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Abstract

Since its conception, Grid technology concerned itself with interoperabil-
ity between heterogeneous computers by providing a middleware layer to
abstract underlying resource characteristics. Unfortunately there is no agree-
ment today on a common set of standards and, therefore, different concep-
tions lead to different middleware implementations. That effectively rendered
interoperability between grid infrastructures to be a complex issue, which was
what originally sprang the idea of Grid. In this paper we present technolo-
gies to achieve interoperation (i.e. interoperability not based on standards)
between sites and show its feasibility, aiming to provide a mid-term solution
to the federation problem while the promise of interoperability through stan-
dards becomes a reality. Using interoperation techniques and bringing them
together in a common federation component, the GridWay metascheduler,
we are able to offer common access to well known grid infrastructures. This
approach is demonstrated in the performance evaluation of the execution of
one benchmark of the NAS Grid Benchmark suite.
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1. Introduction

A growing number of grid infrastructures and middlewares are being de-
veloped and deployed, favored by the high expectations raised by Grid [1, 2]
computing. Some of the most successful infrastructures (e.g. TeraGrid1,
EGEE2 or Open Science Grid3) are used at production level, enabling re-
source sharing and collaboration between scientific institutions geographi-
cally apart. Nevertheless, if we want to move forward and aggregate resources
from these infrastructures, we face several problems.

It is not really surprising finding here the same problems found in the early
stages of grid technology. The goal is still the same: harness resources inde-
pendently of their software stack, geographical disposition or administration
domains; albeit scaled up the ladder a bit: we are trying to interoperate grids.
These grids have potentially different middleware stacks which make them
incompatible, and even those who use the same middleware have slightly
different deployment characteristics that makes them non-interoperable.

There are many examples in the literature on how to achieve federation
between grids with different interfaces in order to achieve the so-longed-for
world wide grid. Interoperability through the use of standard and open
interfaces is one of the defining characteristics of grid technologies [3]. There
are ongoing projects that address the definition of these standard interfaces,
like for example SAGA [4], an initiative to provide grid applications with a
common standard API so they can be built in a middleware-agnostic way.
This is an example of a solution for interoperability from the application
point of view. There are standardization efforts like the Job Submission
Description Language (JSDL), designed to describe jobs to be run on the
grid. Others, like the Basic Execution Service (BES), focuses on how to send
requests to initiate, monitor, and manage computational activities. These
two standards (JSDL and BES) are used in the HPC Basic Profile [4]. Both
SAGA and HPC Profile efforts stem from the Open Grid Forum (OGF4), an
organization that promotes the creation of standards for interoperability.

1http://www.teragrid.org/
2http://www.eu-egee.org/
3http://www.opensciencegrid.org/
4http://www.ogf.org/
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But while other needed standards are being defined or current ones con-
solidated, there is another set of efforts that focuses on what is available
nowadays and tries to provide federation solutions for the short term. This is
exactly the aim of the Grid Interoperation Now [5] (GIN) group of the OGF,
some of the projects mentioned from now onwards participate in it. Following
this interoperation philosophy, we can remark efforts to interoperate different
grid middlewares (for example, Globus and UNICORE [6]) and approaches
based on portals and workflows [7]. In this line, it is also interesting to
see efforts like InterGrid [8], which proposes the creation of InterGrid Gate-
ways (IGGs) to interconnect the existing different grid islands, or GridX1 [9],
which can be accessed as another resource of LCG. We can find other works
based on the same idea of interoperation using current interfaces, for instance
by introducing the concept of a meta-broker component [10], which will aid
to access resources outside one grid domain. Moreover, and complementary
to the direction taken by this paper, there are various works enabling in-
teroperability between existing metaschedulers [11]. There is even an OGF
group devoted to this research line, the Grid Scheduling Architecture (GSA)
research group.

In this paper, we will show how to uniformly access grid resources from
different infrastructures and how the tool used for this solution (the GridWay
metascheduler [12]) is production ready, i.e., it scales. We will use federation
to describe this aggregation of resources, and show how it is defined by two
intrinsic characteristics: interoperation and scalability, although there are
other, less technical issues out of the scope of this paper. Our solution
offers unprecedented levels of flexibility for constructing any kind of grid
infrastructure.

The remainder of this paper conforms with the following structure. Sec-
tion 2 presents a strategy to achieve federation, while Section 3 describes the
tool involved in the interoperation process and Section 4 shows how it scales
and therefore is suitable for federation. Afterwards, Section 5 explains the
output of the different federation experiments (coming from different fed-
eration approaches) and comments on their differences. Finally, Section 6
outlines the main conclusions that can be drawn from this work and sets
plans for future work on this matter.
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2. Interoperation for Federation

Reaching agreement between infrastructures on which interface to use
to achieve interoperability takes time [13]. Driven by this factor, the OGF
makes a clean distinction between interoperability, or the native ability of
grids and grid technologies to interact directly via common open standards,
and interoperation, or the set of techniques to get production grid infrastruc-
tures to work together in the short term.

Hence, we can think of interoperation as a more immediate solution for
the collaboration between two or more heterogeneous grids. On the other
hand, interoperability focuses on the big picture and tries to bring together
technologies that implement the grid infrastructure by means of standard-
ization (like, for example, SAGA or BES do). It is clear that this is not a
feat that can be achieved without a significant amount of effort and, more
important to the point being made here, time. Thus, the need to provide
interoperation and the justification of the GIN group within the OGF.

Since most common open standards to provide grid interoperability are
still being defined and only a few have been consolidated, grid interoperation
techniques, like adapters and gateways, are needed. An adapter is, according
to different dictionaries of computer terms, a device that allows one system to
connect to and work with another. On the other hand, a gateway is concep-
tually similar to an adapter, but it is implemented as an independent service,
acting as a bridge between two systems. The main drawback of adapters is
that grid middleware or tools must be modified to insert the adapters. In con-
trast, gateways can be accessed without changes on grid middleware or tools,
but they can become a single point of failure or a scalability bottleneck [13].

Taking this techniques into account, there are three different ways in
which interoperation can be achieved:

• Common interfaces. This is the most straightforward way of interop-
eration. It requires that all sites involved in the federation share the
same interfaces, so interoperation between them becomes just an ad-
ministrative task regarding authorization and other policies. A single
point of entry (i.e. a portal) can be easily built, since it can be used to
access all the sites using the same mechanism, although, as will be seen
in Section 5, sharing the same middleware stack or the same interfaces
does not guarantee the ability of having exactly the same way to access
them, due to, for example, different configurations that the middleware
is subject to.
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• Adapters. Although sharing the same interfaces is the ideal way to
achieve interoperation, sometimes there are different middlewares de-
ployed in the sites to be federated, and it is unfeasible to unify them
for a variety of reasons (politics, time constraints or ongoing migration
or upgrades). This can be seen as the consequence of not having an
accepted standard, and therefore, lack of interoperability. One possible
solution to federate these different sites is to build a portal that uses
different components (to submit jobs, gather information, transfer files,
etc) to interface these sites. These components are designed specifically
for a particular middleware stack or even version, and we can call them
adapters.

• Gateways. Another way to achieve interoperation consists in encap-
sulating one or more sites under one single resource accessed through
one interface. The interoperation problem can then be reduced to the
Common interfaces scenario. This encapsulation acts translating the
requests from the portal to requests that the underlying sites can un-
derstand, and conveying the results to the originator of the job request.
This technique is conceptually similar to network gateways and is es-
pecially suited for situations where it is not possible to modify higher
level services.

Therefore we must wonder whether interoperation is a necessary and suf-
ficient condition for grid federation. We argue that this is not the case, since
there are even non-technical issues that we are not taking into account, like
for example political matters (when and how a user should use or not a given
infrastructure) and operational issues (which software is installed in the ex-
ecution nodes, for example). Nevertheless, in Section 5 it is shown how two
grid infrastructures with common interfaces (as TeraGrid and Open Science
Grid having the same execution service interface, Globus GRAM) are not
necessarily federated, but interoperation is needed because their execution
model is different (for example, their storage model is very dissimilar). Thus
interoperation is a necessary condition for federation.

Considering interoperation enough for federation leaves the key factor out
of the equation. This factor is indeed scalability, it is important to know if
the component that performs the federation actually scales. This question
is tackled in Section 4, where we are going to measure the scalability of the
component we are using for federation: the metascheduler. Reached this
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point we claim that true federation is achieved, among other less technical
issues, by the conjunction of two key factors: interoperation and scalability

3. The GridWay Metascheduler

The GridWay metascheduler enables large-scale, reliable and efficient
sharing of computing resources (clusters, computing farms, servers, super-
computers...), managed by different LRM (Local Resource Management)
systems, within a single organization (enterprise grid) or scattered across
several administrative domains (partner or global grid).

GridWay is composed of several modules as seen in Figure 1. First we
have the GridWay daemon, which is the core that coordinates the whole job
life cycle process by means of a state machine. It uses a set of Middleware
Access Drivers (MADs), basically independent processes that talk with the
daemon using the standard I/O streams. They are used to perform execution
(for job submission), transfer (for data staging) and information (for resource
discovery and monitoring) tasks; several MADs of each type can be loaded
and used simultaneously. The last component in which we can decompose
GridWay in is the scheduler, which also lives in a separate process, communi-
cating with the daemon also through the standard streams, and is in charge
of the job allocation in the resources.

GridWay exposes two ways of interfacing with the core. One is a power-
ful command line interface (CLI), featuring commands to manage jobs and
computing resources. But GridWay can be used programatically with the
Distributed Resource Management Application API (DRMAA), which is an
OGF standard. In this way, applications can be built abstracted from the
heterogeneous resources where it can be executed.

4. Experiments: Metascheduler scalability

In this section we will show experiments designed to demonstrate Grid-
Way’s scalability and, hence, its ability to perform the role of federation
component. To measure the scalability of GridWay, we set up an experiment
that tries to saturate all GridWay components by submitting 10,000 jobs.

The resources used for the testbed are located in the Universidad Com-
plutense de Madrid (UCM) local grid, so issues like network saturation can
be more controlled. These resources are Intel Pentium 4 3.2GHz with 2GB
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GridWay Core Scheduler

CLI DRMAA

Execution
Middleware Access Drivers

Transfer Information

Figure 1: GridWay high level architecture.

of RAM that communicate with each other over a 100 LAN network, run-
ning Debian Etch. The testbed for the scalability test uses four computing
elements with the aforementioned specifications, served by GRAM pre-Web
Services (preWS). The GridWay client is also a machine with the same char-
acteristics.

GridWay was configured using a static information provider. The latter
allowed to configure the four hosts for GridWay as if having two hundred
free slots each managed by a Fork job manager. The performance benefit of
using the static information MAD as opposed to a dynamic one is negligible
due to the small number of hosts. GridWay scalability for discovering and
monitoring is quite good, particularly with the new multithreaded MAD for
the Monitoring and Discovery Service of the Globus Toolkit 4.0 (MDS4).
Moreover, GridWay implements throttling techniques to avoid saturation
that could occur if all the known hosts were to be monitored simultaneously.

The GridWay instance was configured so it submits jobs at the following
rate:

• In each iteration, the scheduler submits a maximum of 60 jobs (DIS-
PATCH CHUNK = 60).

• Each iteration of the scheduler happens with a 3 minutes interval

7



(SCHEDULING INTERVAL = 180).

• There is no limit on how many jobs per user can be running at the
same time (MAX RUNNING USER = 0).

• There is no limit on the maximum number of jobs that the scheduler
submits to a given resource (MAX RUNNING RESOURCE = 0), so
ideally all the two hundred slots would be used per host.

Jobs being sent in this experiment consist basically of a task sleeping
from 1800 to 5400 minutes. Each job gets their arguments according to a
piecewise linear function, defined in Equation 1

f(i) = 1800 + (20i)%(5400− 1800), (1)

where i is the job index given by GridWay, ranging from 0 to 9,999.
This task doesn’t make use of the CPU, since we are not interested in

measuring a computer saturation but rather GridWay’s. The file staging
carried by each job involves the creation of a directory in the prolog state
and the removal of that directory in the epilog state, and also two set of files,
which amount to 12 KB for the transfer of input files and 16 KB for the
transfer of output files.

The first interesting result of the test is the time that GridWay needs to
accept, sequentially, 10,000 jobs. The average time in seconds for this is 226
seconds, i.e., a bit less than four minutes. This contrasts strongly with the 2
hours needed by the gLite Workload Management System (WMS) to accept
500 jobs [14].

We can see in Figure 2 the disk consumption of GridWay. For ten thou-
sand completed jobs the disk consumption gets to 660,084 KB, and that gives
an average of approximately 66 KB per job. It is worth noting that this num-
ber includes all the logging that GridWay is capable of producing, including
information for debugging, being the actual production value significantly
less.

Figure 3 is more revealing as it shows the percentage of memory consump-
tion for all GridWay components and the total add between all of them. We
can see how the Transfer MAD gets most of the memory, but it is impor-
tant to note how the GridWay daemon and the scheduler are less demanding
in memory consumption. Two sudden increases in Transfer MAD’s mem-
ory consumption can be seen around minutes 300 and 600, probably due to
memory leaks triggered by the handling of job errors.
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Figure 2: Disk consumption by all GridWay components, including logs and accounting
information.
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Figure 3: Memory consumption by GridWay split across its different components.
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Figure 4: CPU consumption by GridWay’s components.

Figure 4 shows the CPU consumption. We can see here a similar trend,
where the MADs take the most CPU time and the GridWay daemon and the
scheduler don’t take that much. It is worth noting how the scheduler CPU
consumption reduces when there are fewer pending jobs to be scheduled. It is
therefore clear from these two last figures that GridWay’s CPU and memory
consumption are particularly low, if we take into account that it is managing
10,000 jobs.

Figure 5 depicts how the jobs get themselves from the pending to the
done state, maintaining an acceptable average rate of 800 jobs running. It
is interesting to see how there are two backward movements in the number
of completed tasks around minutes 300 and 600, matching the CPU and
memory consumption increase of the transfer MAD. This is coherent with the
interpretation of error conditions around those times (increase of pending jobs
indicates that running jobs did fail), and shows the robustness of GridWay
in how it managed to complete all the jobs successfully.

5. Experiments: Interoperation

In order to demonstrate the feasibility of both the adapters and the gate-
way solutions for interoperation, two different scenarios were deployed and
jobs were sent using GridWay to a set of resources gathered from three major
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Figure 5: Job states distribution against time.

grid infrastructures: Open Science Grid, TeraGrid and EGEE. Additionally,
resources from a local UCM cluster were used as well. Three iterations of
two hundred jobs each were submitted in each of the two scenarios in order
to show their feasibility. For both these experiments we used the Embarrass-
ingly Distributed (ED) benchmark from the NAS Grid Benchmark suite [15].

Figure 6 depicts the architecture of both experiment interfaces. The
adapters scenario presents a flat line-up of the available resources, all of
them accessed by different adapters (dotted arrows represent pre Web Ser-
vices (preWS) interfaces, solid arrows represent Web Services (WS) inter-
faces). On the other hand, the gateway scenario distributes resources in two
layers, separating resources by their accessing adapters: all resources in the
upper level are accessed using common interfaces, as are those on the lower
level, albeit this time the interfaces are different. The GridWay configuration
needed to set up the scenarios and the results obtained are presented in the
following two subsections.

5.1. Adapters Scenario

To address the adapters scenario, the GridWay metascheduler was config-
ured to access four different infrastructures. Not only different interfaces were
the problem, but also different versions of the same middleware posed their
own issues. Furthermore, different configurations of even the same version of
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Figure 6: Adapters scenario vs Gateway scenario

the same middleware stacks are troublesome for the correct interoperation of
the four infrastructures.

GridWay’s adapters are the Middleware Access Drivers (MADs), en-
abling the metascheduler to access different infrastructures simultaneously
and seamlessly. GridWay has evolved over time to take advantage of the
adapters technique, it is interesting to see its evolution, from a first tentative
effort to harness both EGEE and the IRISGrid infrastructures [16], to the
seminal work that produced its full blown current modular architecture [17],
motivated by the interoperation between grid resource management services
provided by Globus. There are three types of adapters: execution, transfer
and information MADs. Details about them and their configuration follows:

• Open Science Grid : This infrastructure offers two versions of the Globus
Toolkit, deployed using VDT5. The particularity of the OSG configuration-
wise with respect to a standard Globus install is that it uses the non
standard 9443 port to offer the WS created by the Globus container,
so GridWay MADs have to be configured accordingly6.

• TeraGrid : Again, two versions of Globus are offered. Configuration

5http://vdt.cs.wisc.edu/
6http://www.gridway.org/documentation/howtos/osghowto.pdf
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for the file transfer was different than in other infrastructures since the
Storage Element (SE) was a separate machine (sharing homes with the
Computing Element), thus the SE HOSTNAME attribute of GridWay
was used to direct staging to the SE node7.

• EGEE : This infrastructure uses the gLite middleware stack, which is
based on Globus preWS. The preWS MADs are used, but there are
a few particularities of the EGEE that requires a different way of file
staging. Mainly, worker nodes of EGEE don’t share their home folders
with the front-end. Instead, each has an outbound connection. Thus,
the weight of the file staging is left to the wrapper script, which is in
charge of staging the files and executing the job8. An information MAD
for the Berkely Database Information Index (BDII) (which is basically
a LDAP server running on port 2170) using the GLUE scheme is used
for host monitoring.

• UCM: This is dsa-research.org group local cluster at Universidad Com-
plutense de Madrid. Probably due to the fact that the Globus WS
MADs were developed against this very cluster, no extra configuration
was needed for GridWay to access it.

A testbed was prepared in order to perform the experiments in the adapters
scenario. A demonstration in TeraGrid07 featured GridWay accessing several
resources from the three infrastructures and resources from UCM, as shown
in Figure 7. For illustrative purposes, one resource from each infrastructure
was chosen for the experiments reported in this paper, so they could be per-
formed in a more controlled environment. A complete resource listing for
the adapters scenario can be seen in Figure 8. To show different adapters
in action, WS MADs were used to access the TeraGrid (with Host Identi-
fier , HID, 0 in the figure) and the UCM (HID 2) infrastructure, while the
preWS MADs were chosen to access the Open Science Grid (HID 1) and the
EGEE (HID 3) infrastructure. GridWay is able to use MADs from toolk-
its of both version 4.0.x and 4.2.x of the Globus Toolkit, solving neatly the
incompatibility between them and allowing a smooth upgrading process.

Figure 9 shows the number of jobs against the infrastructures where the
jobs were executed. There is an approximately even distribution between our

7http://www.gridway.org/documentation/howtos/tghowto.pdf
8http://www.gridway.org/documentation/howtos/egeehowto.pdf
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HID PRI OS ARCH MHZ %CPU MEM(F/T) DISK(F/T) N(U/F/T) LRMS HOSTNAME
0 20 Linux2.4.21-32. i686 2665 189 964/2006 62787/73964 0/2/1 jobmanager-fork atlas.dpcc.uta.edu
1 20 Linux2.4.21-37. athlo 1991 110 1214/2009 62680/71679 0/1/1 jobmanager-condor ce01.cmsaf.mit.edu
2 20 Linux2.4.21-20. i686 2665 388 1246/2006 70846/99795 0/1/1 jobmanager-condor fiupg.ampath.net
3 20 Linux2.4.27-1-3 1595 95 381/884 6350/7525 0/1/1 jobmanager-condor grid.physics.purdue.edu
4 20 Linux2.6.9-42.0 x86_6 2592 200 3041/3901 12040/13770 0/1/1 jobmanager-condor osg.hpcc.nd.edu
5 75 0/89/300 PBS tg-grid.uc.teragrid.org
6 1 ScientificSLSL i686 1200 0 1024/1024 0/0 0/51/75 jobmanager-pbs lcg2ce.ific.uv.es
7 1 ScientificSL4 i686 866 0 513/513 0/0 0/22/22 jobmanager-lcgpbs ramses.dsic.upv.es
8 1 ScientificSL4 i686 2800 0 1024/1024 0/0 0/152/158 jobmanager-lcgpbs lcg-ce.usc.cesga.es
9 1 ScientificSLBer i686 3000 0 1024/1024 0/0 0/49/108 jobmanager-lcgpbs ce2.egee.cesga.es
10 1 ScientificSLBer i686 4000 0 1024/1024 0/0 0/0/24 jobmanager-lcgpbs ifaece01.pic.es
11 25 0/214/219 Condor nest.phys.uwm.edu
12 25 0/6/11 Condor osg-itb.ligo.caltech.edu
13 90 Linux2.6.17-2-6 x86 3216 0 45/2027 70824/118812 0/0/2 Fork cygnus.dacya.ucm.es
14 90 Linux2.6.17-2-6 x86 3216 181 681/2027 98861/11881 0/2/2 Fork draco.dacya.ucm.es
15 90 Linux2.6.18-4-a x86_6 2211 100 954/1003 77081/77844 0/3/4 PBS hydrus.dacya.ucm.es
16 90 Linux2.6.18-4-a x86_6 2211 100 776/1003 76428/77844 0/5/5 SGE aquila.dacya.ucm.es

Figure 7: Resources accessed by GridWay in the Teragrid07 demo.

HID PRI OS ARCH MHZ %CPU MEM(F/T) DISK(F/T) N(U/F/T) LRMS HOSTNAME
0 1 0/5/5 PBS tg-grid.uc.teragrid.org
1 1 Linux2.4.21-32. i686 2665 189 964/2006 62787/73964 0/10/10 jobmanager-condor cmsgrid01.hep.wisc.edu
2 1 Linux2.6.24-17 x86_6 1995 100 18/499 10169/21817 0/5/5 SGE aquila.dacya.ucm.es
3 1 ScientificSL4 i686 866 0 513/513 0/0 0/21/22 jobmanager-lcgpbs ramses.dsic.upv.es

Figure 8: Resources for the Adapters scenario, as provided by the gwhost command.

local cluster (UCM ), the Open Science Grid preWS resource (OSG preWS )
and the TeraGrid WS one (TG WS ), while the EGEE resource shows a
smaller ratio of jobs completed. This is due to the chosen EGEE site for the
EGEE, ramses.dsic.upv.es, having lower computing power (both CPU and
memory) than the resource chosen for this experiment in the other infras-
tructures.

Average suspension times can be seen in Table 1, where suspension time
is the time a job spends waiting on the remote queue to be executed, and
they show in this case the dynamic nature of the grid. Since resources are
not completely devoted to our experiment, we thus experience disparity of
the measured times between iterations. Here we can see the OSG preWS
resource rendering different suspension times and how they directly affect
to its amount of taken jobs. From the comparatively lower times shown by
the EGEE resource we can deduce that it is probably less occupied than the
OSG preWS resource, but its comparatively slowness prevents it to increase
the ratio of completed jobs.

Productivity in Table 2 measures the amount of jobs taken by each in-
frastructure per hour. As expected, the EGEE resource shows a much lower
productivity, again due to the lower performance of the chosen resource,
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Iteration # UCM TG WS EGEE OSG preWS

1 208.59 35.84 86.05 90.47

2 218.43 16.4 85.65 107.16

3 225.52 16.39 84.14 194.85

Table 1: Average suspension times as experienced by jobs from Adapters Scenario
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Iteration # Total UCM TG WS EGEE OSG preWS

1 125.78 37.10 31.44 12.57 44.65

2 144.92 39.85 41.30 14.49 49.27

3 122.7 38.65 35.58 13.49 34.96

Table 2: Productivity achieved (total and per resource) in the Adapters Scenario

HID PRI OS ARCH MHZ %CPU MEM(F/T) DISK(F/T) N(U/F/T) LRMS HOSTNAME
0 1 0/5/5 PBS tg-grid.uc.teragrid.org
1 1 Linux2.6.24-17 x86_6 1995 100 18/499 10169/21817 0/5/5 SGE aquila.dacya.ucm.es
2 1 0/26/32 GW cepheus.dacya.ucm.es

Figure 10: Resources for Gateway Scenario upper level, as seen by gwhost in the GridWay
server

while the other three infrastructures show more even productivity. It is in-
teresting to see how the suspension time affects the productivity in the case
of the OSG preWS resource, and in turn affects the amount of jobs taken
shown in Figure 9. This can be explained if we take into account that an
increase in the suspension time of a particular resource causes its designated
jobs to wait more time in the queue, hence the productivity decreases (less
jobs completed by the hour) and thus the amount of completed jobs also
decreases.

5.2. Gateway Scenario

The gateway scenario is configured in a hierarchical manner. In the up-
per level, GridWay accesses resources for the TeraGrid and the UCM local
cluster. Configuration details for these two infrastructures are identical as
in the adapters scenario. A special case is cepheus, a resource encapsulating
another instance of GridWay through a preWS or WS GRAM interface. This
is what we call a GridGateWay [18]. Resources for this upper level can be
seen in Figure 10. Information corresponding to cepheus only accounts for
the aggregation of free and used nodes of all the resources being encapsulated
in the lower level.

At a lower level we have an encapsulated GridWay accessing both the
Open Science Grid and EGEE infrastructures. Both of them are accessed
using preWS, but offered to the GridWay in the upper level as a WS GRAM
interface. For resources on this level, refer to Figure 11.
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HID PRI OS ARCH MHZ %CPU MEM(F/T) DISK(F/T) N(U/F/T) LRMS HOSTNAME
0 1 Linux2.4.21-32. i686 2665 189 964/2006 62787/73964 0/10/10 jobmanager-condor cmsgrid01.hep.wisc.edu
1 1 ScientificSL4 i686 866 0 513/513 0/0 0/16/22 jobmanager-lcgpbs ramses.dsic.upv.es

Figure 11: Resources for Gateway Scenario lower level, as seen by gwhost in cepheus

With this setup, we achieve a common interfaces approach for the upper
level, where both TeraGrid and the local UCM cluster are accessed through
the same WS interfaces (albeit with different configurations and versions for
each of them). Also, at this same level, a GridGateWay is accessed using
the same WS interfaces. At the lower level we find that the encapsulated in-
frastructures are both accessed using different adapters for preWS interfaces
than those of upper level. In this way, we are showing the three forms of in-
teroperation in the same scenario: common interfaces in each level, gateways
to join both levels and adapters to address the two sets of common interfaces.

Figure 12 provides a visual representation of job distribution in the two
levels across the three iterations. The infrastructure labeled as GGW is really
the server running the GridGateWay, so all its jobs are really being forwarded
to one of EGEE or OSG preWS resources. Therefore middle column of the
figure offers a compound view of the OSG preWS and EGEE resources that
the gateway encapsulates. We can still see the expected short amount of jobs
taken by the EGEE infrastructure and an almost even distribution among
the other three. We draw attention the slight increase in jobs taken by both
UCM and TG WS resources with respect to the adapters scenario, since the
overhead caused by the GridGateWay increased the jobs diverted to the two
upper level infrastructures.

Average suspension times can be seen in Table 3. The OSG preWS re-
source shows a much lower lower suspension time than in the adapters sce-
nario, and it can be seen how this affects to the amount of jobs taken by this
infrastructure between iterations. This can be read as less jobs completed
whenever they have to wait more in the queue. The other three resources
show much more even values, whether comparing between iterations or even
between scenarios.

Table 4 shows the productivity for the resources in this scenario. It is a
good reflection of the effect caused by the overhead of the gateway, since we
can see a slight decrease in the productivity of the encapsulated OSG preWS
resource, if we compare it with the productivity measured in the previous
scenario, even considering the notable decrease in the suspension time. The
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Figure 12: Job distribution across infrastructures: Gateway Scenario

Iteration # UCM TG WS EGEE OSG preWS

1 220.28 18.73 84.85 20.62

2 215.09 17.76 82.69 39.2

3 201.44 16.32 88.95 38.26

Table 3: Average suspension times as experienced by jobs from the Gateway Scenario
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Iteration # Total UCM TG WS EGEE OSG preWS

1 132.45 37.75 37.08 13.90 43.70

2 126.58 40.51 39.87 14.55 31.64

3 121.21 40.61 36.97 13.33 30.30

Table 4: Productivity achieved (total and per resource) in the Gateway Scenario

EGEE resource apparently doesn’t get affected by this overhead, since its
productivity is similar across both scenarios. The most likely explanation is
that the reduced performance imposes a stronger condition in the produc-
tivity so that the overhead is not shown. The decrease in productivity of
the encapsulated resources shows the overhead caused by the gateway and
hence the penalty imposed by the use of a hierarchical structure in federation.
There is not an overall decrease in productivity due to the better behavior
of the UCM and TG WS resouces, which are directly accessed.

6. Conclusions and Future Work

With this work we have shown that a metascheduler can be used as a tool
for federation. Although of course it doesn’t solve all the problems alone, it
helps to model a solution, becoming an important component to achieve the
desired federation. It was argued in this paper that interoperability is not a
sufficient condition to produce federation, but other issues have to be taken
into account. One of the key conditions of the federation solution has to be
its scalability.

We claim that the GridWay metascheduler is a valuable tool for building
different types of grid infrastructures. In order to show that our proposed
solutions are fit for federation and therefore to sustain our claim, scalability of
the metascheduler had to be tested. As a conclusion of that study, GridWay
showed great stability, robustness and scalability during this test; where it
scheduled 10,000 jobs and kept track of them, showing remarkable robustness
and responsiveness. Perhaps the best indicator of this assertion is the fact
that it managed to admit 10,000 jobs in pending state in less than four
minutes. However, there is work to be done in the transfer MAD, to prevent
the memory leaks observed in the scalability test.

As future work in this direction, we want to keep GridWay’s value as a
tool for federation. Hence, there are plans to develop new MADs for other
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infrastructures, more concretely, MADs for UNICORE and for CREAM (the
new gLite lightweight service for resource management) are already being
developed while also plans for new and more complete scalability and ro-
bustness tests are being prepared. New policies for job scheduling are also
areas to be explored, to take into account the different topologies of federa-
tion described in this paper. In a similar line, the ability to negotiate SLAs
in order to automatically acquire resources from an infrastructure provider
is being explored, and integration with existing SLA component is currently
being study. Another field where is room for improvement is the GridGate-
Way, for example by reducing its latency to minimize the overhead caused
and to be able to improve the productivity achieved by the resources being
encapsulated by this component.
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