
Dynamic Provision of Computing Resources from Grid Infrastructures and

Cloud Providers ∗

Constantino Vázquez Eduardo Huedo Rubén S. Montero

Ignacio M. Llorente

Departamento de Arquitectura de Computadores y Automática

Facultad de Informática, Universidad Complutense de Madrid, Spain

E-mail: {tinova, ehuedo}@fdi.ucm.es, {rubensm, llorente}@dacya.ucm.es

Abstract

Grid computing involves the ability to harness together

the power of computing resources. In this paper we push

forward this philosophy and show technologies enabling

federation of grid infrastructures regardless of their inter-

face. The aim is to provide the ability to build arbitrary

complex grid infrastructure able to sustain the demand re-

quired by any given service. In this very same line, this

paper also addresses mechanisms that potentially can be

used to meet a given quality of service or satisfy peak de-

mands this service may have. These mechanisms imply the

elastic growth of the grid infrastructure making use of cloud

providers, regardless of whether they are commercial, like

Amazon EC2 and GoGrid, or scientific, like Globus Nimbus.

Both these technologies of federation and dynamic provi-

sioning are demonstrated in two experiments. The first is

designed to show the feasibility of the federation solution

by harnessing resources of the TeraGrid, EGEE and Open

Science Grid infrastructures through a single point of en-

try. The second experiment is aimed to show the overheads

caused in the process of offloading jobs to resources created

in the cloud.

1. Introduction

In high performance computing there is the necessity to

attend fluctuating and peak demands. For instance, a su-

percomputing center is subject to this needs, since projects

can demand resources punctually for experiments, and they

∗This research was supported by Consejerı́a de Educación de la Co-

munidad de Madrid, Fondo Europeo de Desarrollo Regional (FEDER) and

Fondo Social Europeo (FSE), through BIOGRIDNET Research Program

S-0505/TIC/000101, by Ministerio de Educación y Ciencia, through the

research grant TIN2006-02806, and by the European Union through the

research grant RESERVOIR Contract Number 215605

can do so even simultaneously. Moreover, meeting a Ser-

vice Level Agreement (SLA) defining a Quality of Service

(QoS) with the center’s available resources can be challeng-

ing at certain times. The logical provisioning model will be

to use the local infrastructure to attend all the existing de-

mand, if possible (i.e., using their enterprise grid). If that

is not enough, the excess load can be delegated to a part-

ner grid, with which a previous arrangement has been made.

This partner grid does not need to provide the same interface

as the enterprise grid, but still a single point of access is de-

sirable to the whole federated infrastructure. If the comput-

ing demand still overflows the existing resources, the center

will need to use a cloud provider to perform temporary in-

crease in its computing power. A unified point of access is

even valuable as more heterogenous resources are added to

the grid infrastructure.

In this paper we will propose and evaluate an architec-

ture to build a grid infrastructure in a very flexible way,

being able to hire computer resources with potentially dif-

ferent interfaces; and we will show an experiment to prove

its feasibility. This will be done with technologies avail-

able nowadays rather than the intention of developing stan-

dards for the future, i,e, using interoperation rather than in-

teroperability [1]. Furthermore, we will show a framework

for monitoring service capacity and for growing grid in-

frastructures when it comes close to saturation, using cloud

providers like Amazon EC2 1 and GoGrid 2 (commercial) or

Globus Nimbus 3 (scientific); and again we will show em-

pirical data on an experiment showing this dynamic growth.

This will provide with the necessary components to build

a grid infrastructure with a single point of access that can

be adapted as in the aforementioned though experiment of

the supercomputing center. One interesting characteristic

of using the virtualization that conform clouds is the abil-

1http://www.amazon.com/ec2
2http://www.gogrid.com
3http://workspace.globus.org



ity to provide resources with certain characteristics, that is,

particular software libraries or specific configuration can be

asked for in the requested virtual machines (VMs) to better

fulfill the demands of the grid infrastructure.

The aim of this paper is therefore twofold, and it con-

tributes with solutions to two related but different chal-

lenges:

• The interoperation of different grid infrastructures.

• The dynamic provision of resources using cloud

providers.

The structure of this paper is as follows. Section 2 un-

folds work related with this paper, while Section 3 unfolds a

general architecture of the solution for the desired adapting

grid infrastructure. Section 4 deals with the problem of grid

interoperation, showing an experiment harnessing the com-

puting power of resource pertaining to the TeraGrid, EGEE

and Open Science Grid infrastructures. Section 5 presents a

solution to dynamically grow an existing grid infrastructure

using resources from cloud providers. Finally, Section 6

states plans for future work and summarizes the conclusions

of this paper.

2. Related Work

Interoperation is an intrinsic characteristic of grid tech-

nologies, which basically consist on the aggregation of

heterogenous resources in which interoperation obviously

plays a crucial factor. Over the time, grid middlewares have

been evolved without agreement between parts, resulting in

incompatible interfaces for grid infrastructures. There are a

numerous efforts focused on what is available nowadays,

trying to provide federation solutions for the short term.

This is exactly the aim of the Grid Interoperation Now [2]

(GIN) group of the OGF. We can also remark efforts to in-

teroperate different grid middlewares (for example, Globus

and UNICORE [3]). It is also interesting to see efforts like

InterGrid [4], proposing the creation of InterGrid Gateways

(IGGs) to interconnect the existing different grid islands.

Moreover, there are various works enabling interoperability

between existing metaschedulers [5]. There is even an OGF

group devoted to this research line, the Grid Scheduling Ar-

chitecture (GSA) research group. Our solution takes advan-

tage of the modular architecture of the GridWay metasched-

uler to use different adapters to access grid infrastructures

with different interfaces, allowing to do so with a single

point of access. Interoperation efforts are particularly im-

portant in the context of the EGEE infrastructure with re-

spect to its National Grid Infrastructures (NGIs). Basically,

each state contribute to the whole of the EGEE infrastruc-

ture providing resources grouped in a NGI. Therefore, we

an think of the EGEE as a federation of NGIs, so interoper-

ation becomes a key aspect between NGIs.

On the other hand, regarding on-demand provision of

computational services, different approaches have been pro-

posed in the literature. Traditionally, these methods con-

sist in overlaying a custom software stack on top of an

existing middleware layer, like for example the MyCluster

Project [6] or the Falkon system [7]. These approaches es-

sentially shifts the scalability issues from the application to

the overlaid software layer, whereas the proposed solution

transparently scales both the application and the computa-

tional cluster.

The idea of a virtual cluster which dynamically adapts its

size to the workload is not new. Jeffrey Chase et al., from

Duke University, describe [8] a cluster management soft-

ware called COD (Cluster On Demand), which dynamically

allocates servers from a common pool to multiple virtual

clusters. Although the goal is similar, the approach is com-

pletely different. COD worker nodes employ NFS to mount

different software configurations. In our case, the solution

is based on VMs, and the system is studied from a grid per-

spective. The use of virtualization to provide on-demand

clusters has been also studied in the context of the Globus

Nimbus [9]. Globus Nimbus provides a WSRF interface to

launch heterogeneous clusters on a cloud. However, these

clusters can not be easily integrated with the local resources

nor can be supplemented with other cloud providers.

Finally, Amazon Elastic Computing Cloud provides a

remote VM execution environment. It allows to execute

one or more “Amazon Machine Images” on their systems,

providing a simple web service interface to manage them.

Users are billed for the computing time, memory and band-

width consumed. This service greatly complements our

development, offering the possibility of potentially unlim-

ited computing resources. It would be possible to employ a

grid-enabled Amazon Machine Image, and create as many

instances as needed, getting on-demand resources in case

the physical hardware cannot satisfy a peak demand. Uni-

vaUD is an example of a company offering solutions to vir-

tual provisioning by monitoring applications, gathering and

analyzing detailed performance metrics, and then driving

appropriate provisioning actions based on these metrics to

meet established customer SLAs 4.

Our approach uses the concept of a dynamically adapt-

ing grid infrastructure, but more aligned with the concept

of a Service Manager like Hedeby 5, although using VMs

with specific configurations rather than configuring physi-

cal servers. In this aspect, our solution is similar to that

provided by RightScale 6, but it differs from it since it is not

a completely virtualized solution, but rather a way to extend

4http://www.univaud.com/reliance/use-cases/provisioning.php
5http://hedeby.sunsource.net
6http://www.rightscale.com



a physical infrastructure by the punctual use of virtualized

resources.

3. Architecture

Dynamic provisioning posses various problems. One

problem in this field is the importance of interoperability,

i.e., being able to grow using any type of given resource,

independently of what interface may be offering. Another

problem is answering the question of when this dynamic

growth is necessary and how to actually perform it. An even

a third issue can be the enforcement of a budget on this deci-

sion, taking into account expected CPU and network usage.

In this section, these problems are addressed by means of

a grid infrastructure that can be flexibly built, that is aware

of its load, featuring a single point of access and that can in-

corporate new resource temporarily in an automatic fashion

to satisfy heavy demands. Figure 1 sketches an architec-

ture of such a solution. We can see that one of the building

blocks is the GridWay metascheduler.

GridWay 
Meta-

scheduler

GT 
4.0.x

gLite

Service 
Manager

Node

Node

GT 
4.2.x

Node

Node Node

Node

GT 
4.2.x

Node

Cloud A

Cloud B

Figure 1. Architecture for an elastic grid in-

frastructure.

The flexible architecture of this metascheduler allows the

use of adapters. Although sharing the same interfaces is

the ideal way to achieve interoperation, sometimes there

are different middlewares deployed in the sites to be fed-

erated, and it is unfeasible to unify them for a variety of

reasons (politics, time constraints or ongoing migration or

upgrades). This can be seen as the consequence of not hav-

ing an accepted standard, and therefore, lack of interopera-

tion. One possible solution to federate these different sites

is to build a portal that uses different components (to sub-

mit jobs, gather information, transfer files, etc) to interface

these sites. These components are designed specifically for

a particular middleware stack or even version, and we can

call them adapters.

GridWay already has a number of adapters, called Mid-

dleware Access Drivers (MADs), that enable access to dif-

ferent production grid infrastructures. In Section 4, an

experiment shows the metascheduler accessing the EGEE,

TeraGrid and Open Science Grid, featuring different inter-

faces. Moreover, there are plans to provide SSH MADs,

so access to local resources can be achieved with decreased

overhead, and avoiding the need to have installed and con-

figured in the nodes any grid software as, for instance, the

Globus Toolkit.

Once described the federation approach, lets see the pro-

posed architecture for dynamic provisioning, which prin-

cipal component is the the Service Manager. It is used to

monitor the GridWay metascheduler, and when the load of

the system excesses a threshold, detected using heuristics, it

is responsible to grow the available grid infrastructure using

specific adapters to access different cloud providers. This

growth can be accomplished in two ways. The first one

is by requesting a number (calculated with the aid of said

heuristics) of single hosts. These need to have a previously

defined software configuration that will then help them en-

roll in the available grid infrastructure. This corresponds to

the use of Cloud A in Figure 1.

Another possibility is to deploy a full virtualized cluster,

with a front-end controlling a number of slave nodes. This

front-end can then enroll itself to the existing grid infras-

tructure, adding its capacity. The GridWay metascheduler

features mechanisms to dynamically discover new hosts or

sites which can be used for this purpose. This corresponds

to the use of Cloud B in the figure.

Therefore, the provisioning model we envision is

twofold. The first mode adds one single computing resource

to the grid infrastructure. This computing resource can be

accessible through a GRAM interface, meaning that the VM

that is going to be awaken needs to have the Globus Toolkit

installed and correctly configured. An even more practical

approach will be to use just SSH access to perform job ex-

ecution in this kind of nodes, the GridWay metascheduler

already has a prototype of such SSH drivers. In this way,

machines from cloud providers can be used out-of-the-box,

with little to non configuration needed, basically SSH ac-

cess is the only requirement. On the other hand, a second

mode of growing the existing grid infrastructure would be

to use these cloud providers in a slightly different fashion.

Negotiation with the cloud provider will grant access to a

virtual cluster, accessible through GRAM and controlled by

a LRMS like for example PBS or SGE. This cluster will

then be added to the federated grid infrastructure the same

way as one of the physical sites we saw in the last section.

Future work is planned to enrich the flexibility of the grid

infrastructure by removing the GRAM layer, enabling Grid-



Way to access the cluster by talking directly to the local re-

source management system (LRMS)

Moreover, this solution has another advantage. Not only

it can dynamically increase the size of the grid infrastruc-

ture, but the added computing nodes can be waked with dif-

ferent configurations. In other words, if the Service Man-

ager can be built in such a way that it won’t only concern

itself with the need to increase the computing capacity, but

it can do so in a service oriented way. If there is one specific

service which is suffering from the peak demand, the Ser-

vice Manager can decide to increase the number of nodes

prepared to satisfy such a service. For instance, if the ser-

vice is an application that requires specific mathematic li-

braries, virtual machines images containing that specific li-

braries be chosen to be awaken as nodes to increase the grid

infrastructure capacity.

4. Provisioning from Heterogeneous Grid In-

frastructures

We can think of interoperation as an immediate solution

for the collaboration between two or more heterogeneous

grids. On the other hand, interoperability focuses on the

big picture and tries to bring together technologies that im-

plement the grid infrastructure by means of standardization

(like, for example, the Simple API for Grid Applications,

SAGA, or the Basic Execution Service, BES, do). It is clear

that this can not be achieved without a significant amount

of effort and, more important to the point being made here,

time. Thus, the need to provide interoperation and the justi-

fication of the GIN group within the OGF.

Since most common open standards to provide grid in-

teroperability are still being defined and only a few have

been consolidated, grid interoperation techniques, like for

instance adapters, are needed. An adapter is, according to

different dictionaries of computer terms, a device that al-

lows one system to connect to and work with another. The

aim of this section is to show the feasibility of the adapter-

based approach to interoperation.

GridWay’s architecture is flexible enough to allow for

the use of adapters to achieve interoperation between in-

frastructures exposing different interfaces. The experiment

shown later in this section proves the feasibility of this ap-

proach. Notwithstanding, this solution in turn posses a new

problem that requires the development of new heuristics for

the optimal scheduling of jobs across resources of differ-

ent infrastructures. Lets see an example in order to clarify

what these heuristics will have to decide. For clarity’s sake,

we are going to assume that GridWay is configured to ac-

cess two different infrastructures, one with 30 free nodes

and another with 20; and GridWay receives a job array of

18 elements. Currently, GridWay scheduler doesn’t take

into account the notion of array for scheduling, so it will

probably begin scattering jobs across both infrastructures.

Nonetheless, it is intuitively clear that we would want to

send the whole array to, for instance, the 20-node infrastruc-

ture, making space for a possible next 30 job array. Some

work has been done in this direction [10], and it can be taken

as a good starting point for new heuristics for metaschedul-

ing.

GridWay’s adapters are the Middleware Access Drivers

(MADs), enabling the metascheduler to access different in-

frastructures simultaneously and seamlessly. GridWay has

evolved over time to take advantage of the adapters tech-

nique, it is interesting to see its evolution, from a first ten-

tative effort to harness both EGEE and the IRISGrid infras-

tructures [11], to the seminal work that produced its full

blown current modular architecture [12], motivated by the

interoperation between grid resource management services

provided by Globus. There are three types of adapters: exe-

cution, transfer and information MADs.

4.1 Description of the Experiment

GridWay metascheduler was configured to access four

different infrastructures. Not only different interfaces were

the problem, but also different versions of the same middle-

ware posed their own issues. Furthermore, different con-

figurations of even the same version of the same middle-

ware stacks are troublesome for the correct interoperation

of the four infrastructures. GridWay was set to use differ-

ent adapters especially configured to access the following

infrastructures:

• Open Science Grid: This infrastructure offers two ver-

sions of the Globus Toolkit, deployed using VDT7: the

pre Web Services (preWS) and Web Services (WS)

versions.

• TeraGrid: Again, two versions of Globus are offered.

Configuration for the file transfer was different than

in other infrastructures since the Storage Element (SE)

was a separate machine (sharing homes with the Com-

puting Element).

• EGEE: This infrastructure uses the gLite middleware

stack, which is based on Globus preWS. The preWS

MADs are used, with a special file staging configura-

tion. An information MAD for the Berkely Database

Information Index (BDII) using the Glue scheme is

used for host monitoring.

• UCM: This is dsa-research.org group local infrastruc-

ture at Universidad Complutense de Madrid. Probably

due to the fact that the Globus WS MADs were devel-

oped against this very cluster, no extra configuration

was needed for GridWay to access it.

7http://vdt.cs.wisc.edu/



Three iterations of two hundred jobs each were sent to

the GridWay metascheduler, which in turn distribute them

along the four infrastructures, in order to show the federa-

tion feasibility, using the Embarrassingly Distributed (ED)

benchmark from the NAS Grid Benchmark suite.

Figure 2 depicts the set-up of the experiment. Resources

are accessed by different adapters (dotted arrows repre-

sent preWS interfaces, solid arrows represent Web Services,

WS, interfaces). For illustrative purposes, one resource

from each infrastructure was chosen for this paper exper-

iments, so they could be performed in a more controlled

environment. A complete resource listing for the adapters

scenario can be seen in Figure 3. To show different adapters

in action, WS MADs were used to access the TeraGrid (with

Host Identifier , HID, 0 in the figure) and the UCM (HID 2)

infrastructure, while the preWS MADs were chosen to ac-

cess the Open Science Grid (HID 1) and the EGEE (HID

3) infrastructure. It is worth noting that WS versions 4.0.x

and 4.2.x of the Globus Toolkit are incompatible, meaning

that clients from one version cannot access servers from

another. GridWay is able to use MADs from toolkits of

both versions, and therefore access seamlessly Globus con-

tainers of both versions, solving neatly the incompatibility

between them and allowing a smooth upgrading process.

In this experiment, GridWay accesses version 4.0.x of the

Globus Toolkit to use resources from the TeraGrid, and ver-

sion 4.2.x to use UCM resources.

4.2 Analysis of Results

GridWay Server

UCM nodeOSG nodeTG node EGEE node

Web Services

pre Web Services

Figure 2. Interoperation across infrastruc-

tures

Figure 4 shows the number of jobs against the infras-

tructures where the jobs were executed. There is an approx-

Figure 4. Job distribution across infrastruc-

tures

imately even distribution between our local cluster (UCM),

the Open Science Grid preWS resource (OSG preWS) and

the TeraGrid WS one (TG WS), while the EGEE resource

shows a smaller ratio of jobs completed. This is due to the

chosen EGEE site for the EGEE, ramses.dsic.upv.es, having

lower computing power (both CPU and memory) than the

resource chosen for this experiment in the other infrastruc-

tures.

The capability to add new resources with potentially dif-

ferent interfaces to an existing grid infrastructure is there-

fore shown by this experiment, maintaing a single point of

access, in this case the GridWay metascheduler.

5. Extension to Cloud Providers

Last section model provides a single point of access to

a grid infrastructure that can be extended using different

providers with potentially different interfaces. In this sec-

tion it is presented a technique to guarantee pre accorded

QoS and, therefore, meet SLAs even in cases of high sat-

uration of the grid infrastructure. Also, it gives a solution

for peak demands that occur without enough time for plan-

ning the extension through federation. This solution in-

volves the elastic growth of the computing infrastructure by

means of a cloud provider, being that commercial (Ama-

zon EC2, GoGrid) or scientific (Globus Nimbus), being the

charge model the only difference between these two type of

cloud providers.

To enable our grid infrastructure to be able to meet a

given QoS and so satisfying predefined SLAs we need a

component that is aware of the load of said infrastructure.

Our solution consists of a Service Manager component that

monitors the metascheduler in order to find when it should

elastically grow (or, conversely shrink) the available re-

sources by waking up nodes or entire clusters (or shutting

them down). In short, this component is responsible for

adapting the grid infrastructure to dynamic computing de-

mands.



HID PRI OS ARCH MHZ %CPU MEM(F/T) DISK(F/T) N(U/F/T) LRMS HOSTNAME
0 1 0/5/5 PBS tg-grid.uc.teragrid.org
1 1 Linux2.4.21-32. i686 2665 189 964/2006 62787/73964 0/10/10 jobmanager-condor cmsgrid01.hep.wisc.edu
2 1 Linux2.6.24-17 x86_6 1995 100 18/499 10169/21817 0/5/5 SGE aquila.dacya.ucm.es
3 1 ScientificSL4 i686 866 0 513/513 0/0 0/21/22 jobmanager-lcgpbs ramses.dsic.upv.es

Figure 3. Resources as provided by the gwhost command.

This solution takes advantage of the chosen GridWay

metascheduler. It employs a dynamic scheduling system

and therefore it can detect when a new machine has been

added or removed from a grid infrastructure, and redis-

tribute the work load. It also features fault detection & re-

covery capabilities. Transparently to the end user, it is able

to detect and recover from any of the Grid elements failure,

outage or saturation conditions.

The Service Manager is in charge of monitoring the

metascheduler and to detect and excess of load for the avail-

able resources. In order to detect this excess, a set of heuris-

tics have to be defined, so they define the threshold of num-

ber of pending jobs waiting for resources, and the load

present on the available resources. A second set of heuris-

tics is needed to decide which cloud provider is going to be

used to elastically grow the cluster. These heuristics should

be based on economics criteria, minimizing the total cost of

CPU and network usage. In this line, a good starting point

would be the work done in budget constrained cost-time op-

timization algorithms for scheduling [13].

Optionally, there is even a third set of rules that the Ser-

vice Manager need to employ in case that it is aware of what

service demands need to be satisfied. This rules will be used

to decide which type of VM is going to be awaken to sat-

isfy the excess of demand. For instance, in the context of a

supercomputing center, VMs with a certain Virtual Organi-

zation (VO) configuration can be the ones chosen to be up,

if that VO has suddenly increased its demand for computing

power.

5.1 Description of the Experiment

This experiment is designed to evaluate the overhead in-

curred in the management of a new worker node in a vir-

tualized cluster being executed in Globus Nimbus. Hence,

for the purpose of this experiment, the virtual cluster is al-

ready being executed, and we are measuring the overheads

between the different layers of our architecture in the pro-

cess of adding a new worker node, i.e., the overheads caused

by awaking the worker node, shutting it down, being it de-

tected by the SGE, the MDS and GridWay, and the process-

ing overhead incurred by this node since it is virtualized.

This experiment is performed on a local cloud deployed in

our laboratory at dsa-research.org, using Globus Nimbus as

the cloud manager.

In order to better understand the chain of events and

where the overheads occur lets see the actions that takes

place when the Service Manager decides to add a new

worker node to the grid infrastructure. First, the Service

Manager requests a new VM to Nimbus, which determines

the best node to run the virtual machine, based on the re-

sources requested (e.g memory). Afterwards, if the VM im-

age (appliance) is not local to the host system, it accesses

the image server via a suitable protocol (e.g. GridFTP) and

obtains a copy. Once the image has been transferred, the

physical node’s DHCP server configuration file is altered in

order to establish VM’s IP and hostname. When these oper-

ations conclude, the VM is booted. When the VM has been

deployed and is running, it registers on LRMS front-end as

an execution host. After a given time, the Grid informa-

tion system (MDS) detects the new node and publishes it.

Finally, GridWay the metascheduler will refresh the infor-

mation of the available Grid resources, and detect the new

worker node. Then, according to the scheduling policies, it

will allocate jobs on this new resource by interfacing with

the Grid execution service (GRAM). The behavior of the

previous deployment strategy will be analyzed on a testbed

based on Globus Toolkit 4.0.3 and GridWay 5.2.1.

5.2 Evaluation of Overheads

Several experiments where run in the testbed in order

to analyze the overheads caused by virtualization and the

software layers corresponding to the proposed architecture.

The first overhead considered is caused by the deploy-

ment of a VM under several conditions. The experiment

consisted in the deployment of one, two and three VMs

con the same physical machine. Respectively, total times

of deployment in seconds were 118.58, 308.02, 495.88. We

would like to remark that deploying more than 3 VMs si-

multaneously derived most of the times in error situations.

Also, note that the overhead induced by the SGE layer is

negligible (the time to register a worker node in the cluster

is less than a 1% of the total deployment time).

In the case of shutting down a VM (Table 1), we have

measured three relevant values. In this case the time is con-

stant regardless of the number of VMs being shut down.

Overhead introduced by SGE when shutting down a VM

can be minimized by reducing the polling time. Default

value is 300 seconds, so it takes an average of 150 seconds

to detect the new situation. Reducing polling time limits the

overhead, although increments network usage. System ad-



ministrator must tune this value according to the number of

nodes in the cluster and average VM uptime.

Number Command VM SGE Total

Received Destroyed

1 0.78 6.22 145 152

2 0.88 6.46 158 165.33

3 0.67 7.33 151 159

Table 1. Times (in seconds) when a worker

node is shut down

Once the VM is being booted, time is needed until it is

enrolled for use in the original grid infrastructure, and com-

plementarily, time is also needed to plug the node out of

the infrastructure. These overheads can be called grid inte-

gration overheads. The time to start a virtual worker node

(time since the Service Manager requests a worker node,

114 sec., till it is registered in the LRMS, 2 sec.) is roughly

2 minutes. The time to register the new slot in the Grid

Information system (MDS4) is about 170 seconds. It is

worth pointing out that MDS publishing time is greater than

the time employed on deploying one VM plus SGE regis-

ter time. Therefore, when sequentially deploying several

VMs both times overlap, producing an additional time sav-

ing. The MDS and GridWay overhead can be limited by ad-

justing their refresh polling intervals. When shutting down,

the same steps are accomplished. In this case, the time until

the operation is accomplished at the machine layer is greatly

reduced, from 114 to 7 seconds. However, time until LRMS

detects the lack of the VM is incremented, from 2 to about

150 seconds. It is interesting to note that the metasched-

uler could assign jobs to the cluster during the worker node

shutting down time. In this case the metascheduler should

be able to re-schedule this job to another resource.

Virtualization technology imposes a performance

penalty due to an additional layer between the physical

hardware and the guest operating system. This penalty

(that we can call the processing overhead) depends on the

hardware, the virtualization technology and the kind of

applications being run. Two good performance compar-

isons of VMware and Xen were conducted by the computer

science departments at University of Cambridge [14]. and

Clarkson University [15]. On these studies, Xen performed

extremely well in any kind of tasks, with a performance

loss between 1 and 15%. VMware also achieves near-native

performance for processor-intensive tasks, but experiences

a significant slow-down (up to 88%) on I/O bound tasks.

Nimbus development team measured its performance in

a real-world grid use case [16], a climate science appli-

cation, achieving about a 5% performance loss. Previous

results [17, 18] indicate that, in general, the virtualization

platform has no significant impact on the performance of

memory and CPU-intensive applications for HPC clusters.

6. Conclusions and Future Work

We have shown an architecture to build any type of arbi-

trary complex grid infrastructures with a single point of ac-

cess, which is able to dynamically adapt its size (and there-

fore, capacity) using a cloud provider to react to peak de-

mands and/or meet SLAs.

This paper opens the path for a number of research lines

to be followed and developments to be done. Regarding

the provisioning from heterogenous infrastructures, there

is room for the development of new adapters to access a

greater number of different types of grid infrastructures.

Currently, there are already two new drivers being devel-

oped, one for the new job execution service from gLite,

called CREAM, and one set of drivers to interoperate with

the UNICORE middleware. Complementary to these de-

velopments, it will be interesting to add SSH adapters to

the GridWay metascheduler so it is able to interface with

“raw” machines, i.e., without the need of installing a grid

middleware layer. This will suit perfectly the use of VMs

from cloud providers such as Amazon EC2, since the only

configuration to be done would be to obtain SSH access.

Also, adapters for direct access to LRMS like SGE or PBS

will add a great flexibility in the grid infrastructures that can

be built using this architecture. One good option for this

adapter will be to develop it against Distributed Resource

Management Application API (DRMAA), since then it will

be possible to plug it to the multiple LRMS that supports

this API.

Heuristics for the problem posed by the need to schedule

workloads across several grid infrastructures need to be de-

velop. Moreover, there is also work to be done in the heuris-

tics needed to tune the Service Manager. From an economic

model of the cloud provider to a set of rules to aid in the de-

cision of adding resources to the grid infrastructure, all is

needed to properly develop a Service Manager that is aware

of what service is being offered and what is needed to prop-

erly satisfy its demand.

References

[1] Field, L.: Getting Grids to work together. CERN

Computer Newsletter 41(5) (Nov-Dec 2006) 8–9

[2] Riedel, M., et al.: Interoperation of World-Wide

Production e-Science Infrastructures. Concurrency

and Computation: Practice and Experience (2008) (in

press).

[3] Breuer, D., Wieder, P., van den Berghe, S., von

Laszewski, G., MacLaren, J., Nicole, D., Hoppe,



H.C.: A UNICORE-Globus Interoperability Layer.

Computing and Informatics 21 (2002) 399–411

[4] Assunçāo, M.D., Buyya, R., Venugopal, S.: Intergrid:

A Case for Internetworking Islands of Grids. Con-

currency and Computation: Practice and Experience

20(8) (July 2008) 997–1024

[5] Bobroff, N., Fong, L., Kalayci, S., Liu, Y., Martinez,

J.C., Rodero, I., Sadjadi, S.M., Villegas, D.: Enabling

Interoperability among Meta-Schedulers. In: Proceed-

ings of 8th IEEE International Symposium on Cluster

Computing and the Grid (CCGrid-2008). (2008) 306–

315

[6] Walker, E., Gardner, J., Litvin, V., Turner, E.: Cre-

ating Personal Adaptive Clusters for Managing Sci-

entific Jobs in a Distributed Computing Environment.

In: In Proceedings of the IEEE Challenges of Large

Applications in Distributed Environments. (2006) 95–

103

[7] Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I., Wilde,

M.: Falkon: a Fast and Light-weight tasK executiON

farmework. In: In Proceedings of the IEEE/ACM Su-

perComputing. (November 2007)

[8] Chase, J., Irwin, D., Grit, L., Moore, J., Sprenkle,

S.: Dynamic Virtual Clusters in a Grid Site Manager.

In: Twelfth IEEE Symposium on High Performance

Distributed Computing (HPDC), Seattle, Washington

(June 2003)

[9] Freeman, T., Keahey, K.: Flying Low: Simple Leases

with Workspace Pilot. In: Euro-Par, 2008

[10] Leal, K., Huedo, E., Llorente, I.M.: Dynamic Ob-

jective and Advance Scheduling in Federated Grid.

In: International Conference on Grid computing, high

performance and Distributed Applications. Volume

5331. (2008) 711–725

[11] Vázquez-Poletti, J.L., Huedo, E., Montero, R.S.,

Llorente, I.M.: Coordinated Harnessing of the IRIS-

Grid and EGEE Testbeds with GridWay. Journal of

Parallel and Distributed Computing 5(65) (May 2005)

763–771

[12] Huedo, E., Montero, R.S., Llorente, I.M.: A Modular

Meta-scheduling Architecture for interfacing with pre-

WS and WS Grid Resource Management Services.

Future Generation Computing Systems 23(2) 252–261

[13] Buyya, R., Murshed, M., Abramsin, D., Venugopal,

S.: Scheduling Parameter Sweep Applicatoin on

Global Grids: A Deadline and Budget Constrained

Cost-Time Optimisation Algorithm. International

Journal of Software: Practice and Experience (SPE)

5 (2005) 491–512

[14] Barham, P., Dragovid, B., Fraser, K., Hand, S., Ahrris,

T., Ho, R.A., Pratt, I., Warfield, A.: Xen and the Art of

Virtualization. In: Symposium on Operating Systems

Principles. (October 2003) 164–177

[15] Clark, B., Deshane, T., Dow, E., Evanchik, S., Herne,

M., Matthews, J.: Xen and the Art of Repeated Search.

In: USENIX Annual Technical Conference. (2004)

47–47

[16] Foster, I., Freeman, T., Keahy, K., Scheftner, D., So-

tomayor, B., Zhang, X.: Virtual clusters for grid com-

munities. In: Proceedings of the Sixth IEEE Interna-

tional Symposium on Cluster Computer and the Grid

(CCGRID 06), IEEE Computer Society (2006) 513–

520

[17] Rubio-Montero, A.J., Montero, R.S., Huedo, E.,

Llorente, I.M.: Management of Virtual Machines on

Globus Grids Using GridWay. In: In Proceedings

of the 4th High-Performance Grid Computing Work-

shop, in conjunction with 21st IEEE International Par-

allel and Distributed Processing Symposium (IPDPS-

07). 1–7

[18] Rodriguez, M., Tapiador, D., Fontan, J., Huedo, E.,

Montero, R.S., Llorente, I.M.: Dynamic Provision-

ing of Virtual Clusters for Grid Computing. In: In

Proceedings of the 3rd Workshop on Virtualization

in High-Performance Cluster and Grid Computing

(VHPC 08), in conjuction with EuroPar08. (2008)


