Grid Resource Selection for Opportunistic Job
Migration *

Rubén S. Montero', Eduardo Huedo?, and Ignacio M. Llorente!?

! Departamento de Arquitectura de Computadores y Automética, Universidad
Complutense, 28040 Madrid, Spain.
2 Centro de Astrobiologia (Associated to NASA Astrobiology Institute), CSIC-INTA,
28850 Torrején de Ardoz, Spain.

Abstract. The ability to migrate running applications among different
grid resources is generally accepted as the solution to provide fault toler-
ance and to adapt to dynamic resource load, availability and cost. In this
paper we focus on opportunistic migration when a new resource becomes
available in the grid. In this situation the performance of the new host,
the remaining execution time of the application, and also the proximity
of the new resource to the needed data, become critical factors to decide
if job migration is feasible and worthwhile. We discuss the extension of
the GridWay framework to consider all the previous factors in the re-
source selection and migration stages in order to improve response times
of individual applications. The benefits of the new resource selector will
be demonstrated for the execution of a computational fluid dynamics
(CFD) code.

1 Introduction

Computational Grids are inherently dynamic environments, being characterized
by unpredictable changing conditions, namely:

— High fault rate: In a Grid, resource or network failures are the rule rather
than the exception.

— Dynamic resource availability: Grid resources belong to different adminis-
trative domains; so that, once a job is submitted, it can be freely canceled
by the resource owner. Furthermore, the resources shared within a virtual
organization can be added or removed continuously.

— Dynamic resource load: Grid users access resources that are being exploited
by other grid users, as well as by internal users. This fact may cause that
initially idle hosts become saturated, and vice versa.

— Dynamic resource cost: In an economy driven grid [1], resource prices can
vary depending on the time of the day (working/non-working time) or the
resource load (peak/off-peak).

* This research was supported by Ministerio de Ciencia y Tecnologia through the
research grant TIC 2002-00334 and Instituto Nacional de Técnica Aeroespacial
(INTA).

Consequently, in order to obtain a reasonable degree of both application per-
formance and fault tolerance, a job must be able to migrate among the grid
resources adapting itself according to their availability, load, and cost.

Probably, the most sensitive step to the above conditions in job scheduling
is resource selection, which in turn relies completely in the dynamic informa-
tion gathered from the grid. Resource selection usually takes into account the
performance offered by the available resources, but it should also consider the
proximity between them [2, 3]. The size of the files involved in some application
domains, like Particle Physics or Bioinformatics, is very large. Hence, the qual-
ity of the interconnection between resources, in terms of bandwidth and latency,
is a key factor to be considered in resource selection [4]. This fact is specially
relevant in the case of adaptive job execution, since job migration requires the
transfer of large restart files between the compute hosts. In this case, the quality
of the interconnection network has a decisive impact on the overhead induced
by job migration.

In this paper, we focus on the opportunistic migration of jobs when a new
“better” resource is discovered, because either a new resource is added to the
grid, or because the completion of an application frees a grid resource. Oppor-
tunistic migration has been widely studied in the literature [5-8], previous works
have clearly demonstrated the relevance of considering the amount of the compu-
tational work already performed by the application, the need of a metric to mea-
sure the performance gain due to migration, and the critical factor of dynamic
load information of grid resources. However, previous migration frameworks do
not consider the proximity of the computational resources to the needed data,
and therefore the potential performance gain can be substantially decremented
by the cost of data transfer.

The migration and brokering strategies presented in this work have been im-
plemented on top of the GridWay framework [9], whose architecture and main
functionalities are briefly described in section 2. In section 3 we discuss the ex-
tension of the GridWay framework to also consider resource proximity in the
resource selection stage. This selection process is then incorporated to the Grid-
Way migration system in section 4. The benefits of the new resource selector will
be demonstrated in section 5 for the adaptive execution of a computational fluid
dynamics (CFD) code on a research testbed. Finally, section 6 includes some
conclusions and outlines our future work.

2 The GridWay Framework

GridWay is a new Globus-based experimental framework that allows an easier
and more efficient execution of jobs on a dynamic grid environment in a “submit
and forget” fashion. The GridWay framework has been designed to strictly meet
the following guidelines:

— easily adaptable, through a modular and flexible design.
— easily scalable, thanks to its decentralized architecture, although some of the
grid services used, mainly the information services, can be centralized.

— easily and widely deployable, since it executes and installs as a user program
and works with the available grid services.

— easily extensible, since it can use other non-standard services.

— easily and widely applicable, as it is ready to use on a dynamic and faulty
environment for a wide range of applications.

The core of the GridWay framework is a personal submission agent that auto-
matically performs the steps involved in job submission: system selection, system
preparation, submission, monitoring, migration and termination [10]. The user
interacts with the framework through a request manager, which handles client
requests (submit, kill, stop, resume...) and forwards them to the dispatch man-
ager. The dispatch manager periodically wakes up at each scheduling interval,
and tries to submit pending and rescheduled jobs to Grid resources. Once a job
is allocated to a resource, a submission manager and a performance monitor are
started to watch over its correct and efficient execution (see [9] for a detailed
description of these components).

The flexibility of the framework is guaranteed by a well-defined API (Appli-
cation Program Interface) for each submission agent component. Moreover, the
framework has been designed to be modular, through scripting, to allow exten-
sibility and improvement of its capabilities. The following modules can be set on
a per job basis:

— resource selector, which acts as a personal resource broker to build a priori-
tized list of candidate resources following the preferences and requirements
provided by the user.

— performance degradation evaluator, which is used to periodically evaluate
the application performance.

— prolog, which prepares the remote system and performs executable and input
file staging.

— wrapper, which executes the job and returns its exit code.

— epilog, which performs output file staging and cleans up the remote system.

3 The Resource Selector

Due to the heterogeneous and dynamic nature of the grid, the end-user must
establish the requirements that must be met by the target resources (discovery
process) and criteria to rank the matched resources (selection process). The at-
tributes needed for resource discovery and selection must be collected from the
information services in the grid testbed, typically the Globus Monitoring and
Discovery Service (MDS). Usually, resource discovery is only based on static at-
tributes (operating system, architecture, memory size...) collected from the Grid
Information Index Service (GIIS), while resource selection is based on dynamic
attributes (disk space, processor load, free memory...) obtained from the Grid
Resource Information Service (GRIS).

The dynamic network bandwidth and latency between resources will be also
considered in the resource brokering scheme. Different strategies to obtain these

network performance attributes can be adopted depending on the services avail-
able in the testbed. For example, MDS could be configured to provide such
information by accessing the Network Weather Service (NWS) [11] or by acti-
vating the reporting of GridF TP statistics [12]. Alternatively, the end-user could
provide its own network probe scripts or static tables.

The brokering process of the GridWay framework is shown in figure 1. Ini-
tially, available compute resources are discovered by accessing the GIIS server
and, those resources that do not meet the user-provided requirements are fil-
tered out. At this step, an authorization test (via GRAM ping request) is also
performed on each discovered host to guarantee user access to the remote re-
source. Then, the dynamic attributes of each host are gathered from its local
GRIS server. This information is used by an user-provided rank expression to
assign a rank to each candidate resource. Finally, the resultant prioritized list of
candidate resources is used to dispatch the job.

JOB DISPATCH

Requirements
&

Preferences Ranked resource list

RESOURCE DI@

Preferences
&
Candidate resource list

GRID INFORMATION SERVICE

-

Filtered LDAP search

GlIs

GlobusMDS

NG A
LDAP registrations

Ranked resource list

RESOURCE SELECTION

Multiple LDAP searchs

Fig. 1. The brokering process scheme of the GridWay framework.

The resource selection overhead is determined by the cost of retrieving the
dynamic and static resource information, and the scheduling process itself. In
the present case the cost of scheduling jobs, i.e. rank calculation, can be ne-
glected compared to the cost of accessing the MDS, which can be extremely
high [13]. In order to reduce the information retrieval overhead, the GIIS infor-
mation is locally cached at the client host and updated every hour, this update
frequency determines how often the testbed is searched for new resources. The
GRIS contents are also cached locally but updated every minute, since the CPU
availability information, used in rank calculation (see section 3.1), is generated
every minute by the GRIS provider.

The new selection process presented in this paper considers both dynamic
performance and proximity to data of the computational resources. In particular,
the following circumstances will be considered in the resource selection stage:

— The estimated computational time on the candidate host being evaluated
when the job is submitted from the client or migrated from the current or
last execution host.

— The proximity between the candidate host being evaluated and the client
will be considered to reduce the cost of job submission, job monitoring and
file staging.

— The proximity between the candidate host being evaluated and a remote file
server will be also considered to reduce the transfer costs when some input
or output files, specified as a GridFTP URL, are stored in such server.

— The proximity between the candidate host being evaluated and the current or
last ezecution host will be also considered to reduce the migration overhead,
since the transfer of restart files is performed between them.

3.1 Performance Model

In order to reflect all the circumstances described previously, each candidate
host (h,,) will be ranked using the total execution time (lowest is best) when the
job is submitted or migrated to that host at a given time (¢,). In this case, we
can assume that the total execution time can be split into:

Te:ce (hn; tn) = Tcpu(hn; tn) + Tzfer(hn: tn); (1)

where Tipy (hn,ty) is the estimated computational time and Ty fer(hp, ty) is the
estimated file transfer time.

Let us first consider a single-host execution, the computational time of the
application on host h at time ¢ can be estimated by:

if CPU(t) > 1

Op
T3, (h,1) = { O CPUW) <1 2)

FLOPS-CPU()

where FFLOPS is the peak performance achievable by the host CPU, Op is the
number of floating point operations of the application, and CPU (¢) is the total
free CPU at time ¢, as provided by the MDS default scheme.

However, the above expression is not accurate when the job has been exe-
cuting on multiple hosts and then is migrated to a new one. In this situation
the amount of computational work that have already been performed must be
considered [6]. Let us suppose an application that has been executing on hosts
hg...hnp—1 at times ty...t,—1 and then migrates to host h, at time ¢,, the
overall computational time can be estimated by:

CPU« hn?t Ztcpu (Z Ts CI;Z: t) cpu(hn7t) (3)

cpu

where T, (h,t) is calculated using (2), and t.,, is the time the job has been
executing on host h;, as measured by the framework. Note that, expressions 2
and 3 become equivalent when n = 0.

Similarly, the following expression estimates the total file transfer time:

D t . , .
Tyfer(hn,tn) Z tzfeT + Z o e 13 N j = client, file server, exec host,

(hns dytn)
(4)
where bw(h1, ha, t) is the bandwidth between hosts hqy and hs at time ¢, Datap, p,
is the file size to be transferred between them, and tfc Fer is the file transfer time
on host h;, as measured by the framework.

4 GridWay Support for Adaptive Job Execution

The GridWay framework supports job adaption to changing conditions by means
of automatic job migration. Once the job is initially allocated, it is dynamically
rescheduled when one of the following events occurs:

— anew “better” resource is discovered (opportunistic migration),

— the remote host or its network connection fails,

the submitted job is canceled or suspended by the remote resource adminis-
trator,

a performance degradation is detected,

the requirements or preferences of the application changes (self-migration).

In this work we will concentrate on opportunistic migration. The dispatch
manager wakes up at each discovery interval, and it tries to find a better host
for each job by activating the resource selection process described in section 3.
In order to evaluate the benefits of job migration from the current execution
host (h,_1) to each candidate host (h,), we define the migration gain (G,,) as:

Tewe (hn—la tn—l) - Teze(hna tn)
Teze(hn—latn—l) ’

where Teze(hn—1,tn—1) is the estimated execution time on current host when
the job was submitted to that host, and Teze(hn,t,) is the estimated execution
time when the application is migrated to the new candidate host. The migration
is granted only if the migration gain is greater than an user-defined threshold,
otherwise it is rejected. Note that although the migration threshold is fixed for
a given job, the migration gain is dynamically computed to take into account
the dynamic data transfer overhead, the dynamic host performance, and the
application progress. In the experiments presented in section 5 the migration
gain has been fixed to 10%.

Migration is implemented by restarting the job on the new candidate host:
first the job is canceled, and then the checkpoint and standard output files
are transferred from the current execution host. In the current version of our

Gn =

(5)

framework, users must explicitly manage their own checkpoint data, which must
be architecture independent (ASCII or HDF), in order not to restrict the range
of feasible candidates. We expect in future versions to incorporate the Grid
Checkpoint Recovery Application Programming Interface under specification by
the Grid Checkpoint Recovery Working Group of the Global Grid Forum.

5 Experiments

The behavior of the resource selection strategy previously described is demon-
strated in the execution of a CFD code, that solves the 3D incompressible Navier-
Stokes equations using an iterative multigrid method [14]. In the following ex-
periments, the client host is ursa, which holds an input file with the simulation
parameters, and the file server is cepheus, which holds the executable and the
computational mesh. The output file with the velocity and pressure fields is
transferred back to the client, ursa, to perform post-processing. Table 1 shows
the available machines in the testbed, their corresponding CPU performance
(MFLOPS), and the maximum bandwidth (MB/s) between them and the hosts
involved in the experiment.

Table 1. Available machines in the testbed, their CPU performance, and band-
width between them and the machines involved in the experiment (client=ursa,
file server=cepheus and exec host=draco).

Bandwidth
host Model CPU OS Memory client file server exec host
ursa Sun Blade 100 330 Solaris 8 256MB oo 0.4 0.4
draco Sun Ultra 1 175 Solaris 8 128MB 0.4 0.4 oo
columba Pentium MMX 225 Linux 2.4 160MB 04 0.4 04
cepheus Pentium Pro 325 Linux 2.4 64MB 0.4 o) 0.4
solea Sun Enterprise 250 350 Solaris 8 256MB 0.2 0.2 0.2

We will impose two requirements on the compute resources: a minimum main
memory of 128MB, enough to accommodate the CFD simulation; and a total
free CPU higher than 90% to prevent oscillating migrations. Initially, the appli-
cation is submitted to draco, since it is the only resource that meet the previous
requirements. We will evaluate re-scheduling strategies based on expressions 3
and 1, when the artificial workload running on columba and solea completes at
different execution points (iterations) of the application running on draco.

Let us first suppose that the application is re-scheduled using expression 3
(figure 2, left-hand chart). In this case, as the file transfer time is not considered,
migration to both hosts always presents a performance gain. The dispatch man-
ager will consider feasible the migration to the lowest ranked host, solea, until
the eight iteration (Teye = 302) is reached.

360 T T T T T 500

340 r -y
320 1 s / 450
0 300 e 1 @ 400 | e
& 280 o 5 S
=3 o o
\Ei 260 r @
Q = ()
g2 =
= 220 =
200 | Rank Columba e | Rank Columba e
Rank Solea —=— Rank Solea —=—
180 | Rank Draco -%-—- 4 Rank Draco -~
Min. migration gain Min. migration gain
160 . . A L 200 “ . A d
0 2 4 6 8 10 0 2 4 6 8 10
Number of Iterations Number of Iterations

Fig. 2. Estimated execution times (ranks) of the application when it is migrated from
darco to different machines at different execution points, using expressions 3 (left-hand
chart) and 1 (right-hand chart).

Figure 2 (right-hand chart) shows the dynamic ranks of solea and columba
when the application is re-scheduled using expression 1. In this situation, mi-
gration to solea only will be granted until the second iteration (Teze = 325) is
reached. Note that from fifth iteration, the performance gain offered by solea
and columba is not high enough to compensate the file transfer overhead in-
duced by job migration. Moreover, from sixth iteration the lowest ranked host is
columba (nearest host) although it presents a CPU performance lower than solea,
as proximity to data becomes more important as the application progresses.

Figure 3 shows the measured execution profile of the application when it is
actually migrated to solea and columba at different iterations, and the execution
profile on draco without migration. These experimental results clearly show that
re-schedules based only on host performance and application progress (expres-
sion 3) may not yield in performance benefits. In particular, re-scheduling the
job based on expression 1 results in a performance gain of 13% (12% predicted).
This resource selection strategy will reject job migration from third iteration, and
prevents performance loses up to 15%, that would occur with the re-scheduling
strategy based on expression 3. Note that this drop in performance can always be
avoided with a pessimistic value of G,,. However using expression 1 allows a more
aggressive value of the migration gain threshold, and therefore an improvement
in the response time of the application.

6 Conclusions and Future Work

In this work we have analyzed the relevance of resource proximity in the re-
source selection process, in order to reduce the cost of file staging. In the case of
opportunistic migration the quality of the interconnection network has also a de-
cisive impact on the overhead induced by job migration. In this way, considering
resource proximity to the needed data is, at least, as important as considering
resource performance characteristics. We expect that resource proximity would
be even more relevant for greater file sizes and more heterogeneous networks.

. Prolog

Execution
on draco

I:I Migration

Execution
on new host

. Epilog

---- Min. migration gain

Time (seconds)

S
é§§ Migrationat Migrationat Migrationat Migration at
TS iteration 2 iteration4 iteration6 iteration 8

Fig. 3. Execution profile of the application when it is executed on draco (left bar in the
chart), and when it is migrated from draco to solea or columba at different execution
points.

We would like to note that the decentralized and modular architecture of the
GridWay framework guarantees the scalability of the brokering strategy, as well
as the range of application, since it is not specialized for a specific application
set.

We are currently applying the same ideas presented here to develop a storage
resource selector program that considers the proximity to a set of replica files
belonging to a logical collection. The storage resource selection process is equiva-
lent to the one presented in figure 1, although the discovery process is performed
by accessing the Globus Replica Catalog. The resource selection is based on the
bandwidth between the selected compute resource and the candidate storage
resources, along with the values gathered from the MDS GRIS.

References

1. Buyya, R., D.Abramson, Giddy, J.: A Computational Economy for Grid Comput-
ing and its Implementation in the Nimrod-G Resource Broker. Future Generation
Computer Systems (2002) Elsevier Science (to appear).

2. Liu, C., Yang, L., Foster, I., Angulo, D.: Design and Evaluation of a Resource
Selection Framework for Grid Applications. In: Proceedings of the 11th IEEE
Symposium on High-Performance Distributed Computing. (2002)

3. Kennedy, K., Mazina, M., Mellor-Crummey, J., Cooper, K., Torezon, L., Berman,
F., Chien, A., Dail, H., Sievert, O., Angulo, D., Foster, I., Gannon, D., Johnsson,
L., C-Kesselman, Aydt, R., Reed, D.A., Dongarra, J., Vadhiyar, S., Wolski, R.:
Toward a Framework for Preparing and Execution Adaptive Grid Applications. In:
Proceedings of NSF Next Generation Systems Program Workshop, International
Parallel and Distributed Processing Symposium. (2002) Fort Lauderdale, USA.

10.

11.

12.

13.

14.

Allcock, W., Chervenak, A., Foster, I., Pearlman, L., Welch, V., Wilde, M.: Globus
Toolkit Support for Distributed Data-Intensive Science. In: Proceedings of Com-
puting in High Energy Physics (CHEP ’01). (2001)

Evers, X., de Jongh, J.F.C.M., Boontje, R., Epema, D.H.J., van Dantzig, R.: Con-
dor Flocking: Load Sharing Between Pools of Workstations. Technical Report
DUT-TWI-93-104, Delft, The Netherlands (1993)

Vadhiyar, S., Dongarra, J.: A Performance Oriented Migration Framework for
the Grid. In: Proceedings of the 3rd IEEE/ACM Int’l Symposium on Cluster
Computing and the Grid (CCGrid). (2003)

Wolski, R., Shao, G., Berman, F.: Predicting the Cost of Redistribution in
Schedulling. In: Proceedings of the 8th SIAM Conference on Parallel Processing
for Scientific Applications. (1997)

Allen, G., et al.: The Cactus Worm: Experiments with Dynamic Resource Dis-
covery and Allocation in a Grid Environment. International Journal of High-
Performance Computing Applications 15 (2001)

Huedo, E., Montero, R.S., Llorente, I.M.: An Experimental Framework for Exe-
cuting Applications in Dynamic Grid Environments. Technical Report 2002-43,
ICASE NASA Langley (2002) submitted to Software Practice & Experience Jour-
nal.

Schopf, J.M.: A General Architecture for Scheduling on the Grid. Available at
http://www-unix.mcs.anl.gov/~schopf (2002) Submitted to special issue of Jour-
nal of Parallel and Distributed Computing on Grid Computing.

Wolski, R., Spring, N., Hayes, J.: The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Journal of Future
Generation Computing Systems 15 (1999) 757-768

Vazhkudai, S., Schopf, J., Foster, I.: Predicting the Performance of Wide-Area
Data Transfers. In: Proceedings of 16th Int’l Parallel and Distributed Processing
Symposium (IPDPS 2002). (2002)

Dail, H., Casanova, H., Berman, F.: A Decoupled Scheduling Approach for the
GrADS Program Development Enviroment. In: Proceedings of the SuperComput-
ing (SC02). (2002) Maryland, USA.

Montero, R.S., Llorente, I.M., Salas, M.D.: Robust Multigrid Algorithms for the
Navier-Stokes Equations. Journal of Computational Physics 173 (2001) 412-432

