
Future Generation Computer Systems 23 (2007) 252–261
www.elsevier.com/locate/fgcs
A modular meta-scheduling architecture for interfacing with pre-WS and
WS Grid resource management servicesI

Eduardo Huedo∗, Rubén S. Montero, Ignacio M. Llorente

Departamento de Arquitectura de Computadores y Automática, Facultad de Informática, Universidad Complutense, 28040 Madrid, Spain

Received 20 October 2005; received in revised form 17 July 2006; accepted 20 July 2006
Available online 1 September 2006

Abstract

The last version of the Globus Toolkit includes both pre-WS and WS GRAM services to submit, monitor, and control jobs on remote Grid
resources. In the medium term and until a full transition is accomplished, both pre-WS and WS GRAM services will coexist in Grid infrastructures.
In this paper, we describe the modular architecture of the GridWay meta-scheduler, which allows the simultaneous and coordinated use of pre-WS
and WS GRAM services and, therefore, makes easy the transition to a Web Service implementation of the Globus components. Such functionality
is demonstrated on a infrastructure that comprises resources from a research testbed, based on the Globus Toolkit 4.0, and the EGEE production
infrastructure, based on the LCG middleware. The Web Service implementation of Globus components has been optimized for flexibility, stability
and scalability. However, part of the Grid community is still reluctant to transition to the Web Service model due mainly to its supposed lower
performance. We demonstrate that WS GRAM achieves a performance comparable to that of pre-WS GRAM.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Grid computing; GridWay Meta-scheduler; Globus toolkit; Grid resource management; WSRF
1. Introduction

The main driving force behind moving from pre-WS to WS
(Web Services) Grid services is that, according to the Grid’s
second requirement proposed by Foster [1], a Grid must be built
using standard, open, general-purpose protocols and interfaces.
However, a large part of the Grid community is still reluctant to
make this transition because of the lower efficiency associated
with Web Services. In fact, the Grid’s third requirement is
that a Grid must deliver nontrivial qualities of service, in
terms of response time, throughput, security, reliability or the
coordinated use of multiple resource types.

On the one hand, pre-WS Grid services are based on
proprietary interfaces (although usually implemented over

I This research was supported by Consejerı́a de Educación de la
Comunidad de Madrid, Fondo Europeo de Desarrollo Regional (FEDER) and
Fondo Social Europeo (FSE), through BIOGRIDNET Research Program S-
0505/TIC/000101, and by Ministerio de Educación y Ciencia, through the
research grant TIC2003-01321. The authors participate in the EGEE project,
funded by the European Union.

∗ Corresponding author. Tel.: +34 91 394 75 38; fax: +34 91 394 75 27.
E-mail addresses: ehuedo@fdi.ucm.es (E. Huedo),

rubensm@dacya.ucm.es (R.S. Montero), llorente@dacya.ucm.es
(I.M. Llorente).

0167-739X/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2006.07.013
standard protocols like HTTP, LDAP or FTP). On the
other hand, WS Grid services are based on the WS-
Resource Framework (WSRF) [2], a standard specification
fully compatible with other Web Service specifications. In fact,
WSRF can be viewed as a set of conventions and usage patterns
within the context of established Web Service standards, like
WS-Addressing. WSRF defines the WS-Resource construct as
a composition of a Web service and a stateful resource [3].

The Open Grid Services Infrastructure (OGSI) [4] was
previously conceived as an extension of Web Services to
have stateful WS-Resources. However, the implementation of
OGSI resulted in non-standard, complex and heavy-weight
Grid services. Moreover, it jeopardized the convergence of Grid
and Web Services. Grid services implemented as Web Services
are easier to specify and, therefore, to standardize. Thus, WS
Grid services provide a way to construct an Open Grid Services
Architecture (OGSA) [5] where tools from multiple vendors
interoperate through the same set of protocols and interfaces,
implemented in different manners and over different tools.

As the introduction of OGSA and the release of the Globus
Toolkit 4 (GT4) have made imminent the generalized use
of WS Grid services; it is highly interesting to evaluate

http://www.elsevier.com/locate/fgcs
mailto:ehuedo@fdi.ucm.es
mailto:rubensm@dacya.ucm.es
mailto:llorente@dacya.ucm.es
http://dx.doi.org/10.1016/j.future.2006.07.013


E. Huedo et al. / Future Generation Computer Systems 23 (2007) 252–261 253
Fig. 1. Architecture of the pre-WS Grid Resource Allocation and Management (GRAM) service.
the performance penalty for achieving the Grid’s second
requirement. In particular, our interest is focused on the main
component of Globus-based computational Grids, the Grid
Resource Allocation and Management (GRAM) service.

In this work we evaluate the GT4 GRAM services from
the user’s perspective, rather than thoroughly benchmarking the
services in order to optimize their workflow or implementation.
Other works present a comparison of different stateful Web
Services implementations [6], and analyze the service times and
maximum concurrency of several Globus Grid services through
an automated distributed performance testing tool [7].

In the context of Computational Grids, we can mention
the following meta-scheduling projects: Condor/G [8], which
provides user tools with fault tolerance capabilities to submit
jobs to a Globus based Grid; Nimrod/G [9], designed
specifically for Parameter Sweep Application (PSA) optimizing
user-supplied parameters like deadline or budget; GridLab
Resource Management System (GRMS) [10], which is a
meta-scheduler component to deploy resource management
systems for large scale infrastructures; and the Community
Scheduler Framework (CSF) [11], an implementation of an
OGSA-based meta-scheduler; and finally the Enabling Grids
for E-sciencE (EGEE) Resource Broker [12], that handles job
submission and accounting. On the other hand, GridWay gives
end users, application developers and managers of Globus
infrastructures a scheduling functionality similar to that found
on local DRM systems, including the support for DRMAA
GGF standard. A comparison of different approaches to Grid
resource management systems can be found in [13,14].

Even though some of the aforementioned application
schedulers, like Condor/G or Nimrod/G, have recently provided
support for Globus WS services, we would like to remark
on the advantages of the GridWay architecture in terms of
flexibility, extensibility, usability and deployability. In fact, it
has been successfully used to simultaneously interface to LCG
middleware and Globus WS and pre-WS components.

The aim of this paper is threefold: first, to present the
loosely-coupled architecture of the GridWay meta-scheduler
for interfacing simultaneously with different Grid resource
management services; second, to evaluate the coordinated
harnessing performed by GridWay; and third, to compare the
performance at user level of the pre-WS and WS GRAM
services provided by the Globus Toolkit version 4.0. The ability
of GridWay to simultaneously use different Grid Services eases
transition to the Web Service implementation of the Globus
components.

The rest of the paper is organized as follows: Section 2
introduces the Globus approach for resource management,
through its GRAM component, while Section 3 introduces the
GridWay approach for job management. Section 4 discusses
about Grid benchmarking. Section 5 shows the results of the
coordinated harnessing of both kinds of GRAM services, while
Section 6 compares their performance. Finally, Section 7 ends
up with some conclusions.

2. The Globus approach for resource management

The Globus Toolkit [15] has become a de facto standard in
Grid computing. Globus services allow secure and transparent
access to resources across multiple administrative domains,
and serve as building blocks to implement the stages of Grid
scheduling [16]. Resource management is maybe the most
important component for computational Grids, although it
could also be extended to other non-computational resources.
The Grid Resource Allocation and Management (GRAM) [17]
service is the core of the resource management pillar of the
Globus Toolkit.

In pre-WS GRAM (see Fig. 1), a job is submitted through
the Gatekeeper service of the remote computer. The Gatekeeper
is a service running on every node of a Globus Grid. The
Gatekeeper handles each request, mutually authenticating with
the client and mapping the request to a local user, and creating a
Job Manager for each job. The Job Manager starts, controls and
monitors the job according to its RSL (Resource Specification
Language) specification, communicating state changes back to
the GRAM client via callbacks. When the job terminates, either
normally or by failing, the Job Manager terminates as well,
ending the life cycle of the Grid job.



254 E. Huedo et al. / Future Generation Computer Systems 23 (2007) 252–261
Fig. 2. Architecture of the WS Grid Resource Allocation and Management (GRAM) service.
In WS GRAM (see Fig. 2), when a job is submitted, the
request is sent to the Managed Job Factory service of the remote
computer. The Managed Job Factory and Managed Job are two
services running on every node of a Globus Grid. The Managed
Job Factory handles each request and creates a Managed Job
resource for each job. Authentication is performed via Web
Service mechanisms and some operations are mapped to a local
user via the sudo UNIX command. The Managed Job service
uses a Job Manager to start and control the job according to
its RSL specification, mapping the request to a local user and
communicating state changes back to the GRAM client via WS-
Notifications [18]. When the job terminates, either normally or
by failing, the Managed Job resource is destroyed, ending the
life cycle of the Grid job.

Note also that, in pre-WS GRAM, there is one Gatekeeper
which starts multiple Job Managers, while in WS GRAM, there
is one Managed Job Factory service and only one Managed Job
service which controls multiple jobs, acting as Managed Job
resources in WSRF.

Although the use of Web Services entails some overhead, the
implementation of WS GRAM has been optimized in several
ways. For example, it provides better job status monitoring
mechanism through the use of a Job State Monitor (JSM),
which in turns uses a Scheduler Event Generator (SEG), instead
of implementing a polling mechanism in the Job Manager, as
in pre-WS GRAM. It also provides a more scalable/reliable
file handling through the use of a Reliable File Transfer
(RFT) service instead of the globus-url-copy command
used directly by the Job Manager in pre-WS GRAM. Moreover,
WS GRAM only supports GridFTP for file transfer and the
use of the non-scalable GASS (Global Access to Secondary
Storage) caching mechanism has been removed, although it is
of great use for parametric jobs [19]. In any case, WSRF-based
Grid services in GT4 clearly outperform heavy-weight OGSI-
based Grid services in GT3 [7].

As can be seen in Fig. 2, WSRF separates services, resources
and implementation objects. This way is easier to standardize
a service architecture, like OGSA, since only services and
resource properties representing resource state have to be
specified in the standardization documents.

GRAM operates in conjunction with a number of schedulers
including Condor, PBS (Portable Batch System) and a
simple “fork” scheduler. The Job Manager provides a plugin
architecture for extensibility. When the Job Manager is
respectively invoked by the Gatekeeper or Managed Job service
to process a job request, it maps the request to a local scheduler.
These plugins provide a set of programs and scripts that map job
requests to scheduler commands such as submit, poll or cancel.

3. The GridWay approach for job management

GridWay1 is an open source meta-scheduling technology
that provides a decentralized, modular and “end-to-end”
architecture for resource brokering and job management,
in dynamic and loosely-coupled Grid environments [20,21].
The core of the framework is a personal submission agent
that performs all submission stages [16] and watches over
the efficient execution of the job. Adaptation to changing
conditions is achieved by dynamic rescheduling. Once the
job is initially allocated, it is rescheduled when performance
slowdown or remote failure are detected, and periodically at
each discovering interval. Application performance is evaluated
periodically at each monitoring interval.

The submission agent consists of the following components
(see Fig. 3):

• Request Manager: To handle client requests.
• Dispatch Manager: To perform job scheduling.
• Submission Manager: To perform the stages of job

execution, including job migration.
• Execution Manager: To execute each job stage.
• Performance Monitor: To evaluate the job performance.

The flexibility of the framework is guaranteed by a well-
defined API (Application Programming Interface) for each
submission agent component. Moreover, the framework has

1 http://www.gridway.org.

http://www.gridway.org


E. Huedo et al. / Future Generation Computer Systems 23 (2007) 252–261 255
Fig. 3. Architecture of GridWay.
been designed to be modular to allow adaptability, extensibility
and improvement of its capabilities. The following modules can
be set on a per job basis:

• Resource Selector: Used by the Dispatch Manager to select
the most adequate host to run each job according to the host’s
rank, architecture and other parameters.

• Middleware Access Driver: Used by the Execution Manager
to submit, monitor and control each job stage.

• Performance Evaluator: Used by the Performance Monitor
to check the progress of the job.

• Prolog: Used by the Submission Manager to prepare the
remote machine and transfer the executable, input and restart
(in the case of migration) files.

• Wrapper: Used by the Submission Manager to run the
executable file and capture its exit code.

• Epilog: Used by the Submission Manager to transfer back
output or restart (in case of stop) files and clean up the
remote machine.

This way, the Resource Selector interfaces with Grid
Information services (e.g. Globus Monitoring and Discovery
Service, MDS), the Middleware Access Driver interfaces
with Resource Management services (e.g. Globus GRAM),
Prolog and Epilog interface with Data Management services
(e.g. Globus GridFTP, Reliable File Transfer, RFT, and
Data Replication Service, DRS), Wrapper interfaces with
Execution services and Performance Evaluator interfaces with
Performance services. The result is that the GridWay core is
independent of the underlying middleware implementation.

3.1. The request manager and dispatch manager

The client application uses the Distributed Resource
Management Application API (DRMAA) [22] to communicate
with the Request Manager in order to submit the job along
with its configuration file, or job template, which contains all
the necessary parameters for its execution. Once submitted,
the client may also request control operations to the request
manager, such as job stop/resume, kill or reschedule.

The Dispatch Manager periodically wakes up at each
scheduling interval, and tries to submit pending and
rescheduled jobs to Grid resources. It invokes the execution
of the Resource Selector module, which returns a prioritized
list of candidate hosts. The Dispatch Manager submits pending
jobs by invoking a Submission Manager, and also decides if
the migration of rescheduled jobs is worthwhile or not. This
decision can be based on the reason of rescheduling, the elapsed
time, the estimated remaining time, or the estimated transfer



256 E. Huedo et al. / Future Generation Computer Systems 23 (2007) 252–261
time of input and checkpoint files [23]. If this is the case, the
Dispatch Manager triggers a migration event along with the new
selected resource to the Submission Manager, which manages
the job migration.

3.2. The submission manager and performance monitor

The Submission Manager is responsible for the execution
of the job during its lifetime, i.e. until it is done or stopped.
It is invoked by the Dispatch Manager along with a selected
host to submit a job, and is also responsible for performing
job migration to a new resource. The Globus management
components and protocols are used to support all these actions.

The Submission Manager performs the following tasks:

• Preparation: Submitting the Prolog executable, monitoring
its correct execution and updating the submission states.

• Execution: Submitting the Wrapper executable, monitoring
its correct execution, updating the submission states and
waiting for events from the Dispatch Manager.

• Cancellation: Cancelling the submitted job if a migration,
stop or kill event is received by the Submission Manager.

• Finalization: Submitting the Epilog executable, monitoring
its correct execution and updating the submission states.

Therefore, GridWay doesn’t rely on the underlying
middleware to perform preparation and finalization tasks.
Moreover, since both Prolog and Epilog are submitted to
the front-end node of a cluster and Wrapper is submitted to
a compute node, GridWay doesn’t require any middleware
installation nor network connectivity in the compute nodes.
This is one of the main advantages of the “end-to-end”
architecture of GridWay.

The Performance Monitor periodically wakes up at each
monitoring interval. It requests rescheduling actions to detect
better resources when performance slowdown is detected and
at each discovering interval.

3.3. The execution manager

In order to provide an abstraction with the resource
management middleware layer, the Execution Manager uses a
Middleware Access Driver (MAD) module to submit, control
and monitor the execution of the Prolog, Wrapper and Epilog
modules. The MAD module provides basic operations with
the resource management middleware. The use of standard
input/output makes easy the debugging process of new MADs.

The format to send a request to the MAD, through its
standard input, is:

OPERATION JID HOST[/JM] RSL
where OPERATION can be one of the following:

• INIT: Initializes the MAD.
• SUBMIT: Submits a job.
• POLL: Polls a job to obtain its state.
• CANCEL: Cancels a job.
• FINALIZE: Finalizes the MAD.
JID is a job identifier, chosen by GridWay, HOST and the
optional JM specifies, respectively, the resource contact and
job manager to submit the job if the operation is SUBMIT
(otherwise they are ignored) and RSL specifies the resource
specification to submit the job if the operation is SUBMIT
(otherwise it is ignored).

On the other side, the format to receive a response from the
MAD, through its standard output, is:

OPERATION JID RESULT INFO
where OPERATION is the operation specified in the request
that originated the response or CALLBACK, in the case of an
asynchronous notification of a state change, JID is the job
identifier, as provided in the submission request, RESULT is
the result of the operation (it could be SUCCESS or FAILURE)
and INFO contains the cause of failure if RESULT is FAILURE,
or it contains the state of the job, if OPERATION is POLL or
CALLBACK.

Currently, the are two MADs available. One, written in
C, interfaces with pre-WS GRAM services and other, written
in Java, interfaces with WS GRAM services. Java Virtual
Machine (JVM) initialization time doesn’t affect, since the
JVM is initiated before the start of measurements.

4. Benchmarks for Grid computing

Benchmarks are designed to provide an objective measure
of the capabilities of hardware and software systems to execute
a typical application profile. As is well known, there is no
better benchmark than the own application or application set for
which the Grid infrastructure has been developed for. However,
it is convenient to count on well-defined test programs,
since they allow the evaluation of different infrastructures by
executing the same workload.

The Grid Benchmarking Research Group (GBRG),2 within
the Global Grid Forum (GGF),3 proposes to create a set
of representative Grid benchmarks [24], which will embody
challenging usage scenarios with special emphasis on large
data usage. The NAS Grid Benchmarks (NGB) [25] suite has
been the first Grid benchmark specification available. It defines
a set of data flow graphs that model applications typically
executed on the Grid. The NGB specification suggests using the
job turnaround time as basic quantitative performance metric.
However, metrics like the resource usage or data transfer times
between tasks are identified as useful for diagnostic purposes.
Other qualitative metrics, like security and fault tolerance, are
considered crucial for a successful Grid infrastructure [26]. The
whole NGB suite has been previously implemented by using the
DRMAA interface supported by GridWay [27].

For the experiments below, we have chosen the ED
(Embarrassingly Distributed) benchmark from the NGB suite.
The ED benchmark represents an important class of Grid
applications called Parameter Sweep Applications (PSA),
which constitute multiple independent runs of the same

2 http://www.nas.nasa.gov/GGF/Benchmarks.
3 http://www.ggf.org.

http://www.nas.nasa.gov/GGF/Benchmarks
http://www.ggf.org


E. Huedo et al. / Future Generation Computer Systems 23 (2007) 252–261 257
Table 1
Characteristics of the pre-WS and WS GRAM resources in the research testbed

Name Site Location Nodes Processor Speed Memory DRMS
per node (MB)

cygnus UCM Madrid 1 Intel P4 2.5 GHz 512 –
ursa UCM Madrid 1 Intel P4 3.2 GHz 512 fork
draco UCM Madrid 1 Intel P4 3.2 GHz 512 fork
hydrus UCM Madrid 4 Intel P4 3.2 GHz 512 PBS
aquila UCM Madrid 2 Intel PIII 600 MHz 250 SGE

Table 2
Characteristics of the pre-WS GRAM resources in the production testbed

Name Site Location Nodes Processor Speed (GHz) Memory per node DRMS

egeece IFCA Cantabria 28 2 × Intel PIII 1.2 512 MB PBS
lcg2ce IFIC Valencia 117 AMD Athlon 1.2 512 MB PBS
lcg-ce CESGA Galicia 72 Intel P4 2.5 1 GB PBS
ce00 INTA-CAB Madrid 4 Intel P4 2.8 512 MB PBS
ce01 PIC Cataluña 65 Intel P4 3.4 512 MB PBS
program, but with different input parameters. In this case, each
task consists in the execution of the SP (Scalar Pentadiagonal)
flow solver [28] with a different initialization parameter for
the flow field. This kind of computations appears in many
scientific fields like Biology [29], Pharmacy, or Computational
Fluid Dynamics. In spite of the relatively simple structure of
this application profile, its efficient execution on computational
Grids involves challenging issues [19].

NGB defines several problem sizes (in terms of mesh size,
iterations and number of tasks) as classes S, W, A, B, C, D
and E. We have used a problem size of class A, since it is
appropriate for middle-class resources. However, instead of
submitting 9 tasks, as NGB class A defines, we have submitted
much more tasks in order to have a real high-throughput
application.

The characteristics of the ED benchmark, like high number
of repeated submissions, relatively easy scheduling, and low
input/output requirements, makes it very appropriate to evaluate
resource management services. However, this choice doesn’t
affect the generality of measurements nor observations. In fact,
other benchmarks in the suite (like VP or MB, from the NGB
suite), made of dependent tasks, are undoubtedly better to
analyze the scheduling and data movement capabilities of a
scheduler [30].

5. Coordinated harnessing of pre-WS and WS GRAM
services

In this section, we analyze the coordinated use of a research
testbed (described in Table 1) with WS GRAM as part of
Globus Toolkit 4.0, and a production testbed (described in
Table 2), which is composed of some Spanish sites enrolled in
EGEE4 (Enabling Grids for E-sciencE)), with pre-WS GRAM
as part of the LCG (LHC Computing Grid) middleware. Testbed
resources are interconnected by the Spanish National Research

4 http://www.eu-egee.org.
and Education Network (RedIRIS, see Fig. 4) and several
regional networks, like the Telematic Research Network of
Madrid (REDIMadrid, see Fig. 5), which is based on DWDM
(Dense Wavelength Division Multiplexing) optical technology
and connects several research centers in the community of
Madrid, including UCM and INTA-CAB, at 1 Gbps each. The
resulting environment is highly dynamic and heterogeneous
due to the shared use of compute and network resources, the
different DRMS (Distributed Resource Management Systems),
processors and network links, the different middleware and
service technologies, etc.

The version of the Globus toolkit included in LCG
has been adapted in several ways, mainly: an automatic
generation of Grid map files, a new GLUE (Grid Laboratory
Uniform Environment) schema [31] for MDS (Monitoring
and Discovery Service), a persistent BDII (Berkeley Database
Information Index) instead of GIIS (Grid Index Information
Service), and the fact that file systems are not shared by
default between cluster nodes. In a previous work [32], we have
described the coordinated use of two Grid infrastructures, one
based on Globus pre-WS services and another based on the
LCG middleware, by only using the Globus pre-WS protocols
and interfaces. In this work, we have extended the modularity
of the GridWay framework to the resource management
interfacing layer, through the MAD, in order to support the
simultaneous use of both pre-WS and WS Grid services.

Scheduling is based on job requirements, resource ranks and
resource availability. We have used a simple Resource Selector,
consisting of a list of resources, along with their characteristics
(including the MAD that should be used to access each
of them). This way, the Grid Information services does not
interfere with the measurements. Moreover, in order to not
saturate the production testbed with this experiment, we have
imposed the limitation to use only four nodes simultaneously
on each compute resource. In this case, the width of the ED
benchmark has been defined to be 100 tasks.

Figs. 6 and 7 show the dynamic throughput achieved and the
scheduling performed, respectively, during four experiments.

http://www.eu-egee.org


258 E. Huedo et al. / Future Generation Computer Systems 23 (2007) 252–261
Fig. 4. Topology of the RedIRIS-2 network.
Fig. 5. Topology of the REDIMadrid network.
Dynamic throughput is formulated as an average throughput
calculated every time a job completes. Experiment 1 reaches
the maximum throughput (212 jobs/h) since all resources were
available. During experiment 2, PIC was unavailable, so no
job was allocated to this site and the other sites received
more jobs. Therefore, the throughput dropped considerably
(154 jobs/h).
In the third experiment, INTA-CAB was partially busy,
being only two nodes available for execution. This is reflected
in the schedule (INTA-CAB received half the jobs as compared
to the first experiment) and in the achieved throughput
(181 jobs/h). Finally, during experiment 4, CESGA and PIC
received some Grid jobs not related to the experiment. In all
the experiments, UCM received a higher number of jobs since



E. Huedo et al. / Future Generation Computer Systems 23 (2007) 252–261 259
Table 3
Transfer and execution times (seconds) per job on each resource

Host Pre-WS WS
Execution time Transfer time Execution time Transfer time
Mean Dev. Mean Dev. Mean Dev. Mean Dev.

draco 225.1 0.4 22.2 0.5 229.1 4.1 31.5 6.9
ursa 205.1 0.4 22.0 0.0 215.5 2.4 31.9 4.8
hydrus 195.0 10.5 26.1 1.7 207.0 5.0 52.0 10.9
aquila 1379.0 142.8 43.0 1.4 1404.0 127.3 106.5 4.9

Total 248.8 234.3 25.5 4.3 259.8 236.8 48.0 18.4
Fig. 6. Dynamic throughput in the four experiments.

Fig. 7. Scheduling performed in the four experiments.

it presents more resources and, therefore, more compute nodes
(10 vs. 4) due to the limitation of four simultaneously running
jobs on the same resource.

6. Performance evaluation of pre-WS and WS GRAM
services

In this section, we evaluate both implementations of Globus
services. The experimental results have been obtained on
the research testbed previously described in Table 1, whose
resources can be accessed via either pre-WS or WS GRAM
services, both from Globus Toolkit 4.0. The use of this
controlled testbed allows a better comparison of results. The
resources are connected through the local network of the UCM
(Universidad Complutense de Madrid), which is Fast Ethernet
at 100 Mbps. In the following experiments, cygnus is used as
client. The ED benchmark used for the following experiments
comprises the execution of 50 independent tasks.

Table 3 shows the average and deviation of the transfer
(preparation and finalization stages) and execution (execution
stage) times for each resource and GRAM service. Pre-WS
transfer times on draco, ursa and hydrus are twice the Job
Manager polling period (10 s since Globus 2.4) plus some
overhead. Also, aquila presents a higher execution and transfer
time since its compute nodes have slower processors. Even
though, ursa, draco and hydrus’s compute nodes are identical,
hydrus presents a lower mean execution time, due to the
exclusive access to the compute nodes provided by the DRMS,
but a higher deviation, due to the overhead of the DRMS and
the simultaneous submission of multiple jobs. It also presents a
higher transfer time, due to the simultaneous transfer of files for
multiple jobs. In the case of pre-WS services, this is alleviated
through the use of the GASS cache.

Table 4 shows detailed times for all jobs obtained in two
of the experiments. Suspension and active times are measured
by GridWay by following the GRAM protocol, and total time
is the sum of the previous two. Real time is directly measured
by Prolog, Wrapper and Epilog modules as the time actually
spent on their activities, and overhead time is the difference
between total and real time. Table 5 again shows detailed times,
but only for those jobs submitted to hydrus. Regarding the
total execution time, the performance gain in pre-WS is lower
than 6%. It can be seen that the suspension time (time from
submission to active state) is greater in WS GRAM due to
the Web Service container overheads, the use of credential
delegation and file transfer WS Grid services and the lack of
GASS caching. This results in overhead times that are roughly
twice in WS GRAM. Moreover, the time actually spent (i.e. the
real time) on preparation and finalization stages is also greater,
which could be due also to container overheads.

Fig. 8 shows the dynamic throughput achieved during the
experiments. It is clear that using pre-WS a higher throughput
is reached (83 vs. 78 jobs/h). However, this does not suppose
a big difference in performance (only 6%). Thus, in spite
of the undoubtedly greater overheads seen in WS GRAM,
this is not appreciated in the achieved throughput, since the
ED benchmark takes much more time to execute than the
preparation and finalization stages.



260 E. Huedo et al. / Future Generation Computer Systems 23 (2007) 252–261
Table 4
Detailed times (seconds) per job

Time Pre-WS WS
Prolog Wrapper Epilog Prolog Wrapper Epilog

Suspension 2.9 6.2 1.9 12.3 9.9 9.5
Active 10.4 242.6 10.0 14.4 247.6 13.2

Total 13.3 248.8 11.9 26.7 257.5 22.7

Real 0.6 238.5 0.5 2.3 237.4 1.6
Overhead 12.7 10.3 11.4 24.4 20.1 21.1

Table 5
Detailed times (seconds) per job on hydrus

Time Pre-WS WS
Prolog Wrapper Epilog Prolog Wrapper Epilog

Suspension 3.0 6.4 2.2 13.1 9.7 10.5
Active 10.4 188.6 10.4 14.5 196.6 12.3

Total 13.4 195.0 12.6 27.6 206.3 22.8

Real 0.6 184.5 0.7 2.3 186.1 1.8
Overhead 12.8 10.5 11.9 25.3 20.2 21.0
Fig. 8. Dynamic throughput in the four experiments.

The scheduling performed during the four experiments is
identical in all the experiments, allocating 32 jobs to hydrus,
8 jobs to draco and ursa and 2 jobs to aquila.

7. Conclusions

The GridWay meta-scheduler is able to work over
different infrastructures in a loosely-coupled way, allowing
a straightforward resource sharing. The smooth process of
integration of two so different infrastructures and service
technologies demonstrates that the GridWay approach, based
on a modular, decentralized and “end-to-end” architecture, is
appropriate for the Grid. The proposed modular architecture for
job management eases the gradual migration from pre-WS Grid
services to WS ones, and even, the long-term coexistence of
both.

The experimental results demonstrate that WS-based
GRAM has more overheads compared to pre-WS GRAM.
However, for high-throughput applications that does not pose
a big issue. On the other hand, the Web Service interface for
GRAM provides additional benefits, like superior scalability,
partly thanks to its improved implementation. Moreover, it is
expected that a new implementation of GRAM over the C WS
Core (currently it is implemented over the Java WS Core) will
reduce this overhead and improve performance. More detailed
results show that the WS GRAM implementation would benefit
from a mechanism for file caching, mainly for parametric jobs,
implemented in the RFT service.

Acknowledgements

We would like to acknowledge all the institutions that have
contributed resources to perform the experiments. They are
Departamento de Arquitectura de Computadores y Automática
(DACyA) at Universidad Complutense de Madrid (UCM),
Centro de Astrobiologı́a (CAB) at Instituto Nacional de
Técnica Aeroespacial “Esteban Terradas” (INTA), Centro de
Supercomputación de Galicia (CESGA), Instituto de Fı́sica de
Cantabria (IFCA), Instituto de Fı́sica Corpuscular (IFIC) and
Port d’Informació Cientı́fica (PIC).

References

[1] I. Foster, What is the Grid? A three point checklist, GRIDtoday 1 (6),
Available from http://www.gridtoday.com/02/0722/100136.html.

[2] K. Czajkowski, D.F. Ferguson, I. Foster et al., The WS-
Resource Framework Version 1.0, Tech. Rep. Available from
http://www.globus.org/wsrf/specs/ws-wsrf.pdf (2004).

[3] I. Foster, K. Czajkowski, D.E. Ferguson, et al., Modeling and managing
state in distributed systems: The role of OGSI and WSRF, Proceedings of
the IEEE 93 (3) (2005) 604–612.

[4] S. Tuecke, K. Czajkowski, I. Foster et al., Open Grid services
infrastructure (OGSI) version 1.0, Tech. Rep. GFD-R-P.15, Open Grid
Services Infrastructure Working Group—The Global Grid Forum, 2004.

http://www.gridtoday.com/02/0722/100136.html
http://www.globus.org/wsrf/specs/ws-wsrf.pdf


E. Huedo et al. / Future Generation Computer Systems 23 (2007) 252–261 261
[5] I. Foster, C. Kesselman, J. Nick, S. Tuecke, The Physiology of the Grid:
An open Grid services architecture for distributed systems integration,
Tech. Rep., Open Grid Service Infrastructure Working Group—The
Global Grid Forum, 2002.

[6] M. Humphrey, G. Wasson, K. Jackson et al., State and events for
web services: A comparison of five WS-Resource framework and WS-
notification implementations, in: 14th IEEE Intl. Symp. High Performance
Distributed Computing, HPDC-14, 2005, pp. 3–13.

[7] I. Raicu, A performance study of the globus toolkit and Grid services
via DiPerF, an Automated Distributed Performance testing framework,
Master’s Thesis, University of Chicago, Computer Science Department,
2005.

[8] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, Condor-G: A
computation management agent for multi-institutional Grids, Journal of
Cluster Computing 5 (3) (2002) 237–246.

[9] R. Buyya, D. Abramson, J. Giddy, A computational economy for Grid
computing and its implementation in the Nimrod-G Resource broker,
Future Generation Computer Systems 18 (2002) 1061–1074.

[10] E. Seidel, G. Allen, A. Merzky, J. Nabrzyski, GridLab—A Grid
application toolkit and testbed, Future Generation Computer Systems 18
(8) (2002) 1143–1153.

[11] Open source metascheduling for virtual organizations with the community
scheduler framework (CSF), Tech. Rep., Platform Computing, August
2003.

[12] EGEE middleware architecture and planning (Release 2), Tech. Rep.
DJRA1.4, EGEE, July 2005.

[13] Y. Gaoa, H. Rongb, J.Z. Huangc, Adaptive Grid job scheduling with
genetic algorithms, Future Generation Computer Systems 21 (2005)
151–161.

[14] K. Krauter, R. Buyya, M. Maheswaran, A taxonomy and survey of Grid
resource management systems for distributed computing, Software—
Practice and Experience 32 (2) (2002) 135–164.

[15] I. Foster, C. Kesselman, The globus project: A status report, Future
Generation Computer Systems 15 (1999) 607–621.

[16] J.M. Schopf, Ten actions when superscheduling, Tech. Rep. GFD-I.4,
Scheduling Working Group—The Global Grid Forum, 2001.

[17] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith,
S. Tuecke, A resource management architecture for metacomputing
systems, in: Proc. IPPS/SPDP’98 Workshop on Job Scheduling Strategies
for Parallel Processing, 1998, pp. 62–82.

[18] S. Graham, P. Niblett et al., Publish-subscribe notification for web services
version 1.0, Tech. Rep., 2004. Available from http://www.globus.org/wsrf.

[19] E. Huedo, R.S. Montero, I.M. Llorente, Experiences on adaptive Grid
scheduling of parameter sweep applications, in: Proc. 12th Euromicro
Conf. Parallel, Distributed and Network-based Processing, PDP 2004,
IEEE CS, 2004, pp. 28–33.

[20] E. Huedo, R.S. Montero, I.M. Llorente, A framework for adaptive
execution on Grids, Software—Practice and Experience 34 (7) (2004)
631–651.

[21] I.M. Llorente, R.S. Montero, E. Huedo, A loosely-coupled vision for
computational Grids, IEEE Distributed Systems Online 6 (5).

[22] H. Rajic, R. Brobst, W. Chan et al., Distributed resource management
application API specification 1.0, Tech. Rep. GFD-R-P.22, DRMAA
Working Group—The Global Grid Forum (2003).

[23] R.S. Montero, E. Huedo, I.M. Llorente, Grid resource selection for
opportunistic job migration, in: Proc. 9th Intl. Conf. Parallel and
Distributed Computing (Euro-Par 2003), in: LNCS, vol. 2790, 2003,
pp. 366–373.

[24] A. Snavely, G. Chun, H. Casanova, R.F. Van der Wijngaart, M.A.
Frumkin, Benchmarks for Grid computing: A review of ongoing efforts
and future directions, ACM SIGMETRICS Performance Evaluation
Review 30 (4) (2003) 27–32.
[25] R.F. Van der Wijngaart, M.A. Frumkin, NAS Grid Benchmarks Version
1.0, Tech. Rep. NAS-02-005, NASA Advanced Supercomputing (NAS)
2002.

[26] M.A. Frumkin, R.F. Van der Wijngaart, NAS Grid benchmarks: A tool
for Grid space exploration, Journal of Cluster Computing 5 (3) (2002)
247–255.

[27] J. Herrera, E. Huedo, R.S. Montero, I.M. Llorente, Developing Grid-
aware applications with the distributed resource management application
API, in: Proc. 10th Intl. Conf. Parallel and Distributed Processing (Euro-
Par 2004), in: LNCS, vol. 3149, 2004, pp. 429–435.

[28] D.H. Bailey, E. Barszcz, J.T. Barton, The NAS parallel benchmarks,
Journal of Supercomputer Applications 5 (3) (1991) 63–73.

[29] E. Huedo, U. Bastolla, R.S. Montero, I.M. Llorente, A framework for
protein structure prediction on the Grid, New Generation Computing 23
(4) (2005) 277–290.

[30] E. Huedo, R.S. Montero, I.M. Llorente, An evaluation methodology
for computational Grids, in: Proc. 2005 Intl. Conf. High Performance
Computing and Communications, HPCC 2005, in: LNCS, vol. 3726,
2005, pp. 499–504.

[31] S. Andreozzi, S. Burke, L. Field et al., GLUE Schema
Specification version 1.2, Tech. Rep., 2005. Available from
http://infnforge.cnaf.infn.it/glueinfomodel.

[32] J.L. Vázquez-Poletti, E. Huedo, R.S. Montero, I.M. Llorente, Coordinated
harnessing of the IRISGrid and EGEE testbeds with GridWay, Journal of
Parallel and Distributed Computing 66 (5) (2006) 763–771.

Eduardo Huedo received his M.E. in Computer Sci-
ence (1999) and his Ph.D. in Computer Architecture
(2004) from the Universidad Complutense de Madrid
(UCM). He is Assistant Professor of Computer Ar-
chitecture and Technology at UCM since 2006. Pre-
viously, he worked as Postdoctoral Researcher in the
Advanced Computing Laboratory at Centro de Astro-
biologı́a (CSIC-INTA), associated to NASA Astrobiol-
ogy Institute. His research areas are Performance Man-

agement and Tuning, Parallel and Distributed Computing and Grid Technology.

Rubén S. Montero received his B.S. in Physics
(1996), M.S. in Computer Science (1998) and
Ph.D. in Computer Architecture (2002) from the
Universidad Complutense de Madrid (UCM). He is
Associate Professor of Computer Architecture and
Technology at UCM. He has held several research
appointments at ICASE (NASA Langley Research
Center), where he worked on computational fluid
dynamics, parallel multigrid algorithms and Cluster

computing. Nowadays, his research interests lie mainly in Grid Technology, in
particular in adaptive scheduling, adaptive execution and distributed algorithms.

Ignacio M. Llorente received his B.S. in Physics
(1990), M.S. in Computer Science (1992) and Ph.D.
in Computer Architecture (1995) from the Universidad
Complutense de Madrid (UCM). He is Executive
M.B.A. by Instituto de Empresa since 2003. He is
Professor of Computer Architecture and Technology in
the Department of Computer Architecture and System
Engineering at UCM and Senior Scientist at Centro
de Astrobiologı́a (CSIC-INTA), associated to NASA

Astrobiology Institute. He has held several appointments since 1997 as a
Consultant in High Performance Computing and Applied Mathematics at
ICASE (NASA Langley Research Center). His research areas are Information
Security, High Performance Computing and Grid Technology.

http://www.globus.org/wsrf
http://infnforge.cnaf.infn.it/glueinfomodel

	A modular meta-scheduling architecture for interfacing with pre-WS and WS Grid resource management services
	Introduction
	The Globus approach for resource management
	The GridWay approach for job management
	The request manager and dispatch manager
	The submission manager and performance monitor
	The execution manager

	Benchmarks for Grid computing
	Coordinated harnessing of pre-WS and WS GRAM services
	Performance evaluation of pre-WS and WS GRAM services
	Conclusions
	Acknowledgements
	References


