobs/hour) and
n1/2 was 1.92. From the different values of n1/2, we can deduce that GridW ay
needs less jobs to obtain half of the asymptotic performance due to an earlier
job allocation in the resources.
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Fig. 3. Experimental and predicted performance.

4 Conclusions

We have demonstrated that GridW ay achieves lower overhead and higher pro-
ductivity than the EGEE WMS. GridW ay reduces the number of job submission
stages and provides mechanisms, not given by the LCG-2 RB, such as opportunis-
tic migration and performance slowdown detection that considerably improves



the usage of the resources. Nevertheless, LCG-2 provides other components that
weren’t considered in this article, such as data management.
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