A Decentralized Model for Scheduling
Independent Tasks in Federated Grids*

Katia Leal®*, Eduardo HuedoP, Ignacio M. Llorente®

& Universidad Rey Juan Carlos, Departamento de Sistemas Telemdticos y
Computacion, Escuela Superior de Ciencias Fxperimentales y Tecnologia, Tulipdn
SN, 28933 Mdsteles, Madrid, Spain

b Universidad Complutense de Madrid, Departamento de Arquitectura de
Computadores y Automdtica, Facultad de Informatica 28040, Spain

Abstract

In this paper we present a decentralized model for scheduling independent tasks
in Federated Grids. This model consists in a set of meta-schedulers on each of the
grid infrastructures of the Federated Grid. Each meta-scheduler has to implement a
mapping strategy in order to improve two of the most common objective functions of
tasks scheduling problems: makespan and resource performance. We consider four
possible algorithms that have to provide a simple, decoupled, and coarse-grained
solution that could be deployed in any Grid. The main axis of the algorithms is
that they consider the performance of the infrastructures forming the Federated
Grid, not only their state.

Key words: Federated Grids, Dynamic Objective, Advance Scheduling,
Independent Tasks, Decentralized Model

* This research was supported by Consejeria de Educacién de la Comunidad de
Madrid, Fondo Europeo de Desarrollo Regional (FEDER) and Fondo Social Eu-
ropeo (FSE), through BIOGRIDNET Research Program S-0505/TIC/000101, and
by Ministerio de Educacién y Ciencia and through the research grant TIN2006-
02806. Research work also supported by the Madrid Regional Research Council
under project TIC-000285-0505.

* Corresponding author.

Email address: katia.leal@gmail.com (Katia Leal).

Preprint submitted to Elsevier 29 January 2009

1 Introduction

Recent trends in planning and scheduling research reflect movements from
isolated multi-host scenarios to open large scale infrastructures with several
computational resources. These approaches have brought about a change from
local to global scheduling. Although the scheduling problem has been around
for some time [46], we can only utilize some of the ideas found in the litera-
ture. The principle reason why we cannot take advantage of earlier research
is because assumptions underlying centralized systems do not hold in Grid
circumstances and produce poor Grid schedules in practice [3], and this is the
reason why several models have been proposed to meet the requirements of
these new scenarios [12,2].

A system can be considered a Grid only if it coordinates resources that are not
subject to centralized control, by using standard, open, general-purpose pro-
tocols and interfaces, and to deliver nontrivial qualities of service [17]. Thus, a
Computational Grid provides a common layer to integrate heterogeneous plat-
forms through the definition of a consistent set of abstraction and interfaces
for access and management of shared resources. This layer is not limited to a
specific administrative domain - it may be possibly distributed across several
domains in all platforms.

The evolution of Grid Computing can be classified in three stages [37]:

O Enterprise Grid: the aggregation of various local grids allows inter-depart-
ment resource sharing within the same organization. Internal resources
are managed by different local resource management systems that could
be geographically distributed.

(O Partner Grid: the collaboration among several organizations, universities,
and research centers whose objective is to provide resource sharing. The
distributed resources belonging to several organizations are managed by
different local resource management systems. EGEE at the European
Union [13], TeraGrid at the United States [45], e-Science at the United
Kingdom [15], DAS-2 at Netherlands [9], D-Grid at Germany [39] and
GridX1 at Canada [1], are some examples of Partner Grids.

O Utility Grid: external service providers allow access to superior computing
performance to satisfy peak or unusual demands.

The Federated Grid represents the next stage in the evolution of Grid Com-
puting. It is characterized by allowing resource sharing among several grid
infrastructures of different types. Thus, a Federated Grid supports the inter-
connection of Enterprise, Partner and Utility Grids to increase the total num-
ber of participating resources. Otherwise, this powerful resource could not be
obtained by the separate grid resources. Finally, the same requirements for

Grid systems should apply for Federated Grids [17]. Federated Grids are fully
reviewed in Section 2, where we identify and explain all of the elements of a
Federated Grid.

Section 4 investigates the scheduling problem in Federated Grids. We propose
a generic decentralized model that is different than the centralized, application-
centric and ad-hoc solutions. These earlier solutions are discussed in Section
3. Our approach situates a meta-scheduler on the top level of the system archi-
tecture. In contrast to local schedulers and workload managers, which possess
complete knowledge of system state and user requests, our meta-scheduler
will have general information about the entire Federated Grid. This is why
we cannot try to apply fine-grained techniques that are more suitable to lo-
cal schedulers or workload managers that completely control the resources.
Instead, this obstacle is overcome with light, decoupled, and coarse-grained
techniques. Various algorithms that follow this idea and that could be hosted
in this meta-scheduler are presented in Section 5. The four proposed algorithms
are mainly based on a performance model [35] that allows to parametrize and
compare the different grids forming a Federated Grid. In this way, we char-
acterize the performance of a Federated Grid by means of the r, and ry
parameters [24] in order to determine the number of jobs, the objective to
submit to each of the grid infrastructures forming the Federated Grid.

Next, we enumerate the four proposed algorithms. Since these algorithms are
generic, they could be hosted in any meta-scheduler:

O The Static Objective (SO) algorithm works out the objective off-line.
Simulation results showed that this static scheduling policy maximized
the throughput of internal resources, without decreasing the computa-
tional time, and provided a fair distribution of the jobs [31], compared
with GridWay’s current scheduling policy.

(O The Dynamic Objective (DO) algorithm calculates the objective in
execution time. Thus, as we will see in Section 7, it solves some problems
that were encountered in the static version. Even though it provides a
fair distribution of the jobs that maximized the throughput of internal
resources, it does not reduce the makespan of the applications.

(O The Static Objective and Advance Scheduling (SO-AS) algorithm
combines the SO algorithm with an Advance Scheduling (AS) technique
to reduce the makespan achieved in the static version. In this case, the
algorithm does not wait for a free node, instead, it queues jobs in advance
to avoid the latencies that are inherent to Federated Grids. Later on we
will show that this version only reduces the makespan in the case of high
saturation in the external resources.

(3 The Dynamic Objective and Advance Scheduling (DO-AS) ver-
sion combines the two mechanisms that have demonstrated to be an en-
hancement: DO and AS. Thus, DO-AS compared with GridWay’s current

scheduling policy, clearly satisfies the makespan and performance objec-
tives of the resources [30], which are two of the most common objective
functions of tasks scheduling problems [12].

A full description of these algorithms with detailed explanations are provided
in Section 5. All of the algorithms follow these rules:

(A Do not require configuration information: users, nor programmers have
to provide configuration information, for example, the tasks length. The
scheduler does not need node specific information, such as processor
speed.

(O Have to be simple: the pseudo code of the algorithms shows simple cal-
culation operations that can be easily implemented in a few code lines.

(O Hawve to adapt to grid resources performance.

In Section 6, we explain how we deployed our decentralized model of meta-
schedulers that implement the proposed algorithms, to schedule independent
tasks on a simulated Federated Grid by means of the GridSim toolkit [21].

Section 7 provides the simulation results of all the algorithms and determines
the best option. The four algorithms are compared amongst themselves and
with GridWay’s current scheduling policy. However our comparison does not
end with the makespan achieved: we also calculate the objective for each
algorithm and show graphically the difference in their behavior.

Section 8 summarize the benefits of our decentralized model in conjunction
with the best scheduling algorithm. Guidelines for our current research activ-
ities are also provided.

2 Federated Grids

In this Section we will identify the different participating elements of a Fede-
rated Grid and explain their roles. Figure 1 depicts a standard Federated Grid
consisting of only two Grid infrastructures, which is sufficient for our analysis
of the components of a Federated Grid. Enterprise, Partner or a Utility Grids
can be used as the two Grid infrastructures making up the Federated Grid.

The following acronyms are used in Figure 1 and we now provide their defini-
tions:

O LRMS": Local Resource Management System, scheduler, local scheduler,
local resource manager, local workload manager. These tools are usu-
ally cluster managers that were taken from high-performance and dis-
tributed computing, and now are generally used in Grid Systems. The

scheduler

Direct Users % Direct Users %

Internal Internal
Users Users

Fig. 1. Example of a Federated Grid.

most widespread include: Sun’s Sun Grid Engine (SGE) [44], Platform’s
Load Sharing Facility (LSF) [34] and Veridian’s Portable Batch System
(PBS) [36].

O meta-scheduler: one or more components of a grid middleware. It can also
be an external tool that uses middleware components or services.

O RMS: Resource Management Service. This is usually a component of
a grid middleware that provides an interface for requesting and using
remote system resources for the execution of jobs. An example is the
Grid Resource Allocation and Management (GRAM) service [41] in the
Globus Toolkit [22].

The meta-scheduler perspective allows two types of resources to be identified
in Figure 1:

O Internal Resources: these are the resources directly accessible by the
meta-scheduler through the corresponding LRMS. That is, the resour-
ces owned by the particular research center, laboratory or company.

O Ezternal Resources: those resources not directly accessible by the meta-
scheduler. That is, the resources belonging to other organizations, uni-
versities or research centers.

The meta-scheduler in Grid 1 sees internal resources as the foundation for
Grid 1. These resources are directly accessible via the corresponding LRMS,
such as SGE or PBS, possibly through a uniform interface. External resources
are all those resources accessible through the RMS specification. In this case,
the meta-scheduler at Grid 1 only perceives one external resource, Grid 2.

The users depicted in Figure 1 can be classified as internal, external, and
direct. Differences are found in the way they access resources and their rights
to these resources:

O Internal Users: are those users that submit jobs directly to the meta-
scheduler. The jobs can then be executed in both internal and external
resources.

O Eaternal Users: all those users that submit jobs through the RMS inter-
face to external resources. Actually, the meta-scheduler is the one that
decides to submit jobs to external resources: this entire process is com-
pletely transparent for internal users. This is how internal users became
external users.

(O Direct Users: are all those users that submit jobs directly to the final
resources through the LRMS, bringing about changes in influence in the
load of the resources.

3 Related Work

In this Section we will review centralized, application-centric and some ad-hoc
attempts which function among operational grids. Some approaches to enable
grid interoperability are also introduced.

3.1 Centralized approaches

Centralized approaches are fine-grained solutions more suitable for local sched-
ulers or workload managers than for scheduling in Federated Grids. This is
because they present scalability problems.

One of the factors which determine whether an approach is worth considering
is the time required to evaluate a solution [8,7]. Genetic Algorithm (GA) is
one of the most popular mechanisms used for scheduling independent jobs in
a grid environment because of its simplicity, however its time-consuming iter-
ation should not be ignored. In fact, the Improved Genetic Algorithm (IGA)
was proposed to enhance the search performance of conventional GA [51].
However, an experiment using 8 resources and 60 tasks reveals a worst time
near to 1 second. Other results with additional resources and tasks showed
that more time is required to evaluate a solution. Later sections will show
that the performance of DO-AS is independent of the number of jobs, and
resources: the calculation of a new objective is an extremely light process.
Thus, unlike GA, DO-AS is fast enough to be used in a realistic scheduling
with hundreds of jobs and resources.

Since Min-min, and Max-min [19] are static algorithms, the assignment of
tasks is fixed a priori: these algorithms need prediction information on pro-
cessor speeds and task lengths to compute tasks priorities. However, a cost
estimate based on static information is not adaptive to situations such as one
of the nodes selected to perform a computation fails and becomes isolated from
the system due to network failure, or is so heavily loaded with jobs that its
response time becomes longer than expected. Another approach that does not
require such information was proposed to improve the previous ones, but the
simulation results demonstrated that it was only the second best algorithm
[20]. In contrast, DO-AS is dynamic, does not require information on proces-
sor speeds and task lengths, and the results we show have been obtained from
a simulated Federated Grid based on a real testbed.

Several models have also been proposed to meet the requirements of the new
Grid scenarios, as mentioned in [23]. Some of the most frequently cited models
include:

O Global backfilling: as depicted in Figure 2(a), users submit jobs to a spe-
cific host with a given policy. A controller may also be backfilling jobs
among the different resources [52]. Backfilling strategies typically require
a job runtime estimation which is provided by the user. In contrast, our
approach does not require any estimation information: it is completely
transparent for users, and applications.

O Global scheduler: as seen in Figure 2(b) this is the classical brokering
approach in which users submit jobs to a global scheduler that will later
submit the job to the corresponding local resource. Thus, jobs are queued
at two different levels: first at the global scheduler, and then at the local
scheduler queue. Two different resource selection algorithms are proposed
[42]: first jobs are processed in order of arrival to the meta-scheduler, then
when a job arrives at the second level, it is submitted to N different sites.
The start of the job in one site results in the cancellation of the remaining
submissions. This implies lot of communications per job submitted to
the second level. We propose a decoupled solution on which schedulers
at different levels are independent: local schedulers, as well as workload
managers do not need to modify their policies. Thus, we can deploy our
approach in any Grid.

O Global dispatcher: in this schema all jobs are submitted to a centralized
dispatcher, and no local schedulers are instantiated, as depicted in Fig-
ure 3(c). The goal of the global dispatcher is to find the allocation that
minimizes the job start time, but using a unique centralized reservation
table: local centers queues are of size zero [14]. Other approaches [43] use
a central dispatcher to analyze different tasks mapping policies.

O Global queue + pull mechanism: as seen in Figure 3(d), this scenario also
reveals only a unique global queue, but in this case local computational
schedulers pull jobs from it when there are enough available resources to

run the jobs. Users can submit jobs to a global queue from which local
schedulers dynamically pull jobs on demand [38]. This schema imposes
the use of a particular policy at the local scheduler level, thus it is not
compatible with other legacy local schedulers.

1 Backfiing |
| TI1D =
|
} Resource A }
T g Ll ore
Backfillin 73
== ? 5 go
! _IITTT S &5
| z Sa
! Resource B = =2
! m mr
E——— 3 B
[}
} Backfilling }
| I L
|
} Resource N }
(a) (b)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

H3HOLVdSIa
I
I
-
?%io
Q
]
|
|
g
o
=X
§

PULL

Resource B L0 } Resource B
Global Job Queue —
_ITTTT] e S e 1 L -
! FCFS | I Pull Policy |
== | % | == |
! : % |
! Resource N | 1 Resource N |
L |

(c) (d)

Fig. 3. (c¢) Global Dispatcher, (d) Global queue + pull mechanism.

These four approaches typically impose a particular configuration at the lo-
cal level, while our solution is compatible with legacy local schedulers and
workload managers.

3.2 Application-centric approaches

Scheduling strategies are not limited to centralized solutions. Other mod-
els propose application-centric [4], or job-guided strategies [23]. The goal of
application-centric solutions is to promote the performance of an individual
application rather than to optimize the use of system resources or to enhance
the performance of a stream of jobs. Instead of using a standard framework,
such as the Distributed Resource Management Application API (DRMAA)
[40], these applications have to be developed by using a particular framework.

In the job-guided approach each job has its own dispatcher that is aware of the

states of the different resources, but is unaware of any other jobs that have
been submitted. On the other hand, the accuracy of our approach depends
on the information provided by already finished jobs and those that have
to be scheduled. The job-guided approach also requires interaction between
the job dispatcher and the local managers, imposing the implementation of
a particular strategy at the local level to obtain better results. We do not
impose a two level scheduling model since several Grid infrastructures forming
the Federated Grid can use their own legacy local or meta-scheduler policies
at the different layers.

3.8 Grid Interoperability solutions

Earlier successful efforts at exploiting federated grids have been documented
in the literature [6,5,18]. However, the ability to federate in these cases is the
result of an effort focused on adapting applications to the distinct individual
grids at the user and middleware level. As a consequence, all these ad-hoc
approaches to interoperate are not scalable: the probability of success is likely
to decrease with every additional independent grid. The scheduling strategies
are also not clear, since applications were modified to utilize a specific grid
configuration. In fact, an argument could be made that it is not even a Fe-
derated Grid since the interoperability is not scalable, but requires manual
effort. In contrast, we propose a scheduling approach that enables Federated
Grids without changing the programming model nor the application code.

InterGrid [10] promotes interlinking of Grid systems through InterGrid Gate-
ways that mediate resource access based on peering arrangements between
different Grids. InterGrid philosophy advocates a decentralized resource man-
agement: a Grid requires a means to specify its policies, defining which resour-
ces are available to other Grids under which circumstances, and to make them
available to other Grids, but retaining ultimate control over its resources and
to whom it wants to provide access. However, this approach reflects a more
economical view, where business application support is a primary goal. In con-
trast, with our policies we want to improve the makespan of the applications
and the performance of the resources.

The Meta-Brokering approach [28] supports grid interoperability by means
of a higher level brokering service, the Meta-Broker. The Meta-Broker, inter-
grid broker or inter-grid gateway, sits on top of the resource brokers and uses
meta-data from them to decide where to send a user job. Its scheduling philoso-
phy is called meta-brokering, and creates a meta-level above current resource
management solutions by using technologies from the area of the semantic
web. This approach provides data about resource managers in the form of
meta-data. This is a centralized solution that does not stand Grid systems

requirements.

4 Decentralized Model

The previously reviewed approaches do not present suitable architecture for
scheduling in Federated Grids. We propose the decentralized model depicted
in Figure 4 as an alternative to centralized, application-centric or ad-hoc so-
lutions to this problem. The model puts a meta-scheduler at the top level of
each grid infrastructure, over the workload managers. This new layer presents
a queue on which jobs have to wait to be scheduled. However, the experimental
results will demonstrate that, even with the delays introduced by the different
queues jobs have to pass through, this model is still very efficient. Instead of
having a unique centralized global scheduler to map the jobs of the distinct
Grids, each one has its own meta-sceduler. The aim of the mapping strategy
implemented on the meta-scheduler at each Grid infrastructure of the Fede-
rated Grid is to reduce the makespan of its applications and to increase the
performance of its own Grid infrastructure.

’ RMS ‘ ’ RMS ‘
meta-scheduler i meta-scheduler meta-scheduler |;

] S]

[LRMS] LRMS | :

Resource A | !Resource B

Policy B

I
I I
I I
I I
I I
| |

|

} Policy A }

i I

| |

Fig. 4. Decentralized model.

To summarize, we proposed a decentralized approach like the one depicted in
Figure 4 on which:

O A meta-scheduler on each grid infrastructure of the Federated Grid im-
plements the appropriate scheduling algorithm, as mentioned before.

® For users and applications the mechanism for mapping jobs on the Fede-
rated Grid is completely transparent.

® Each algorithm implemented on the meta-scheduler at each Grid infras-
tructure of the Federated Grid is aware of reducing the makespan of its
own applications, and of increasing the performance of its own Grid in-
frastructure.

10

® The mapping strategy has to be simple, has to adapt to grid resources
performance, and does not require configuration information.

Even though we offer results based on a simulated testbed, the key contribu-
tion is to implement our mapping strategies in a real meta-scheduler. Thus,
from the very beginning we decided to use Grid Way [25] as the meta-scheduler
of our decentralized model. Among other possible meta-schedulers, we chose
GridWay because it presents an independent scheduling module that facili-
tates the implementation and incorporation of new scheduling policies. Grid-
Way also performs job execution management and resource brokering on a grid
consisting of distinct computing platforms managed by Globus [22] services.
GridWay allows unattended execution of single, array, or complex jobs on het-
erogeneous and dynamic grids. A Web Service - Grid Resource Allocation and
Management (WS-GRAM) Globus Toolkit service hosting a GridWay meta-
scheduler acts as a grid gateway between two grid infrastructures [33,26]. We
call this entity the GridGateWay. GridGateWay acts as a gateway between
the different grid infrastructures forming the Federated Grid, enabling sub-
mission, monitoring and control of jobs across the grids that make up the
Federated Grid. GridGateWay will be managed as a common resource in the
first grid infrastructure, and will act as a proxy of its users in the second
grid. The second grid infrastructure will appear in the information system of
the first as a normal WS-GRAM publishing an aggregation of grid resources.
Thus, we can implement the Federated Grid depicted in Figure 4 by using
GridWay as the meta-scheduler, and the WS-GRAM as the RMS interface.
Other meta-schedulers [2,27] could be used in place of GridWay. Other remote
submission interfaces, such as OGF Basic Execution Service (BES) [16], could
be used instead of GRAM.

5 Algorithms for scheduling on Federated Grids

We have applied a performance model [35] to GridWay’s current scheduling
policy to obtain four different algorithms. The performance model allows to
parametrize and compare the different Grids forming a Federated Grid. One
of the resultant algorithms satisfactorily achieves two of the most common ob-
jective functions of tasks scheduling problems [12]: makespan and performance
of the resources.

5.1 GridWay’s current scheduling policy

Normal is the algorithm that implements GridWay’s current mapping strat-
egy. This algorithm maps no more than DISPATCH CHUNK jobs to resources

11

every SCHEDULING_INTERVAL seconds, if there are unscheduled jobs. The algo-
rithm maps the next job first to internal resources. Thus, if there are available
free nodes in internal resources, the job is mapped to one of them. Otherwise,
maps the job to the next free external resource. Consequently, this algorithm
does not take into account the past performance of the different participating
infrastructures, instead it only determines if there are free nodes or not. Once
the job has been submitted to the corresponding free node of an internal or
external resource, a mechanism of maigration controls that the job starts its
execution before the elapse of SUSPENSION_TIMEQOUT seconds. If this time is
exceeded, the job is cancelled and moved to the unscheduled jobs list to be
scheduled again.

This algorithm was not designed for scheduling in Federated Grids, and does
not provide good results under this scenario. However, it can work well in a
Grid if it has direct access to resources, and these can be used in an oppor-
tunistic manner.

5.2 Static Objective: SO

Objective is a variable that determines the number of jobs that should be
submitted to each of the grid infrastructures forming the Federated Grid. Ob-
jective maximizes the throughput of the internal resources without increasing
the makespan. We used the equation that represents the best characterization
of the Federated Grid to obtain these numbers. The characterization can be
obtained if we take the line that represents the average behavior of the system,
as proposed by Hockney, and Jesshope [24]:

n(t) = Toot — n1/2 (1>

In Equation 1 n represents the number of completed tasks as a function of
time t. The other parameters are:

0 Asymptotic performance 7r.: is the maximum rate of performance
in tasks executed per second. In the case of an homogeneous array of N
processors with an execution time per task T, we have ro,= N/T.

O Half-performance length n,/: is the number of tasks required to ob-
tain the one-half of the asymptotic performance. This parameter is also
a measure of the amount of parallelism in the system as seen by the
application.

The linear relation represented by Equation 1 can be used to define the perfor-
mance of each grid infrastructure forming the Federated Grid (tasks completed
per second), the aggregation or federation model [48] is then used to determine

12

the Objective even in case of having more than two participants.

Since this algorithm is static, we need to train the testbed in order to obtain
the performance of the different infrastructures forming the Federated Grid.
We first run the Normal algorithm to obtain the linear equations of each
participant of the Federated Grid. Then, by means of the aggregation model
we work out off-line the objective for the proposed application. That is, we
determine the number of jobs of that application that should be submitted to
each participant of the Federated Grid, in order to increase the throughput of
internal resources without increasing the makespan.

Once we have calculated off-line the objective, we update the SO algorithm
with this information and execute it. At runtime, SO maps no more than
DISPATCH_ CHUNK jobs to resources every SCHEDULING_INTERVAL seconds if
there are still unscheduled jobs. In a Federated Grid, GridWay can receive
jobs from internal and external users. If the job to schedule is internal, there
are available internal resources, and it have not been met the internal objec-
tive, then job is scheduled to an internal resource. Otherwise, if there are no
available internal resources or the internal schedule objective has been met, SO
checks the possibility of submitting the job to an external resource. Thus, if
there are available external resources, and the external objective has not been
met, the job is scheduled to an external resource. Otherwise, if initially the job
was not internal, and in order to avoid the situations on which a participant of
the Federated Grid can receive from another one a job previously submitted,
GridWay only schedules external jobs to internal resources. Finally, all the
jobs that are being scheduled are dispatched, and SO programs a new event
for the next schedule.

5.8 Dynamic Objective: DO

DO calculates the objective dynamically at execution time, instead of off-line
as is the case with the SO algorithm.

Pseudo code for the DO algorithm is given in Algorithm 1, which shows how to
calculate a new objective every 0BJECTIVE_INTERVAL seconds if there are jobs
to schedule (line 1), and if there are enough samples from jobs already finished
(line 3) in each grid infrastructure to properly characterize the corresponding
grid. The algorithm first calculates the linear relation of Equation 1 for inter-
nal resources to define its performance (line 4-7). Lines 8 to 11 do the same
for the external resources. Then, in lines 12 to 13 the algorithm calculates the
linear equation of the whole Federated Grid as an aggregation from the lin-
ear relations of each infrastructure forming the Federated Grid. Any problem
calculating the linear relations results in using a default objective. Once the

13

Algorithm 1: UpdateObjective()

1 if (unscheduledJobs.size() < I) the n
2 sendInternalEvent(OBJECTIVE INTERVAL, UPDATE OBJECTIVE);
3 if ((internalX.size() >= MIN_IN SAMPLES) && (externalX.size() >= MIN_EX SAMPLES)) then
4 internalRegression = linearEquation(internalX, internalY),
5 if (internalRegression.getR_Inf() <0 || internalRegression.getN_1_2() > 0) the n
6 defaultPrediction();
7 sendInternalEvent(OBJECTIVE INTERVAL, UPDATE OBJECTIVE) ;
8 externalRegression = linearEquation(externalX, externalY);
9 if (externalRegression.getR_Inf() <0 || externalRegression.getN 1 2() >0) the n
10 defaultPrediction();
11 sendInternalEvent(OBJECTIVE INTERVAL, UPDATE OBJECTIVE),
12 r_inf FG = internalRegression.getR_Inf() + externalRegression.getR_Inf();
13 n_1 2 FG = internalRegression.absN 1 2() + externalRegression.absN 1 _2();
14 X = (unscheduledJobs.size() + n_1 2 FG)/r_inf FG;
15 newlnternalObjective = (internalRegression.getR_Inf() * X) + internalRegression.getN 1 _2()
16 if (newinternalObjective > unscheduledJobs.size()) then
17 newlnternalObjective = unscheduledJobs.size();
18 newExternalObjective = unscheduledJobs.size() - newlnternalObjective ;
19 if (newExternalObjective < 0) then
20 newExternalObjective = (;
21 internalObjective = newlinternalObjective ;
22 externalObjective = newExternalObjective;

23 sendInternal Event(OBJECTIVE INTERVAL, UPDATE OBJECTIVE),

performance of the Federated Grid has been defined, the algorithm can deter-
mine the time for the Federated Grid to complete unscheduledJobs.size ()
jobs (line 14). In lines 15 to 17 the algorithm determines the jobs that internal
resources could execute in time X. In order to increase the throughput of in-
ternal resources, the algorithm calculates the jobs that will be sent to external
resources as a function of the jobs that will be submitted to internal resources
(lines 28-20). Finally, the algorithm sets the new objectives (lines 21-22), and
programs a new event for the next objective update (line 23).

Algorithm 1 only considers one internal resource, and one external resource
to calculate the performance of the whole Federated Grid. This algorithm can
be easily adapted to a more complex grid with same scenario and more than
two participants.

The DO algorithm consists in a few code lines that calculates one linear equa-
tion per grid resource to determine the performance of the whole Federated
Grid. Thus, it does not need to deploy agents or specialized sensors across the
different infrastructures, which is the case for the Network Weather Service
[49] or the RPS toolkit [11].

When scheduling, DO behaves like the SO version, that is, it maps no more
than DISPATCH_CHUNK jobs to resources every SCHEDULING_INTERVAL seconds
if still there are unscheduled jobs. But in this case, the schedule has to meet
the dynamic objective previously calculated.

14

5.4 Static Objective and Advance Scheduling: SO-AS

The SO-AS strategy is the combination of the SO algorithm plus the AS
mechanism. The main difference with the previous schedulers is that AS does
not wait for free nodes, instead it queues jobs in advance in the target re-
sources. This is necessary in Federated Grids to avoid latencies and increase
performance.

Algorithm 2: Scheduler()
if (unscheduledJobs.size() == () then

1

2 sendInternalEvent(SCHEDULING INTERVAL, SCHEDULE NOW) ;

3 internalJobs = numinternalJobs(DISPATCH CHUNK, unscheduledJobs);

4 tolnternal = (internalJobs*internalObject)/unscheduledJobs.size() ;

5 toExternal = internalJobs - tolnternal;

6 while ((scheduledJobs < DISPATCH CHUNK) && (availablelnternal || availableExternal)) do
7 J = (Job)it.next();

8 if (j.isInternalJob()) then

9 if (availablelnternal && (scheduledTolnternal < tolnternal)) the n

10 if ((availablelnternal = scheduleTolnternalResource(j)) == true) the n
11 scheduledTolnternal++;

12 scheduledJobs++;

13 remove();

14 continue;

15 if (availableExternal && (scheduledToExternal < toExternal)) then

16 if ((availableExternal = scheduleToExternalResource(j)) == true) then
17 scheduledToExternal++;

18 scheduledJobs++;

19 remove();

20 else

21 scheduleTolnternalResource(j),

22 scheduledJobs++;
23 remove();

24 dispatch();
25 sendInternalEvent(SCHEDULING INTERVAL, SCHEDULE NOW),

The details of the scheduler are shown in Algorithm 2. In this pseudo code,
the AS algorithm maps no more than DISPATCH_CHUNK jobs to resources every
SCHEDULING_INTERVAL seconds if there are unscheduled jobs (line 1). First,
the algorithm determines how many of the DISPATCH_CHUNK jobs to schedule
are internal jobs (line 3). As we said before, in a Federated Grid, GridWay
can receive jobs from internal and external users. Since AS has a defined ob-
jective, it has to determine how many of the internalJobs jobs to schedule
should be submitted to internal resources and how many to external ones.
Line 4, toInternal shows that it is proportional to number of jobs that the
SO algorithm determines that has to be submitted to internal resources. For
example, if the static prediction says that 120 of 300 unscheduled jobs should
be submitted to internal resources, only 40% of the internalJobs jobs can be
scheduled to internal resources. The rest of the internalJobs jobs are going
to be scheduled to external resources (line 5). Then, while scheduledJobs jobs
keep less than DISPATCH_CHUNK, and there are available internal and external
resources (line 6), AS maps the next job (line 7). If the job to schedule is in-

15

ternal (line 8), there are available internal resources, and the internal schedule
objective has not been met (line 9), then the job is scheduled to an internal
resource (line 10). Basically, scheduleToInternalResource queues jobs to a
limit of Number of nodes()*MAX_RUNNING_RESOURCE. FACTOR. Otherwise, if
there are no available internal resources or the internal schedule objective has
been met, AS evaluates line 15. Thus, if there are available external resour-
ces and external schedule objective has not been met, the job is scheduled
to an external resource. scheduleToExternalResource (line 16) behaves like
scheduleToInternalResource. Otherwise, if the job was not internal (line
20), and in order to avoid the situations on which a participant of the Federa-
ted Grid can receive from another one a job previously submitted, GridWay
only schedules external jobs to internal resources (line 21). Finally, all the
jobs that are being scheduled are dispatched (line 24), and AS programs a
new event for the next schedule (line 25).

5.5 Dynamic Objective and Advance Scheduling: DO-AS

The DO-AS strategy incorporates the previously presented DO mechanism to
dynamically calculate a new objective by using the r, and ry/, parameters,
and the AS algorithm. One again, (see SO-AS case) the main difference with
the previous schedulers is that AS does not wait for a free node, instead it
queues jobs in advance in the target resources.

6 Design and Implementation

A real infrastructure has previously been set up [48,47] and allows resources
from the EGEE infrastructure to be accessed through a GridGateWay. How-
ever, the deployment of the proposed algorithms on a real environment will
require involvement of a large number of active users and resources, which is
very hard to coordinate and build, and would prevent repeatability of results.
Simulation appears to be the easiest way to analyze the different proposed
mapping strategies. Based on the simulation results, we can later encourage
or discourage the deployment on a real production environment. Simulation
of a Federated Grid was performed using the GridSim toolkit [21].

6.1 GridWaySim Entities

GridWaySim is the term for our simulation of a Federated Grid. Explanations
for the different participating entities of GridWaySim follow:

16

O GridWaySim: this entity represents the complete simulation, and is
responsible for the creation of the main simulated entities: GridWay meta-
schedulers, Users, Testbeds, and Workloads.

O GridWay: the Grid Way entity represents a generic GridWay meta-sche

duler implementing the corresponding algorithm.

Testbed: a Testbed represents a generic set of grid resources.

User: the User models a user that submits experiments to a GridWay

meta-scheduler. We use this entity to represent internal as well as external

users. The functionality of each user includes the submission of experi-
ments to the correspondent meta-scheduler, and waiting for it completion.

O Experiment: an Ezperiment is a collection of jobs. We use this entity to
recover important information about the experiment (such as the start
and end times), and all of its jobs.

(O Job: the Job entity represents a generic job submitted to the grid. This
entity provides specific information about each job: start time, end time,
and CPU time among others. We can represent jobs of different compu-
tation times, and with different input and output file sizes.

0 Workload: the Workload entity submits jobs by reading resource traces
from a file. Thus, our jobs are competing with the jobs submitted by the
Workload entity [32].

aa

7 Experiments & Results

We have implemented five versions of GridWaySim that only differ in the
mapping strategy. These versions are called Normal, SO, DO, SO-AS, and
DO-AS. As a result, we isolate the mapping policy as the only factor that can
cause throughput and makespan variations between these five GridWaySim
versions. In other words, DO-AS as well as all the previous versions rely on
the same configuration, with the same number of users that submit at the
same time the same experiment with the same number of jobs (each with the
same length, and input and output files size) to the same broker. The number
of brokers and resources also remains unchanged.

7.1 Test Scenario

As depicted in Figure 5 we have used the same scenario than in our previous
work [31], [30]. There are two grid resources in this test scenario: the DSA
(Distributed System Architecture) and the LCG (LHC Computing Grid). The
DSA testbed represents the resources of the Distributed System Architecture
research group at the Universidad Complutense de Madrid. In the same way,
the LCG testbed represents the Large Hadron Collider (LHC) Computing

17

Grid. From the point of view of a DSA internal user, the DSA GridWay is
her broker, the DSA resources are internal resources, and the LCG resources
are external resources. In the same way, all the jobs received by the LCG
GridWay through the Globus WS-GRAM interface are from external users.
This scenario represents a common situation on which a small organization
uses the resources of a partner grid infrastructure, but at the same time taking
advantage of its own resources.

GridWaySim

External
Users

WS-GRAM

GridWay

GridWay

DSA Resources

LCG Resources

Internal
Users

Direct
Users

Fig. 5. Test scenario.

Tables 1, and 2 summarize the number of computing elements, aka PEs (Pro-
cessing Elements), and MIPS (Millions Instructions Per Second) of each ma-
chine in the DSA and LCG infrastructures.

Table 1
Characteristics of the machines in the DSA research testbed.

Machine PEs MIPS/PE

hydrus 4 9787
aquila 5 9787
orion 1 9787
cygnus 2 6536
draco 1 6536

18

Table 2
Characteristics of the machines in the LCG research testbed.

7.2

Machine PEs MIPS/PE

machine0 800 9787
machinel 640 6536
machine?2 560 4902

Simulation Entities and Parameters

When the simulation starts, GridWaySim creates 3 Users, 2 GridWay meta-
schedulers, 1 DSATestbed, 1 LCGTestbed, and 1 Workload. Each entity is
an independent thread attending petitions in their body() method. The exact
configuration of the five versions of GridWaySim follows:

a

a

GridWay: since we need to interconnect the DSA and LCG grids to
form a federation, we have to instantiate 2 GridWay meta-schedulers, 1
for each grid infrastructure.
Testbed: the resources of the DSA research group are represented by the
DSATestbed entity, and the LCG ones by the LCGTestbed entity. Each
follows the configurations depicted in Tables 1 and 2, respectively.
Experiment: every Experiment is a collection of 550 equal Jobs repre-
senting a typical sample of medium-sized grid experiment.
Job: the main parameters of each Job are the length or size (in Millions
of Instructions, MI) of the Job to be executed, the input files (in bytes),
and the output files (also in bytes) to be submitted to the corresponding
resource. All Jobs have the same values for the three parameters: the size
is 6,000,000 MI, the input file size is 1,000,000 bytes, and the output file
size is 2,000,000 bytes.
User: when a User is created, we have to indicate a submit time for
her Experiment. Each user only submits one Experiment 48 hours after
the previous one. The first User submits her Experiment at 12:00 of the
second day of the simulation. Thus, each User submits her experiment to
the DSA GridWay at 12:00 of the corresponding day of simulation.
Workload: the Workload entity submits 188,041 jobs to the LCGTestbed
at the time specified in the trace file. Workload is the reason why the
LCG grid resources might not be available at certain times. The file
follows a standard workload format [50]. As a trace file, we used the LCG
Grid Log that contains 11 days of real activity from multiple nodes that
make up the LCG (Large Hadron Collider Computing Grid [29]). We now
enumerate some details about this testbed:

** Number of jobs submitted: 188,041. The log specifies the submit

time and the run time of each job.

19

% Start time: Sun Nov 20 00:00:05 GMT 2005.

* End time: Mon Dec 05 10:30:24 GMT 2005.

#* Maximum number of machines: 170.

* Maximum number of computing elements: 24,515.

Although the number of PEs of the real LCG testbed is 24,515, we
decided to reduce the number of PEs in our simulated LCG testbed to
those in Table 2, in order to force saturation of LCG resources.

We now provide detailed information about DO and DO-AS mapping strate-
gies parameters:

O Default Objective: at the start of the simulation there is not enough infor-
mation of finished jobs for the DO algorithm to calculate a new objective
so we set a default objective as follows. Half of the resources should be
submitted to internal resources, and the other half to external resources.
OBJECTIVE_INTERVAL: the DO algorithm is called every 30 seconds.
MAX_RUNNING_RESOURCE_FACTOR: the value of this factor is 3, so if a re-
source has 5 PEs then AS can queue a maximum of 15 jobs in that
resource.

SCHEDULING_INTERVAL: the AS algorithm is called every 30 seconds.
DISPATCH_CHUNK: the AS algorithm schedules 15 jobs each time.

aa

aa

7.8 Results

Tables 3 and 4 summarize the results of the five GridWaySim versions when
mapping 550 jobs. We can explain these results based on the level of saturation
of the LCG resource, or what is the same, knowing the number of available
free PEs. Thus, each User submits her Experiment in a specific instant of the
simulation that corresponds with a different LCG saturation level. So, when
User-0 submits her Experiment, there is an ideal scenario on which the LCG
infrastructure always has free PEs: the low saturation scenario. The medium
saturation scenario is the one suffered by User-1, in this case the LCG resource
has fewer free PEs. Finally, User-2 coexists within a high saturation scenario
of LCG in which there are limited PEs.

In Table 3 we can see the number of jobs that each GridWaySim version
executes on both grid infrastructures forming the Federated Grid. In fact,
this table shows the objective calculated by SO, DO, SO-AS, and DO-AS.
The objectives calculated by the four versions clearly are not very similar to
one another. This occurs because the SO and SO-AS versions calculate the
objective off-line, all jobs have been finished, thus it has a whole view of the
performance of the resources. However, DO, as well as DO-AS calculate a new
objective every OBJECTIVE INTERVAL seconds, thus they only have a partial

20

view of the same performance. Finally, DO differs from DO-AS because of the
influence of AS: while AS submits in advance as much jobs as possible at every
SCHEDULING_INTERVAL seconds, DO only schedules if there are free PEs.

The Normal and DO algorithms behave as expected: as the saturation of
LCG increases, more jobs are executed in DSA. SO and SO-AS do not follow
this behavior, since as we mentioned before, SO and SO-AS produce poor
objectives in high saturation situations because of the long periods on which
we cannot execute a single job in LCG. Again, DO-AS behaves in a different
way, and calculates very similar objectives for the three levels of saturation.
It can be appreciated that only a few more jobs are executed on internal
resources for middle, and high saturation situations.

If we combine the results of Table 3 with the completion time achieved by
the different GridWaySim versions of Table 4 we obtain a global view of the
five algorithms. Since the Normal, SO, and DO algorithms only submit jobs
when the resources have free PEs, clearly the results correspond with the
different saturation scenarios: as the saturation of LCG increases, more jobs
are executed on internal resources, and more time is needed for the Experiment
completion. In contrast, since the DO-AS algorithm queues jobs in advance
instead of waiting for PEs availability, its performance is more uniform: the
number of jobs submitted to each infrastructure and the makespan are almost
the same for the three Users. In general, User-0 compared with Users 1 and
2 obtains the best results, but this is obvious since the waiting time on LCG
queues is practically null. In addition, for all the Users the DO-AS algorithm

Table 3
Number of jobs executed in each infrastructure for the different GridWaySim ver-
sions.

Normal SO/SO-AS DO DO-AS

DSA LCG DSA LCG DSA LCG DSA LCG

User-0 26 524 102 448 31 519 67 483
User-1 113 437 145 405 124 426 70 480
User-2 427 123 124 426 416 134 70 480

Table 4
Completion time achieved for the different GridWaySim versions.

Normal SO DO SO-AS DO-AS

User-0 1:37:36 1:35:39 1:36:31 1:47:27 1:30:21
User-1 2:06:40 2:19:31 2:05:23 2:18:03 1:37:55
User-2 6:18:41 13:27:13 6:12:49 2:05:41 1:38:41

21

Pending I Queued DSA [Queued LCG ' Running DSA M Running LCG M Done DSA B Done LCG

Jobs

Time (min)

Fig. 6. Jobs state over time by using the Normal algorithm on DSA, LCG, and
Federated Grid infrastructures for User-2 (LCG highest saturation situation).

Pending !l Queued DSA [Queued LCG ' Running DSA M Running LCG M Done DSA M Done LCG

Jobs

100
125
150
175
200
225
250
275
300
325
350

g

3 375

[

= 400

3 425
450
475
500
525
550
575
600
625
650
675
700
725
750
775

Fig. 7. Jobs state over time by using the SO algorithm on DSA, LCG, and Federated
Grid infrastructures for User-2 (LCG highest saturation situation).

always reduces the makespan obtained by the previous algorithms. The most
remarkable reduction obtained by DO-AS is for User-2. This reduction is due
to the queuing of jobs on resources, instead of waiting for free PEs as the rest
of the algorithms do.

Finally, the successive versions, except SO, and SO-AS for high saturation sit-
uations, improve the results obtained by the previous ones in terms of through-

22

Pending I Queued DSA [Queued LCG ' Running DSA M Running LCG M Done DSA M Done LCG

Jobs

45
60
75
90
105
120
135

o
n
—

n =]
© <]
—

195

o wn =] [= n o n o wn o
— o~ < wn ~ © o — ™ < o
— ~ ~ ~ N~ ~ [(] ™ [o]

Time (min)

Fig. 8. Jobs state over time by using the DO algorithm on DSA, LCG, and Federated
Grid infrastructures for User-2 (LCG highest saturation situation).

put, and completion time. Thus, the combination of the performance model
with the scheduling in advance has reveal as the best approach for mapping
jobs in Federated Grids.

In Figures 6, 7, 8, 9, and 10 we can graphically see, through the state of the
jobs over the time, the difference in the behavior between the five algorithms
for User-2, which represents LCG highest saturation situation. We can divide
the graphics in two groups. In one group we place the graphics of the Normal,
SO, and DO algorithms that present a similar behavior, mostly in the queue
regions that are very small.

In the second group we include the SO-AS and DO-AS strategies since their
queued regions are similar. A closer analysis demonstrates that with the SO-
AS strategy jobs are pending during more time, and more jobs are queued in
internal resources while with the DO-AS algorithm more jobs are queued in
external resources, and jobs remain in a pending state for less time.

7.4 Comparison

Summing up, SO compared with the Normal version increases the through-
put of internal resources, except for User-2: SO increases the number of jobs
executed per time unit. However, SO does not reduce the makespan achieved
by the Normal version. We have observed that the performance model does
not fit well in saturation situations. In these cases, there are long periods on

23

Pending I Queued DSA [Queued LCG ' Running DSA M Running LCG M Done DSA M Done LCG

500

400 +

300

Jobs

200

100 A

n o =]

25
30
35
40
45
50
5
6
6
7
75
80
85
90
95

100

105

110

115

120

125

Time (min)

Fig. 9. Jobs state over time by using the SO-AS algorithm on DSA, LCG, and
Federated Grid infrastructures for User-2 (LCG highest saturation situation).

Pending !l Queued DSA [Queued LCG ' Running DSA M Running LCG M Done DSA M Done LCG

Jobs

o m vV o N 1 © ¥ N O ®m v o o ;LW o o
R B N N ®m m o m M F 0

Time (min)

<+ N Q
n 1n ©

N
N O~ N

— m o o —
~ © ©V © ©

Fig. 10. Jobs state over time by using the DO-AS algorithm on DSA, LCG, and
Federated Grid infrastructures for User-2 (LCG highest saturation situation).

which there are no available nodes for the execution of jobs. A linear equa-
tion cannot properly adapt to the graphics produced by this type of behavior.
As a consequence, the calculated objective is not correct, and produces poor
results.

When DO is compared with the Normal version, an increase in the throughput
of internal resources occurs, and spends less time to complete all the jobs.

24

Compared with the SO version, DO completes all jobs in less time, and solves
the problem detected in saturation situations. The overall reduction in the
makespan is not really significant.

SO-AS, compared with the static and dynamic versions only reduces the
makespan in the case of high saturation in the external resources.

Finally, DO-AS, compared with all the previous versions, reduces the makespan
in all cases: while DO-AS schedules based on the performance of the different
infrastructures forming the Federated Grid, the previous algorithms schedule
only considering the states of the resources. Thus, the combination of the cal-
culation of a dynamic objective plus the advance scheduling provides the best
results for all algorithms.

8 Conclusions and Future Work

In this paper we have presented a decentralized model to solve the problem
of scheduling in Federated Grids. Our approach provides an alternative to
centralized, application-centric or ad-hoc solutions. We have proposed the de-
ployment of GridWay as the meta-scheduler on each grid infrastructure of the
Federated Grid. Four possible algorithms have also been presented that could
be executed in the GridWay meta-scheduler. Experimental results and graph-
ics are provided to compare the behavior of the different policies. Our analysis
reveals that DO-AS is the best strategy. The DO-AS mechanism for mapping
jobs on the Federated Grid is completely transparent for users and applica-
tions. Kach DO-AS at each Grid infrastructure of the Federated Grid is aware
of reduction of the makespan of its own applications and increasing the per-
formance of its own Grid infrastructure. DO-AS does not require information
on processor speeds nor task lengths. The algorithm only needs information
about the past performance of the resources to predict a new objective. Also,
DO-AS does not need to deploy agents or specialized sensors across the differ-
ent infrastructures, which is the case for the Network Weather Service or the
RPS toolkit. In addition, the calculation of a new objective is an extremely
light process. Thus, DO-AS is fast enough to be used in realistic scheduling
scenarios. Finally, DO-AS is a decoupled solution on which schedulers at dif-
ferent levels are independent: local schedulers, as well as workload managers
do not need to modify their policies. This additional flexibility allows us to
deploy our algorithm in any Grid.

We are currently testing our algorithms in a simulated testbed formed by
several grid infrastructures. Improvements in the algorithms are also under
study, specifically by adapting the values of important parameters, such as
the suspension time out, at runtime. This parameter determines the maxi-

25

mum suspension time (in seconds) in the local job management system. When
this value is exceeded the job is migrated to another host. The value of this
parameter depends on the applications length and resource saturation. In ad-
dition, we want to investigate the effects of sharing policies in the proposed
mapping policies. Finally, we will implement the best algorithm in GridWay
for its deployment in a real infrastructure.

References

1]

A. Agarwal, M. Ahmed, A. Berman, B.L. Caron, A. Charbonneau, D. Deatrich,
R. Desmarais, A. Dimopoulos, I. Gable, L.S. Groer, R. Haria, R. Impey,
L. Klektau, C. Lindsay, G. Mateescu, Q. Matthews, A. Norton, W. Podaima,
D. Quesnel, R. Simmonds, R.J. Sobie, B. St. Arnaud, C. Usher, D.C. Vanderster,
M. Vetterli, R. Walker, and M. Yuen. “GridX1: A Canadian computational
grid”. Future Generation Computer Systems, 23(5):680-687, June 2007.

Alain Andrieux, Dave Berry, Jon Garibaldi, Stephen Jarvis, Jon MacLaren,
Djamila Ouelhadj, and Dave Snelling. “Open Issues in Grid Scheduling”.
Technical Report ISSN 1751-5971, UK e-Science Institute, October 2003.

Francine Berman. “The Grid: Blueprint for a Future Computing
Infrastructure”, chapter “High-Performance Schedulers”. Morgan Kaufmann,
1998.

Francine Berman, Richard Wolski, Henri Casanova, Walfredo Cirne, Holly
Dail, Marcio Faerman, Silvia Figueira, Jim Hayes, Graziano Obertelli, Jennifer
Schopf, Gary Shao, Shava Smallen, Neil Spring, Alan Su, and Dmitrii
Zagorodnov. “Adaptive Computing on the Grid Using AppLeS”. I[IFEFE
Transactions on Parallel and Distributed Systems, 14:369-382, 2003.

Richard Blake, Peter V. Coveney, Peter Clarke, and S. M. Pickles. “The
Teragyroid Experiment - Supercomputing 2003”. Scientific Programming,
13(1):1-17, 2005.

Bruce Boghosian, Peter Coveney, Suchuan Dong, Lucas Finn, Shantenu Jha,
George Karniadakis, and Nicholas Karonis. “NEKTAR, SPICE and Vortonics:
using federated grids for large scale scientific applications”. In Proceedings of
the 2006 IEEE Challenges of Large Applications in Distributed Environments,
pages 34—42. IEEE Computer Society Press, 2006.

Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau Blni, Muthucumaru
Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys, and
Bin Yao. “A Taxonomy for Describing Matching and Scheduling Heuristics
for Mixed-Machine Heterogeneous Computing Systems”. The 17th IFEFE
Symposium on Reliable Distributed Systems, pages 330-335, 1998.

Thomas L. Casavant and Jon G. Kuhl. “A taxonomy of scheduling in general-
purpose distributed computing systems”. I[IEEE Transactions on Software
Engineering, 14(2):141-154, 1988.

26

[9] The Distributed ASCI Supercomputer 2 (DAS-2). http://www.cs.vu.nl/das2/,
2008.

[10] Marcos Dias de Assuncao, Rajkumar Buyya, and Srikumar Venugopal.
“InterGrid: A Case for Internetworking Islands of Grids”. Concurrency and
Computation: Practice and Experience (CCPE), 20:997-1024, July 2007.

[11] Peter A. Dinda. “Design, implementation, and performance of an extensible
toolkit for resource prediction in distributed systems”. Parallel and Distributed
Systems, IEEE Transactions on, 17(2):160-173, 2006.

[12] Fangpeng Dong and Selim G. Akl. “Scheduling Algorithms for Grid Computing:
State of the Art and Open Problems”. Technical Report 2006-504, Ontario
Queens University, January 2006.

[13] Enabling Grids for E-sciencE (EGEE). http://www.eu-egee.org, 2008.

[14] Carsten Ernemann, Volker Hamscher, and Ramin Yahyapour. “Benefits of
Global Grid Computing for Job Scheduling”. In Proceedings of the Fifth
IEEE/ACM International Workshop on Grid Computing, pages 374-379, 2004.

[15] The UK e-Science Programme. http://www.rcuk.ac.uk/escience, 2008.

[16] I. Foster, P. Lane, W. Lee, M. Morgan, S. Newhouse, S. Pickles, D. Pulsipher,
C. Smith, and M. Theimer. “OGSA Basic Execution Service”. Technical Report
GFD-R.108, Open Grid Forum, November 2008.

[17] Tan Foster. “What is the Grid? A Three Point Checklist”. GRIDtoday, 1(6),
2002.

[18] Philip W. Fowler, Shantenu Jha, and Peter V. Coveney. “Grid-based steered
thermodynamic integration accelerates the calculation of binding free energies ”.
Philosophical Transactions of The Royal Society, 363(1833):1999-2015, August
2005.

[19] Richard F. Freund, Michael Gherrity, Stephen Ambrosius, Mark Campbelly,
Mike Halderman, Debra Hensgenz, Elaine Keithy, Taylor Kiddz, Matt Kussowy,
John D. Limay, Francesca Mirabilea, Lantz Moorex, Brad Rusty, and H. J.
Siegel. “Scheduling Resources in Multi-User, Heterogeneous, Computing
Environments with SmartNet 7. In Proceedings of the 7th International IEEE
Heterogeneous Computing Workshop (HCW’98), pages 3-19, 1998.

[20] Noriyuki Fujimoto and Kenichi Hagihara. “A Comparison among
Grid Scheduling Algorithms for Independent Coarse-Grained Tasks”. In
Proceedings of the 2004 International Symposium and the Internet Workshops
(SAINTW’04), pages 674-680, 2004.

[21] GridSim Toolkit. http://www.gridbus.org/gridsim/, 2008.
[22] The Globus Project. http://www.globus.org, 2008.

[23] Francesc Guim and Julita Corbalan. “A Job Self-Scheduling Policy for HPC
Infrastructures”. In Proceedings of the 13th Workshop on Job Scheduling
Strategies for Parallel Processing, volume 4942 /2008, pages 51-75, 2007.

27

[24] R.W. Hockney and C.R. Jesshope. “Parallel Computers 2: Architecture,
Programming, and Algorithms”. Adam Hilger Ltd, 1988.

[25] Eduardo Huedo, Rubén S. Montero, and Ignacio M. Llorente. “A Framework for
Adaptive Execution on Grids”. Software — Practice and Experience, 34(7):631—
651, 2004.

[26] Eduardo Huedo, Rubén S. Montero, and Ignacio M. Llorente. “A recursive
architecture for hierarchical grid resource management”. Future Generation
Computer Systems, 25(4):401-405, April 2009.

[27] Peter Kacsuk, Tamas Kiss, and Gergely Sipos. “Solving the grid interoperability
problem by P-GRADE portal at workflow level”. Future Generation Computer
Systems, 24(7):744-751, July 2008.

[28] Attila Kertesz, Ivan Rodero, and Francesc Guim. “Meta-Brokering requirements
and research directions in state-of-the-art Grid Resource Management”. In
Proceedings of the CoreGRID Integration Workshop 2008, pages 371-382, April
2008.

[29] Worldwide LHC Computing Grid. http://lcg.web.cern.ch/LCG/, 2008.

[30] Katia Leal, Eduardo Huedo, and Ignacio M. Llorente. “Dynamic Objective and
Advance Scheduling in Federated Grids”. In Proceedings of the On the Move
to Meaningful Internet Systems: OTM 2008, volume 5331/2008, pages 711-725.
Springer Berlin / Heidelberg, November 2008.

[31] Katia Leal, Eduardo Huedo, Rubén S. Montero, and Ignacio M. Llorente.
“Scheduling Strategies in Federated Grids”. In Proceedings of the 2008 High
Performance Computing € Simulation Conference (HPCS 2008), pages 117
123. ECMS, 2008.

[32] Hui Li and Rajkumar Buyya. “Model-based simulation and performance
evaluation of grid scheduling strategies”. Future Generation Computer Systems,
25(4):460-465, April 2009.

[33] Ignacio M. Llorente, Rubén S. Montero, Eduardo Huedo, and Katia Leal.
“A Grid Infrastructure for Utility Computing”. In Proceedings of the Third

International Workshop on Emerging Technologies for Next-generation GRID
(ETNGRID 2006), pages 163-168. IEEE Computer Society Press, 2006.

[34] Load Sharing Facility. http://www.platform.com/Products/platform-1sf, 2008.

[35] Rubén S. Montero, Eduardo Huedo, and Ignacio. M. Llorente. “Benchmarking
of High Throughput Computing Applications on Grids”. Parallel Computing,
32(4):267-269, 2006.

[36] Portable Barch System. http://www.pbsgridworks.com/, 2008.

[37] Platform Computing, The Evolution Of Grid: The Three Stages of Grid
Computing. http://www.platform.com/grid/evolution.asp, 2007.

28

[38] Christopher Pinchak, Paul Lu, and Mark Goldenberg. “Job Scheduling
Strategies for Parallel Processing”, chapter ¢ Practical Heterogeneous
Placeholder Scheduling in Overlay Metacomputers: Early Experiences 7, pages
205-228. Springer Berlin, 2002.

[39] The German Grid Initiative (D-Grid). http://www.d-grid.de, 2008.

[40] Distributed Resource Management Application APIL
https://forge.gridforum.org/projects/drmaa-wg, 2008.

[41] Globus Toolkit 4.0 WS_GRAM.
http://www.globus.org/toolkit/docs/4.0/execution/wsgram/, 2008.

[42] Gerald Sabin, Rajkumar Kettimuthu, Arun Rajan, and Ponnuswamy
Sadayappan. “Scheduling of Parallel Jobs in a Heterogeneous Multi-Site
Environment”. In Proceedings of the 9th Workshop on Job Scheduling Strategies
for Parallel Processing, volume 2862, pages 87-104, 2003.

[43] Bianca Schroeder and Mor Harchol-Balter. “Evaluation of Task Assignment
Policies for Supercomputing Servers: The Case for Load Unbalancing and
Fairness”. Cluster Computing, 2004.

[44] Sun Grid Engine. http://www.sun.com/software/gridware/, 2008.
[45] The TeraGrid Project. http://www.teragrid.org/, 2008.

[46] Jeffrey D. Ullman. “NP-Complete Scheduling Problems”. Journal of Computer
and System Sciences, 10(3):384-393, 1975.

[47] Constantino Vazquez, Eduardo Huedo, Rubén S. Montero, and Ignacio M.
Llorente. “Evaluation of A Utility Computing Model based on Federation of
Grid Infrastructures”. In 13th International Euro-Par Conference (Euro-Par
2007), volume 4641/2007, pages 372-381. Lecture Notes in Computer Science
(LNCS), august 2007.

[48] Constantino Vazquez, Eduardo Huedo, Rubén S. Montero, and Ignacio M.
Llorente. “A Performance Model for Federated Grid Infrastructures”. In
Proceedings of the 16th FEuromicro International Conference on Parallel,
Distributed and network-based Processing (PDP 2008), pages 188-192, 2008.

[49] Rich Wolski, Neil T. Spring, and Jim Hayes. “The Network Weather Service:
A Distributed Resource Performance Forecasting Service for Metacomputing”.
Future Generation Computer Systems, 15(5-6):757-768, 1999.

[50] Parallel Workloads Archive. http://www.cs.huji.ac.il/labs/parallel/workload/,
2008.

[51] Hao Yin, Huilin Wu, and Jiliu Zhou. “An Improved Genetic Algorithm with
Limited Iteration for Grid Scheduling”. In Proceedings of the Sizth International
Conference on Grid and Cooperative Computing (GCC 2007), pages 221-227,
2007.

29

[52] Jianhui Yue. “Global Backfilling Scheduling in Multiclusters”. In Proceedings of
the Second Asian Applied Computing Conference (AACC), volume 3285/2004,
pages 232-239, 2004.

30

