
A Grid-oriented Genetic Algorithm ⋆

J. Herrera1, E. Huedo2, R.S. Montero1, and I.M. Llorente1,2

1 Departamento de Arquitectura de Computadores y Automática, Universidad
Complutense, 28040 Madrid, Spain.

2 Laboratorio de Computación Avanzada, Simulación y Aplicaciones Telemáticas,
Centro de Astrobioloǵıa (CSIC-INTA), 28850 Torrejón de Ardoz, Spain.

Abstract. Genetic algorithms (GAs) are stochastic search methods that
have been successfully applied in many search, optimization, and ma-
chine learning problems. Their parallel counterpart (PGA, parallel gene-
tic algorithms) offers many advantages over the traditional GAs, such as
speed, ability to search on a larger search space, and less likely to run
into a local optimum. With the advent of Grid computing, the compu-
tational power that can be deliver to the applications have substantially
increased, and so PGAs can potentially benefit from this new Grid te-
chnologies. However, because of the dynamic and heterogeneous nature
of Grid environments, the implementation and execution of PGAs in a
Grid involve challenging issues. This paper discusses the distribution of a
PGA across the Grid using the DRMAA standard API and the GridW ay
framework. The efficiency and reliability of this schema to solve the One
Max problem is analyzed in a globus-based research testbed.

1 Introduction

Genetics algorithms are search algorithms inspired in natural selection and ge-
netic mechanisms. GAs use historic information to find new search points and
reach an optimal problem solution. In order to increase the speed and the effi-
ciency of sequential GAs, several Parallel Genetic Algorithm (PGA) alternatives
have been developed. PGAs have been successfully applied in previous works,
(see for example [1]), and in most cases, they succeed to reduce the time required
to find acceptable solutions.

Traditionally, PGAs have tried to efficiently exploit the performance offered
by massively parallel processing systems (MPPs). The development of the Grid
has opened up avenues that could lead to a dramatic increase in performance
of PGAs, in terms of execution time and problem size. However, the execution
and development of Grid applications requires a high level of expertise and a
significant amount of effort.

The main difficulties arise from the characteristics of the Grid itself, namely:
complexity, heterogeneity, dynamism and high fault rate. To overcome these
difficulties, we have developed a Globus submission framework, GridW ay [2],

⋆ This research was supported by Ministerio de Ciencia y Tecnoloǵıa through the
research grant TIC 2003-01321 and Instituto Nacional de Técnica Aeroespacial.



that allows an easier and more efficient execution of jobs on a dynamic Grid
environment. GridW ay automatically performs all the job scheduling steps [3]
(resource discovery and selection, and job preparation, submission, monitoring,
migration and termination), provides fault recovery mechanisms, and adapts job
execution to the changing Grid conditions [4].

On the other hand, the Grid lacks of a standard programming paradigm
to port existing applications among different environments. The DRMAA (Dis-
tributed Resource Management Application API) [5] specification, developed
within the Global Grid Forum (GGF)1 framework, tries to fill this gap. The
DRMAA specification constitutes a homogeneous interface to different DRMS
(Distributed Resource Management Systems) to handle job submission, monito-
ring and control, and retrieval of finished job status.

In this work we analyze the distribution of a PGA across the Grid using the
DRMAA standard API and the GridW ay framework. In particular, the PGA
considered here adopts a modified version of the fully connected multi-deme
approach, to adapt it to the Grid characteristics mentioned above. The rest of
the paper is organized as follows, Section 3 briefly reviews the main strategies
proposed in the literature to distribute GAs. Then, we propose in Section 3.1
a Grid-aware distribution scheme of GAs, and we describe its implementation
with DRMAA. The performance of this scheme in a research testbed is then
discussed in Section 4. The paper ends with some conclusions.

2 Parallel Genetic Algorithms

The different alternatives proposed in the literature to parallelize genetic algo-
rithms can be classified in three main categories [6]:

– Single Population (Panmitic GA). This kind of GAs is usually imple-
mented using a Master/Worker paradigm [7]. Panmitic GAs can be efficiently
used when the evaluation function requires a considerable amount of compu-
tational work. The main advantage of this method is that the search behavior
of the sequential GA is not altered, and therefore all the available GA theory
can be applied directly. However this approach is not well suited for a Grid
because of the high network requirements of its communication pattern.

– Single Population (Fine Grain) GA. This type of GA has only one po-
pulation and its spatial structure limits the interactions between individuals.
This limit can be imposed at the chromosome level (each member can only
interact with their neighbors) or at the population level (only member of the
same subpopulation may mate during crossover).

– Coarse Grain GA. The main population is divided into subpopulations
(demes), each one is independently evaluated in a different node. Probably
the most important characteristic of these algorithms is the communication
topology used to exchange information between subpopulations. The possible
communication patterns include ring model (processes can only interact with

1 http://www.gridforum.org (2004)



their neighbors in a ring topology), master-slave (slave processes swap best
individuals with the master) or all-to-all (all process swap best individuals
with the others).
This kind of GA is difficult to understand because of the effects of migrations
between populations are not fully understood. Moreover, coarse grain GAs
introduce fundamental changes in the implementation of a simple GA.

In this work we will use a modified version of the coarse grain approach (see
Section 3), since this algorithm does not imply a tightly coupled deme topology.
Therefore it is more tolerant to the high latencies and dynamic bandwidths that
can be expected in the Internet, unlike the single population alternatives.

3 Grid-oriented Coarse Grain Genetic Algorithms

In order to develop efficient Grid-oriented genetic algorithms (GOGAs, following
the notation introduced by H. Imade et al. [8]), the dynamism and heterogeneity
of a Grid environment must be considered. In this way, traditional load-balancing
techniques could lead to a performance slow-down, since, in general the perfor-
mance of each computing element can not be guaranteed during the execution.
Moreover, some failure recovery mechanisms should be included in such a faulty
environment.

3.1 Algorithm Description

Taking into account the above considerations we will use a fully connected multi-
deme genetic algorithm. In spite of this approach represents the most intense
communication pattern (all demes exchange individuals every generation), it
does not imply any overhead since the population of each deme is used as check-
point files, and therefore transferred to the client in each iteration.

The initial population is uniformity distributed among the available number
of nodes, and then a sequential GA is locally executed over each subpopulation.
The resultant subpopulations are transferred back to the client, and worst in-
dividuals of each subpopulation are exchanged with the best ones of the rest.
Finally, a new population is generated to perform the next iteration [6]. The
schema of this algorithm is depicted in figure 1.

However, the previous algorithm may incur in performance losses when the
relative computing power of the nodes involved in the solution process greatly
differs, since the iteration time is determined by the slowest machine. In order
to prevent these situations we allow an asynchronous communication pattern
between demes. In this way, information exchange only occurs between a fixed
number of demes, instead of synchronizing the execution of all subpopulations.
The minimum number of demes that should communicate in each iteration de-
pends strongly on the numerical characteristics of the problem. We will refer
to this characteristic as dynamic connectivity, since the demes that exchange
individuals differs each iteration.



Population


SubPopulation
 SubPopulation
 SubPopulation


Deme 1
 Deme 2
 Deme 3


SubPopulation
 SubPopulation
 SubPopulation
n Best
 n Best


nBest


Next

Population


Fig. 1. Schema of fully-connected multi-deme genetic algorithm, with three computing
nodes

3.2 Distributed Resource Management Application API

The Distributed Resource Management Application API (DRMAA) is an API
specification for job submission, monitoring and control that provides a high
level interface with Distributed Resource Management Systems (DRMS). In this
way, DRMAA could aid scientists and engineers to express their computational
problems by providing a portable direct interface to DRMS.

Although the DRMAA standard can help in exploiting the intrinsic para-
llelism found in some application domains, like GAs, the underlying DRMS is
responsible for the efficient and robust execution of each job. The following as-
pects are considered by the GridW ay framework, used in this work:

– Given the dynamic characteristics of the Grid, the GridW ay framework pe-
riodically adapts the schedule to the available resources and their characte-
ristics [4].

– The GridW ay framework also provides adaptive job execution to migrate
running applications to more suitable resources. So improving application
performance by adapting it to the dynamic availability, capacity, cost of
Grid resources, or its own requirements and preferences [4].

– GridW ay also provides the application with fault tolerance capabilities by
capturing GRAM callbacks, by periodically probing the GRAM jobmanager,
and by inspecting the output of each job.

In particular, the following list describes the DRMAA interface routines im-
plemented within the GridW ay framework (see [9] for a detailed description of
the C API):

– Initialization and finalization routines: Initialize and finalize a DRMAA ses-
sion.



//Initialize a new DRMAA session.

rc = drmaa init (contact, error)

//Execute all jobs consecutively

for (i=0; i < ALL JOBS; i++)

rc = drmaa run job(job id, jt, err diag)

//Execute GOGA if it dosen′t rise objective function

while (!this->objective function()){
//Wait for (dynamic connectivity degree) jobs

//and store results

for (i=0; i < NUM JOBS; i++)

rc = drmaa wait(job id, &stat, timeout, rusage, err diag)

this->store results())

//Execute (dynamic connectivity degree) jobs consecutively

for (i=0; i < NUM JOBS; i++)

rc = drmaa run job(job id, jt, err diag)

}
//Finalize DRMAA session.

rc = drmaa exit(err diag)

Table 1. Implementation of the Grid-oriented coarse-grain genetic algorithm using the
DRMAA standard

• drmaa init. Initialize DRMAA API library and create a new DRMAA
session.

• drmaa exit. Disengage from DRMAA library and allow the DRMAA
library to perform any necessary internal cleanup.

– Job template routines: These routines enable the manipulation of job defi-
nition entities to set parameters such as the executable.
• drmaa set attribute. Adds (’name’, ’value’) pair to list of attributes

in job template.
• drmaa allocate job template. Allocate a new job template.
• drmaa delete job template. Deallocate a job template. This routine

has no effect on jobs.
– Job submission routines:

• drmaa run job. Submit a job with attributes defined in the job template
• drmaa run bulk jobs. The bulk jobs are defined as a group of n similar

jobs with a separate job id.
– Job control and monitoring routines: These routines are used to control and

synchronize jobs, and monitor their status.
• drmaa control. Start, stop, restart, or kill a job.
• drmaa synchronize. Wait until all jobs specified, have finished execu-

tion.
• drmaa wait. This routine waits for a single job to finish execution.
• drmaa job ps. Get the program status of a job.



Table 1 shows the implementation of the grid-oriented genetic algorithm describe
above, using the DRMAA standard.

4 Experimental Results

In this section we will evaluate the functionality and efficiency of the Grid-
oriented Genetic Algorithm described in Section 3, in the solution of the One-
Max problem [10]. The One-Max is a classical benchmark problem for genetic
algorithm computations, and it tries to evolve an initial matrix of zeros in a
matrix of ones.

In our case we will consider an initial population of 1000 individuals, each one
a 20x100 zero matrix. The sequential GA executed on each node will performed
a fixed number of iterations (50), with a mutation and crossover probabilities
of 0,1% and 60%, respectively. The exchange probability of best individuals
between demes is 10%.

The following experiments were conducted on a research testbed made up
of three different organizations, and based on the Globus Toolkit 2.4 [11]. See
table 2 for a brief description of the resources in the testbed.

Name VO Model Speed OS Memory DRMS

hydrus UCM Intel P4 2.5GHz Linux 2.4 512MB fork
cygnus UCM Intel P4 2.5GHz Linux 2.4 512MB fork
aquila UCM Intel PIII 700MHz Linux 2.4 128MB fork
babieca CAB 5×Alpha DS10 450MHz Linux 2.2 256MB pbs

Table 2. Characteristics of the machines in the research testbed.

Figure 2 shows the execution profile of 4 generations of the GOGA, with a
5-way dynamic connectivity. Each subpopulation has been traced, and labeled
with a different number (Pdeme). As can be shown, individuals are exchanged
between subpopulations P1, P2, P3, P4, P5 in the first generation; while in the
third one the subpopulations used are P1, P2, P4, P7, P8. In this way the dyna-

mic connectivity, introduces another degree of randomness since the demes that
communicate differ each iteration and depend on the dynamism of the Grid.

In order to study the effect of the dynamic connectivity we will consider five
different executions, with different degrees of dynamic connectivity. In general, a
high degree implies more demes exchanging individuals in each iteration, but also
a higher execution time per iteration. On the other hand, a low degree reduces
the iteration time, but deteriorates the numerical properties of the algorithm
(the migration rate of individuals between subpopulations is also reduced). This
effect is clearly shown in figure 3, in this case the optimum configuration is a
5-way connectivity.



Fig. 2. Execution profile of four generations of the GOGA, each subpopulation has
been labeled with Pdeme

Fig. 3. Score versus execution time for five different degrees of connectivity



5 Conclusion

In this work we have presented an efficient Grid-oriented genetic algorithm. Our
approach uses a fully connected multi-deme GA, with a dynamic connectivity
between subpopulations to deal with the heterogeneity of the Grid. The optimum
degree of connectivity depends on both, the computational characteristics of the
Grid nodes, and the computational problem.

The GOGA has been developed taking advantage of the GridW ay framework
features and the DRMAA API. In this way, it have been shown that DRMAA
can aid the rapid development and distribution across the Grid of typical genetic
algorithm strategies.

References

1. Kang, L., Chen, Y.: Parallel Evolutionary Algorithms and Applications. (1999)
2. Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution

on Grids. J. of Software – Practice and Experience 34 (2004) 631–651
3. Schopf, J.M.: Ten Actions when Superscheduling. Technical Report GFD-I.4,

Scheduling Working Group – The Global Grid Forum (2001)
4. Huedo, E., Montero, R.S., Llorente, I.M.: Adaptive Scheduling and Execution on

Computational Grids. J. of Supercomputing (2004) (in press).
5. Rajic, H., Brobst, R., Chan, W., Ferstl, F., Gardiner, J.: Distributed Resource

Management Application API Specification 1.0. (2004)
6. Cant-Paz, E.: A Survey of Parallel Genetic Algorthms (1999)
7. Alba, E., Nebro, A.J., Troya, J.M.: Heterogeneous Computing and Parallel Genetic

Algorithms. (2002)
8. Imade, H., Morishita, R., Ono, I., Ono, N., Okamoto, M.: A Grid-oriented Genetic

Algorithm Framework for Bioinformatics. New Generation Computing 22 (2004)
177–186

9. Haas, A., Brobst, R., Geib, N., Rajic, H., Tollefsrud, J.: Distributed Resource
Management Application API C Bindings v0.95. (2004)

10. Schaffer, J., Eshelman, L.: On Crossover as an Evolutionary Viable Strategy. In
Belew, R., Booker, L., eds.: Proceedings of the 4th International Conference on
Genetic Algorithms, Morgan Kaufmann (1991) 61–68

11. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. In-
ternational Journal of Supercomputer Applications 11 (1997) 115–128


