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Universidad Complutense de Madrid, Spain
{manuelro,jfontan}@fdi.ucm.es, {ehuedo,rubensm,llorente}@dacya.ucm.es

2 European Space agency ESA
Villanueva de la Cañada, Spain
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Abstract. Virtual machines can greatly simplify grid computing by pro-
viding an isolated, well-known environment, while increasing security.
Also, they can be used as the base technology to dynamically modify
the computing elements of a grid, so providing an adaptive environment.
In this paper we present a Grid architecture that allows to dynamically
adapt the underlying hardware infrastructure to changing Virtual Orga-
nization (VO) demands. The backend of the system is able to provide
on-demand virtual worker nodes to existing clusters and integrate them
in any Globus-based Grid. In this way, we establish a basis to deploy
self-adaptive Grids, which can support different VOs in shared physical
infrastructures and dynamically adapt its software configuration. Exper-
imental results on a prototyped testbed show less than a 10% overall
performance loss including the hypervisor overhead.

1 Introduction

Recently, interest in virtual machines is quickly growing, as hardware support
provided by new generation microprocessors significantly reduces the overhead of
virtualization [1]. Typically, hypervisors like Xen [2] or VMWare [3] take advan-
tage of these new hardware features to improve their performace. Computational
Grids can greatly benefit from virtualization. A Grid is a highly heterogeneous
system both in terms of the hardware and software configuration of its com-
ponents. This fact reduces the number of potential resources to run a given
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application, which usually requires specific versions of different software compo-
nents (e.g. operating system, libraries or post-processing utilities). Moreover, the
installation, configuration and maintanace of these different components signif-
icantly increases the operational costs of the Grid infrastructure. Finally, those
organizations that contribute resources to a Grid usually want to limit the in-
teraction of Grid applications with their own internal workload.

Among other solutions, Virtual Machines (VM) can solve the aforementioned
problems. From the user perspective, VMs ensure the correct execution of the
application by encapsulating software configurations in a ”well-known” environ-
ment. On the system administrator side, VMs are an efficient technology to
isolate and partition the system. Thus, allowing them to set the amount of re-
sources devoted to Grid jobs. Also, the operational cost of the infrastructure
is reduced as specific appliances to run an application class can be prepared,
configured and deployed.

The integration of virtual machines in Grid environments has been previ-
ously explored by several works. For example, the In-VIGO project [4] estab-
lishes a basic layer of virtual Grid resources upon which any grid middleware
can be deployed. The Virtual Workspace Service [5], exposes the functionality
needed to manage workspaces –abstraction of execution environments imple-
mented through VMs. Also, a straightforward deployment of virtual machines
to execute scientific codes in a Grid has been analyzed in [6] (see Section 2 for
an additional description of other related works).

In this work we propose a novel architecture for the dynamic provisioning of
computational services on a Grid infrastructure. The system leverages virtualiza-
tion technologies to provide flexible support for different Virtual Organizations
(VO). Usually, the resources of a Grid site support different VOs (e.g. Bioin-
formatics or High Energy Physics). The proposed system is able to balance the
amount of resources allocated to each VO in terms of their dynamic requests.

On the other hand, different VOs need different software, or even different
versions of the same software. Traditionally, the cost of the installation, config-
uration and maintainace of VO-specific worker nodes have limited the flexibility
of the infrastructure. In our case, the system will deploy on-the-fly VO-specific
worker nodes to execute their applications.

To achieve these two goals, we propose a multi-layer architecture to provide
virtual worker nodes to clusters inside a Grid. The infrastructure, given a set of
virtual machine images, is capable of deciding the number and the kind of worker
nodes to be created on each cluster. This way, the computing elements of a grid
can be adapted to fit the changing software requirements and computational
demands. Section 3, provides a detailed description of the system.

The paper also analyzes, in Section 4, a prototype implementation of the
architecture. In particular, we discuss the overhead and interaction of all the
components of a classical middleware stack, namely: local resource management
systems (Sun Grid Engine in our case), Grid resource services (Globus GRAM),
information services (Globus MDS4) and meta-schedulers (GridWay). Finally,
in Section 5, we discuss our experience and explain our future work.
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2 Related Work

The idea of a virtual cluster which dynamically adapts its size to the workload
is not new. Jeffrey Chase et al., from Duke University, describe in [7] a cluster
management software called COD (Cluster On Demand), which dynamically
allocates servers from a common pool to multiple virtual clusters. Although the
goal is similar, the approach is completely different. COD worker nodes employ
NFS to mount different software configurations. In our case, the solution is based
on VM, and the system is studied from a Grid perspective.

Ananth I. Sundararaj et al., from Northwestern University, have also worked
on dynamic cluster configuration [8] with a different approach. They have de-
veloped a network tool that connects virtual machines, making the connectivity
problem identical to that faced by the user when connecting any new machine
to his own network. This allows to migrate VMs across different domains while
preserving the same IP. Our aim is not to develop a totally virtualized architec-
ture, but to include the advantages of virtualization in existing infrastructures
in a non-intrusive way.

OSG (Open Science Group) defines Edge Services, that mediate access be-
tween a site and the external world. They can handle common grid operations
like job submissions or data movement. I.Foster et al. [9], employ VMs to bring
them up dynamically only as they are needed. Although this work is also based
on virtualization technology and the Virtual Workspace Service (VWS) the ap-
proach is different. In this paper, our goal is not to create a new service (Edge
Service) but to improve and adapt existing ones, supporting different VOs in a
shared physical infrastructures.

Finally, Amazon Elastic Computing Cloud [10] provides a remote VM execu-
tion environment. It allows to execute one or more “Amazon Machine Images”
on their systems, providing a simple web service interface to manage them. Users
are billed for the computing time, memory and bandwidth consumed. This ser-
vice greatly complements our development, offering the possibility of potentially
unlimited computing resources. It would be possible to employ a grid-enabled
Amazon Machine Image, and create as many instances as needed, getting on-
demand resources in case the physical hardware cannot satisfy a peak demand.

3 Description of the Architecture

In this section we detail the architecture of the system and its basic behavior.
In its design, we have focused in avoiding dedicated systems. The virtual worker
nodes provided by the underlying physical infrastructure can register in existing
clusters queues (computing services). So the flexibility of the Grid infrastructure
can be boosted up without requiring dedicated hardware, or modifying neither
existing applications nor software configurations. The final goals of the proposed
architecture are:

– Dynamically adapt a shared infrastructure to support different VOs, by bal-
ancing the physical resources allocated to each VO.
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Fig. 1. Architecture Overview. Arrows represent an intertaction between components,
the time of this interaction is labeled in the figure.

– Reduce the operational cost of the Grid infrastructure, by providing a simple
way to provide on-demand software configurations to VO users.

– Minimize the Gridification time, by executing VO applications in a well-
known pre-defined environment.

The base of the architecture (depicted in Figure 1) is the Virtual Machine
Layer. This layer is responsible for the creation of virtual worker nodes to be
registered in a cluster. Typically, the functionality of this layer will be provided
by a hypervisor. In the present work we will consider Xen 3.

The worker nodes (either physical or virtual) are managed by a Local Resource
Management System (LRMS layer in Figure 1). In our case we will use a Sun
Grid Engine (SGE [11]) instance. The SGE cluster is configured with a different
queue for each VO, which also provides a VO appliance. So, when a new worker
node is to be deployed the corresponding appliance is used. This way, several
software configurations can coexist on a single cluster and a job can be executed
in the correct one by just specifying the queue name. We would like to note
that having a queue for each VO is a usual configration for Grid resources (for
example in the EGEE [12] infrastructure).

The previous resources are exposed as Grid services by the components of
the third layer, Basic Grid Middleware. The prototype version considered in this
paper uses the services provided by the Globus Toolkit 4, namely: information
(MDS4), execution (GRAM4) and file transfer services (GridFTP); along with a
virtualization interface (Virtual Workspace Service, VWS). The ability of VWS
to deploy several copies of a single image along a physical cluster, with a pre-set
pool of host names and IPs, keeps integration with LRMS layer simple.

At the top layer (Management) we usually find meta-schedulers that manage,
control and monitor the execution of Grid applications. We have chosen the
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GridWay [13] meta-scheduler. As, it provides some features which are required
by the proposed architecture:

– Scheduling capabilities: GridWay employs a dynamic scheduling system. It
can detect when a new machine has been added or removed from a cluster,
and redistribute the work load.

– Fault detection & recovery capabilities. Transparently to the end user, Grid-
Way is able to detect and recover from any of the Grid elements failure,
outage or saturation conditions [14].

3.1 Infrastructure Manager

Finally, the Infrastructure Manager module completes the system architecture.
This component is responsible for adapting the Grid computational services
to the dynamic Grid computing demands. The Infrastructure Manager decides
when to add new worker nodes (and their type) to a given computing element
(cluster queue). So, allowing Grid administrators to adapt their services accord-
ing to a pre-defined set of policies (e.g. the cluster should be shared in a 2 to 5
ratio between the fusion and bioinformatics VOs.)

The following sequence of actions (see Figure 1) describes the actions that
takes place when the Information Manager decides to add a new worker node to
the computing element:

1. The Infrastructure Manager request a new VM to the VWS (using a pre-
defined appliance for the VO). The VWS determines the best node to run
the virtual machine, based on the resources requested (e.g memory). The
arrow labeled “CR” in Figure 1 represents the time since the Infrastructure
Manager sends a deploying petition until it receives a confirmation.

2. If the VM image (appliance) is not local to the host system, it accesses the
image server via a suitable protocol (e.g. GridFTP) and obtains a copy. We
will refer to the time employed on the image transmission as “PT”.

3. Once the image has been transferred, the physical node’s DHCP server con-
figuration file is altered in order to establish VM’s IP and hostname. The
time to assign a hostname and IP will be referred as “DA”.

4. When these operations conclude, the VM is booted. “VMB” denotes the
time since the hypervisor (Xen) receives the execution instruction until it
starts booting the VM. Also, “VMR” is the time need to actually boot
the system. Note that while VMB is constant, VMR highly depends on the
virtual machine configuration and services.

5. When the VM has been deployed and is running, it registers on LRMS
frontend (arrow “SR” in Figure 1) as an execution host.

6. After a given time, the Grid information system (MDS) detects the new node
and publishes it. This step is labeled “PUB” in Figure 1.

7. Finally, the meta-scheduler (GridWay) will refresh the information of the
available Grid resources, and detect the new worker node (label “GW“).
Then, according to the scheduling policies, it will allocate jobs on this new
resource by interfacing with the Grid execution service (GRAM).
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4 Experimental Results

4.1 Testbed Description

The behavior of the previous deployment strategy will be analyzed on a testbed
based on Globus Toolkit 4.0.3 and GridWay 5.2.1. The testbed consists of three
resources: two SGE clusters, and a dedicated system hosting the management
services (meta-scheduler and infrastructure). The main characteristics of these
machines are described in Table 1.

Table 1. Characteristics of the testbeds resources

Host OS CPU Memory Services

UCM frontend Debian Etch P4 HT 3.2GHz 1 GB GT4.0.5, SGE
NIS, NFS, VWS

UCM WN (2) Debian Etch 2 x P4 HT 3.2GHz 256MB DHCP, Xen 3

ESA frontend Fedora Core 6 Xeon 1.70GHz 768MB GT4.0.4, SGE
NIS, NFS, VWS

ESA WN 1 Fedora Core 6 2 x Xeon 2.20GHz 2GB DHCP, Xen 3

ESA WN 2 Fedora Core 6 Xeon 1.70GHz 768MB DHCP, Xen 3

ESA WN 3 Fedora Core 6 Xeon 2.20GHz 2GB DHCP, Xen 3

Manager Server Debian Etch Pentium M 1.4GHz 768MB GT4.0.3, GridWay 5.2.1

4.2 Functional Analysis

The aim of the experiments presented in this section is to obtain a clear un-
derstanding of the interaction of all the components that form the architecture.
Also, we will study the overhead induced by each component, so we can evalu-
ate the the cost of the benefits that virtualization adds to the Grid in terms of
flexibility, lower operational costs and enhanced security.

Deployment Overhead. Let us start by measuring the deployment time of
a VM under several conditions. As different hardware configurations lead to
different results, we have only employed one cluster (UCM, see Table 1) to carry
out these tests. Table 2 presents the average results (over 25 runs) obtained while
deploying one, two and three VMs on the same physical machine, respectively.

In Table 2, time precision is one second. Hence, the values obtained in the
measurements of CR, DA, VMB, VMR and SR can be considered the same for
the three experiments. We would like to note that the overhead induced by the
SGE layer is negligible (the time to register a worker node in the cluster is less
than a 1% of the total deployment time).

Although most of the overheads are constant regardless of the number of VMs
deployed, the growth of propagation time (PT) makes this approach unfeasible.
These results suggest to use a sequential deployment approach for worker nodes.

On a sequential deployment, VMs are deployed one at a time. Only one image
is being transferred from the image server to the execution node, so I/O overhead
is greatly reduced, obtaining nearly a constant time. Both approaches can be
compared in figure 2. We would like to remark that when deploying more than
3 VMs simultaneously most of the times error situations occurred.
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Table 2. Deployment time (in seconds) when starting one, two and three VMs simul-
taneously. CR: Command Received in Physical Node. PT: Image propagation time.
DA: DHCP server alter. VMB: Xen start time. VMR: VM booting time. SR: SGE
registering.

VMs Created CR PT DA VMB VMR SR Total

1 2 96.8 4.58 3 10.67 1.5 118.58

2 2.54 279.58 4.82 6.44 11.73 1.88 308.02

3 1 472 3.75 5.8 11.83 1.5 495.88

Fig. 2. Deployment overhead for simultaneous and sequential approaches

Shut Down Overhead. When shutting down a VM (Table 3), we have mea-
sured three relevant values. In this case the time is constant regardless of the
number of VMs being shut down.

Overhead introduced by SGE when shutting down a VM can be minimized
by reducing the polling time. Default value is 300 seconds, so it takes an average
of 150 seconds to detect the new situation. Reducing polling time limits the
overhead, although increments network usage. System administrator must tune
this value according to the number of nodes in the cluster and average VM
uptime.

Grid Integration. Figure 3 shows a global view of the interaction of all the
system components. As has been discussed previously, the time to start a virtual
worker node (time since the Infrastructure Manager requests a worker node, 114
sec., till it is registered in the LRMS, 2 sec.) is roughly 2 minutes.
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Table 3. Times (in seconds) when a worker node is shut down

Number Command VM SGE Total
Received Destroyed

1 0.78 6.22 145 152

2 0.88 6.46 158 165.33

3 0.67 7.33 151 159

Infrastructure Manager Metascheduler

Basic Grid Middleware 

LRMS

Machine Level

114

2

170

90

Fig. 3. Sequence of actions in a VM deployment and the associated overhead
(in seconds)

The time to register the new slot in the Grid Information system (MDS4) is
about 170 seconds. It is worth pointing out that MDS publishing time is greater
than the time employed on deploying one VM plus SGE register time. There-
fore, when sequentially deploying several VMs both times overlap, producing
an additional time saving. The MDS and GridWay overhead can be limited by
adjusting their refresh polling intervals.

When switching down, the same steps are accomplished. In this case, the
time until the operation is accomplished at the machine layer is greatly reduced,
from 114 to 7 seconds. However, time until LRMS detects the lack of the VM
is incremented, from 2 to about 150 seconds. It is interesting to note that the
meta-scheduler could assign jobs to the cluster during the worker node shutting
down time. In this case the meta-scheduler should be able to re-schedule this job
to another resource.

Virtualization Overhead. Virtualization technology imposes a performance
penalty due to an additional layer between the physical hardware and the guest
operating system. This penalty depends on the hardware, the virtualization tech-
nology and the kind of applications being run. Two good performance compar-
isons of VMware and Xen were conducted by the computer science departments
at University of Cambridge [15]. and Clarkson University [16]. On these studies,
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Xen performed extremely well in any kind of tasks, with a performance loss be-
tween 1 and 15%. VMware also achieves near-native performance for processor-
intensive tasks, but experiences a significant slow-down (up to 88%) on I/O
bound tasks.

VWS development team measured VWS performance in a real-world grid
use case [17], a climate science application, achieving about a 5% performance
loss. In a previous work [6], we have obtained a similar result (about 10% loss)
when employing virtual machines in a Grid to execute a high throughput scien-
tific application. This is an acceptable result, regarding the benefits in terms of
modularity, portability and simplified application development.

5 Conclusions and Future Work

In this paper, we have presented a Grid architecture for the dynamic provisioning
of computing elements. The benefits of this architecture is a flexible Grid able
of supporting different VOs on a shared and configurable infrastructure, while
reducing its operational costs.

The results obtained on the performance tests show that the proposed ar-
chitecture and technologies represent a feasible solution. With a daily cluster
reconfiguration, induced overhead is less than 1%. Added up with Xen per-
formance lost, it remains under 10%. However, it provides attractive benefits
like increased software robustness, easier cluster administration and enhanced
security.

In the future, we will improve the decision making system on the resource
manager, in order to optimize the deployment of virtual machines under different
conditions and usage. We will also explore the possibilities that the proposed
technology offers to outsourced grids, allowing dedicated service providers to
supply resources on demand over the Internet.
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