
Developing Grid-Aware Applications with

DRMAA on Globus-based Grids ⋆

J. Herrera1, E. Huedo2, R.S. Montero1, and I.M. Llorente1,2

1 Departamento de Arquitectura de Computadores y Automática, Universidad
Complutense, 28040 Madrid, Spain.

2 Laboratorio de Computación Avanzada, Simulación y Aplicaciones Telemáticas,
Centro de Astrobioloǵıa (CSIC-INTA), 28850 Torrejón de Ardoz, Spain.

Abstract. In spite of the great research effort made in Grid technology
in the last years, application development and execution in the Grid con-
tinue requiring a high level of expertise due to its complex and dynamic
nature. The Distributed Resource Management Application API (DR-
MAA) has been proposed to aid the rapid development and distribution
of applications across the Grid. In this paper we present the first im-
plementation of the DRMAA standard on a Globus-based testbed, and
show its suitability to express typical scientific applications. The DR-
MAA routines have been implemented using the functionality provided
by the GridW ay framework.

1 Introduction

In recent years a great research investment has been made in Grid computing
technologies. However, deployment of existing applications across the Grid re-
quires a high level of expertise and a significant amount of effort. The most
important barriers arise from the nature of the Grid itself:

– Complexity, in order to achieve any functionality the user is generally re-
sponsible for manually performing all the scheduling steps.

– Heterogeneity of Grid resources, that potentially belongs to multiple admin-
istration domains.

– Dynamism of the availability, cost and load of Grid resources.
– High fault rate, resource or network failures are the rule rather than the

exception.

In a previous work [1] we have developed a Globus submission framework,
GridW ay, that allows an easier and more efficient execution of jobs on a dy-
namic Grid environment in a “submit and forget” fashion. GridW ay automati-
cally performs all the job scheduling steps [2] (resource discovery and selection,
and job preparation, submission, monitoring, migration and termination), pro-
vides fault recovery mechanisms, and adapts job execution to the changing Grid
conditions [3].

⋆ This research was supported by Ministerio de Ciencia y Tecnoloǵıa through the
research grant TIC 2003-01321 and Instituto Nacional de Técnica Aeroespacial.

On the other hand, the Grid lacks of a standard programming paradigm
to port existing applications among different environments. Grid technologies
are specified, standardized and implemented within the Global Grid Forum

(GGF)1framework. GGF is structured in working and research groups focused
on specific aspects of Grid Computing. In particular, the Distributed Resource

Management Application API Working Group (DRMAA-WG)2 has developed
an API specification for job submission, monitoring and control that provides
a high level interface with Distributed Resource Management Systems (DRMS).
In this way, DRMAA could aid scientists and engineers to express their compu-
tational problems by providing a portable direct interface to DRMS.

There are several projects underway to implement the DRMAA specification
on different DRMS, like Sun Grid Engine (SGE) or Condor. However, to the best
of the authors’ knowledge, DRMAA has never been implemented in a Globus-
based DRMS. In this work we discuss several aspects of the implementation of
DRMAA within the GridW ay framework, and investigate the suitability of the
DRMAA specification to distribute typical scientific workloads across the Grid.

In Section 2, we describe the DRMAA standard and its implementation. Sec-
tion 3 analyzes several aspects involved in the efficient execution of distributed
applications, and how they are addressed by GridW ay. Then, in Section 4, we
study the implementation of several applications using DRMAA. Finally, the
paper ends in Section 5 with some conclusions.

2 Distributed Resource Management Application API

One of the most important aspects of Grid Computing is its potential ability to
execute distributed communicating jobs. The DRMAA specification constitutes
a homogenous interface to different DRMS to handle job submission, monitor-
ing and control, and retrieval of finished job status. In this sense the DRMAA
standard represents a suitable and portable framework to express this kind of
distributed computations.

Although DRMAA could interface with DRMS at different levels, for example
at the intranet level with SGE or Condor, in the present context we will only
consider its application at Grid level. In this way, the DRMS (GridW ay in our
case) will interact with the local job manager (i.e PBS, SGE,...) through the
Grid middleware (Globus Toolkit 2.2). This development and execution scheme
with DRMAA is depicted in figure 1.

In the following list we describe the DRMAA interface routines implemented
within the GridW ay framework:

– Initialization and finalization routines: drmaa init and drmaa exit.
– Job template routines: drmaa set attribute, drmaa allocate job template

and drmaa delete job template. These routines enable the manipulation
of job definition entities (job templates) to set parameters such as the exe-
cutable, its arguments or the standard output streams.

1 http://www.gridforum.org (2004)
2 http://www.drmaa.org (2004)

drmaa_init();

drmaa_finalize();

.C

Task B

Task C

Task A

Computational
Problem

Grid−Aware
Executable

Distributed
Resource

Management

PBS SGE

Results

Globus
Grid Middleware

GridWay

Local Jobmanagers

Fig. 1. Development and execution cycle using the DRMAA interface

– Job submission routines: drmaa run job and drmaa run bulk jobs. The
GridW ay has native support for bulk jobs, defined as a group of n simi-
lar jobs with a separate job id.

– Job control and monitoring routines: drmaa control, drmaa synchronize,
drmaa wait and drmaa job ps. These routines are used to control (killing,
resuming, suspending, etc..) and synchronize jobs, and monitor their status.

The DRMAA interface (see [4] for a detailed description of the C API) includes
more routines in some of the above categories as well as auxiliary routines that
provides textual representation of errors, not implemented in the current version.
All the functions implemented in the GridW ay framework are thread-safe.

3 Efficient Execution of Grid Applications

In spite of the DRMAA standard can help in exploiting the intrinsic parallelism
found in some application domains, the underlying DRMS is responsible for the
efficient and robust execution of each job. In particular the following aspects are
considered by the GridW ay framework:

– Given the dynamic characteristics of the Grid, the GridW ay framework pe-
riodically adapts the schedule to the available resources and their character-
istics [3]. GridW ay incorporates a resource selector that reflects the applica-
tions demands, in terms of requirements and preferences, and the dynamic
characteristics of Grid resources, in terms of load, availability and proximity
(bandwidth and latency) [5].

– The GridW ay framework also provides adaptive job execution to migrate
running applications to more suitable resources. So improving application
performance by adapting it to the dynamic availability, capacity and cost of
Grid resources. Moreover, an application can migrate to a new resource to
satisfy its new requirements or preferences [3].

Table 1. Characteristics of the machines in the UCM research testbed.

Name Model OS Speed Memory Job Mgr.

babieca 5×Alpha DS10 Linux 2.2 466MHz 256MB PBS
hydrus Intel P4 Linux 2.4 2.5GHz 512MB fork
cygnus Intel P4 Linux 2.4 2.5GHz 512MB fork
cepheus Intel PIII Linux 2.4 662MHz 256MB fork
aquila Intel PIII Linux 2.4 568MHz 128MB fork

We expect that DRMAA will allow to explore several common execution
techniques when distributing applications across the Grid [6], for example fault
tolerance could be improved by replicating job executions (redundant execution),
or several alternative task flow paths could be concurrently executed (speculative
execution).

4 Experiences

In this section we describe the ability of the GridW ay framework when execut-
ing different computational workloads distributed using DRMAA. The following
examples resembles typical scientific problems whose structure is well suited to
the Grid architecture. These experiments were conducted in the UCM research
testbed, based on the Globus Toolkit 2.2 [7], briefly described in table 1.

Initial Job

Job 1 Job 2 Job 3

Final Job

Initial
File

Output
File 1

Final
File

Output
File 2

Output
File 3

rc = drmaa_init(contact, err);

// Execute initial job and wait for it
rc = drmaa_run_job(job_id, jt, err);
rc = drmaa_wait(job_id, &stat, timeout, rusage, err);

// Execute n jobs simultaneously and wait for them

rc = drmaa_synchronize(job_ids, timeout, 1, err);

// Execute final job and wait for it
rc = drmaa_run_job(job_id, jt, err);
rc = drmaa_wait(job_id, &stat, timeout, rusage, err);

rc = drmaa_exit(err_diag);

rc = drmaa_run_bulk_jobs(job_ids,jt,1,JOB_NUM,1,err);

Fig. 2. High-throughput scheme and its codification using the DRMAA standard.

4.1 High-Throughput Computing Application

This example represents the important class of Grid applications called Param-

eter Sweep Applications (PSA), which constitutes multiple independent runs of

the same program, but with different input parameters. This kind of computa-
tions appears in many scientific fields like Biology, Pharmacy, or Computational
Fluid Dynamics. In spite of the relatively simple structure of this applications,
its efficient execution on computational Grids involves challenging issues [8].

The structure of the PSA is shown in figure 2 (left-hand side). A initial job is
submitted to perform some pre-processing tasks, and then several independent
jobs are executed with different input parameters. Finally a post-processing job
is executed.

-3 10 23 36 49 62 75 88 101 114

cy
gn

us

hy
dr

us

ce
ph

eu
s

R
es

o
u

rc
es

Time (seconds)

Stage-in
Execution
Stage-out

SP8

SP1

Initial
Job

Job 1

Job 2

Job 3

Final
Job

0

Fig. 3. Execution profile for the high-throughput application.

Figure 3 shows the execution profile of the PSA, each computational task
is executed in a different Grid resource. The total turnaround time of the ex-
periment is 121 seconds, with an average execution and file transfer times for
each computational task of 15 seconds and 22 seconds, respectively. In this case
the average CPU utilization during the PSA execution was 20%. In this case
the overhead induced by job scheduling (i.e. querying the MDS Grid service to
obtain a preliminary list of potential hosts, and to assign a rank to them [1]) is
5% of the overall execution time.

4.2 Pipelined Workflow Application

The pipelined workflow comprises the execution of a long chain of n jobs. Each
job in the sequence uses the computed solution of its predecessor to initial-
ize. Considering this dependencies each job in the chain can be scheduled by
GridW ay once the previous job has finished. This computational scheme typi-
cally appears in long running simulations that can be broken up into a series of
tasks (see figure 4).

In this case all the jobs in the pipeline sequence are submitted to the same
host, cygnus, with an average turnaround time per job of 33 seconds. The total
turnaround time for this application is 203 seconds, and an average resource
CPU utilization of 81%.

Initial Job

Job 1 Job 2

Job 3 Job 4

Initial
File

Output
File 1

Output
File 2

Output
File 3

Final Job

Final
File

Output
File 4

rc = drmaa_init(contact, err_diag);
// Execute n jobs consecutively
for (i = 0; i < JOB_NUM; i++) {
 rc = drmaa_run_job(job_id, jt, err_diag);
 rc = drmaa_wait(job_id, &stat, timeout, rusage, err_diag);
}
rc = drmaa_exit(err_diag);

Fig. 4. Pipelined workflow application and its codification using the DRMAA standard.

4.3 Master-Worker Optimization Loop

We now consider a generalized Master-Worker paradigm, which is adopted by
many scientific applications like genetic algorithms, N-body simulations or Monte
Carlo simulations among others. A Master process assigns a description (input
files) of the task to be performed by each Worker. Once all the Workers are
completed, the Master process performs some computations in order to evaluate
a stop criterion or to assign new tasks to more workers (see figure 5).

Initial Job

Job 1 Job 2 Job 3

Master

Initial
File

Output
File 1

Output
File 2

Output
File 3

rc = drmaa_init(contact, err_diag);

// Execute initial job and wait for it
rc = drmaa_run_job(job_id, jt, err_diag);
rc = drmaa_wait(job_id, &stat, timeout, rusage, err_diag);

while (exitstatus != 0) {
// Execute n Workers concurrently and wait for them
rc = drmaa_run_bulk_jobs(job_ids, jt, 1, JOB_NUM, 1, err_diag);
rc = drmaa_synchronize(job_ids, timeout, 1, err_diag);

// Execute the Master job, wait for it and get exit code
rc = drmaa_run_job(job_id, jt, err_diag);
rc = drmaa_wait(job_id, &stat, timeout, rusage, err_diag);
rc = drmaa_wexitstatus(&exitstatus, stat, err_diag);
}
rc = drmaa_exit(err_diag);

Fig. 5. Master-Worker application and its codification using the DRMAA standard.

Figure 6 shows the execution profile of three generations of the above Master-
Worker applications. The average execution time per iteration is 120 seconds,
with an average computational and transfer times per worker of 15.7, and 23.3
seconds respectively. In this case the total turnaround time is 260 seconds with
an average CPU utilization of 22%.

-5 15 35 55 75 95 115 135 155 175 195 215 235 255 275 295 315 335 355

cygnus

hydrus

cepheus

R
es

o
u

rc
es

Time(Seconds)

Stage-in
Execution
Stage-out

Generation 1 Generation 2 Generation 3

INITIAL
JOB

J
O
B
1

J
O
B
1

J
O
B
2

J
O
B
2

J
O
B
2

J
O
B
1

J
O
B
1

J
O
B
3

J
O
B
3

J
O
B
3

MASTER MASTER MASTER

0

Fig. 6. Execution profile for three iterations of the Master-Worker application.

5 Conclusions

We have shown how DRMAA can aid the rapid development and distribution
across the Grid of typical scientific applications, and we have demonstrated the
robustness and efficiency of its implementation on top of the GridW ay frame-
work and Globus.

It is foreseeable, as it happened with other standards like MPI or OpenMP,
that DRMAA will be progressively adopted by most DRMS, making them easier
and worthier to learn, thus lowering its barrier to acceptance, and making Grid
application portable across DRMS adhered to the standard.

References

1. Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution on
Grids. J. of Software – Practice and Experience (2004) (in press).

2. Schopf, J.M.: Ten Actions when Superscheduling. Technical Report GFD-I.4,
Scheduling Working Group – The Global Grid Forum (2001)

3. Huedo, E., Montero, R.S., Llorente, I.M.: Adaptive Scheduling and Execution on
Computational Grids. J. of Supercomputing (2004) (in press).

4. Rajic, H., et al.: Distributed Resource Management Application API Specification
1.0. Technical report, DRMAA Working Group – The Global Grid Forum (2003)

5. Montero, R.S., Huedo, E., Llorente, I.M.: Grid Resource Selection for Opportunis-
tic Job Migration. In: Proc. of the 9th Intl. Conf. on Parallel and Distributed
Computing (Euro-Par 2003). Volume 2790 of Lecture Notes in Computer Science.,
Springer–Verlag (2003) 366–373

6. Badia, R.M., Labarta, J., Sirvent, R., Cela, J.M., Grima, R.: GridSuperscalar: A
Programming Paradigm for Grid Applications. In: Workshop on Grid Applications
and Programming Tools (GGF8). (2003)

7. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Inter-
national Journal of Supercomputer Applications 11 (1997) 115–128

8. Huedo, E., Montero, R.S., Llorente, I.M.: Adaptive Grid Scheduling of a High-
Throughput Bioinformatics Application. In: Proc. of the 5th Intl. Conf. on Parallel
Processing and Applied Mathematics (PPAM 2003). Volume 3019 of Lecture Notes
in Computer Science., Springer–Verlag (2004) (in press).

