
Coordinated Use of Globus Pre-WS and WS
Resource Management Services with GridW ay�

Eduardo Huedo1, Rubén S. Montero2, and Ignacio M. Llorente2,1

1 Laboratorio de Computación Avanzada, Simulación y Aplicaciones Telemáticas,
Centro de Astrobioloǵıa (CSIC-INTA), 28850 Torrejón de Ardoz, Spain

2 Departamento de Arquitectura de Computadores y Automática,
Universidad Complutense, 28040 Madrid, Spain

Abstract. The coexistence of different Grid infrastructures and the ad-
vent of Grid services based on Web Services opens an interesting debate
about the coordinated harnessing of resources based on different mid-
dleware implementations and even different Grid service technologies.
In this paper, we present the loosely-coupled architecture of GridW ay,
which allows the coordinated use of different Grid infrastructures, al-
though based on different Grid middlewares and services, as well as a
straightforward resource sharing. This architecture eases the gradual mi-
gration from pre-WS Grid services to WS ones, and even, the long-term
coexistence of both. We demonstrate its suitability with the evaluation
of the coordinated use of two Grid infrastructures: a research testbed
based on Globus WS Grid services, and a production testbed based on
Globus pre-WS Grid services, as part of the LCG middleware.

1 Introduction

Since the late 1990s, we have witnessed an extraordinary development of Grid
technologies. Nowadays, different Grid infrastructures are being deployed within
the context of growing national and transnational research projects. The major-
ity of the Grid infrastructures are being built on protocols and services provided
by the Globus Toolkit (GT) [1], becoming a de facto standard in Grid computing.

The coexistence of several projects, each with its own middleware develop-
ments, adaptations, extensions and service technologies, give rise to the idea of
coordinated harnessing of resources, or contributing the same resource to more
than one project. Moreover, the advent of GT4 and the implementations of Grid
services as Web Services by following the WSRF (WS-Resource Framework) [2],
arises the idea of a gradual migration from pre-WS Grid services to WS ones,
and even, the long-term coexistence of both types of services.

Instead of tailoring the core Grid middleware to our needs (since in such
case the resulting infrastructure would be application specific), or homogenizing
� This research was supported by Ministerio de Educación y Ciencia, through the

research grant TIC 2003-01321, and by Instituto Nacional de Técnica Aeroespacial
“Esteban Terradas” – Centro de Astrobioloǵıa. The authors participate in the EGEE
project, funded by the European Union under contract IST-2003-508833.

R. Meersman et al. (Eds.): OTM Workshops 2005, LNCS 3762, pp. 234–243, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Coordinated Use of Globus Pre-WS and WS Resource Management Services 235

the underlying resources (since in such case the resulting infrastructure would
be a highly distributed cluster), we propose to strictly follow an “end-to-end”
principle. In fact, Globus architecture follows an hourglass approach, which is
indeed an “end-to-end” principle. In an “end-to-end” architecture, clients have
access to a wide range of resources provided through a limited and standardized
set of protocols and interfaces. And resources provide their capabilities through
the same set of protocols and interfaces. In the Grid these are provided by the
core Grid middleware: Globus in this case. Just as, in the Internet, they are
provided through the TCP/IP set of protocols.

One approach is the development of gateways between different middleware
implementations [3,4]. Another approach, more in line with the Grid philoso-
phy, is the development of client tools that can adapt to different middleware
implementations. If we consider that nearly all current projects use Globus as
basic Grid middleware, it could be possible a shift of functionality from resources
to brokers or clients. This would allow to access resources in a standard way,
making the task of sharing resources between organizations and projects easier.

The aim of this paper is to present and evaluate a loosely-coupled archi-
tecture that allows the simultaneous and coordinated use of both pre-WS and
WS GRAM services, as well as other Grid services. The rest of the paper is
as follows. Section 2 compares pre-WS Grid services with WS ones. Section 3
introduces the Globus approach for resource management. Section 4 introduces
the GridW ay approach for job management. Section 5 shows some experiences
and results. Finally, Section 6 ends up with some conclusions.

2 From Pre-WS to WS Grid Services

The main reason behind the moving from pre-WS to WS Grid services is that,
according to the Grid’s second requirement proposed by Foster [5], a grid must be
built using standard, open, general-purpose protocols and interfaces. However,
many people is still reluctant to this change because it could bring an important
performance loss. In fact, the Grid’s third requirement is that a grid must deliver
nontrivial qualities of service, in terms of response time, throughput, security,
reliability or the coordinated use of multiple resource types.

On one hand, pre-WS Grid services are based on proprietary interfaces (al-
though usually implemented over standard protocols, like HTTP). On the other
hand, WS Grid services are based on the WS-Resource Framework (WSRF) [2],
a standard specification fully compatible with other Web Services specifications.
In fact, WSRF can be viewed as a set of conventions and usage patterns within
the context of established Web Services standards, like WS-Addressing.

WSRF defines the WS-Resource construct as a composition of a Web Ser-
vice and a stateful resource. The Open Grid Services Infrastructure (OGSI)
was previously conceived as an extension of Web Services to have stateful WS-
Resources [6]. However, the implementation of OGSI resulted in non standard,
complex and heavy-weight Grid services. Moreover, it jeopardized the conver-
gence of Grid and Web Services. On the contrary, Grid services implemented



236 E. Huedo, R.S. Montero, and I.M. Llorente

as Web Services are easier to specify and, therefore, to standardize. Thus, WS
Grid services provide a way to construct an Open Grid Services Architecture
(OGSA) [7] where tools from multiple vendors interoperate through the same
set of protocols and interfaces, implemented in different manners.

3 The Globus Approach for Resource Management

The Globus Toolkit [1] has become a de facto standard in Grid computing.
Globus services allow secure and transparent access to resources across multiple
administrative domains, and serve as building blocks to implement the stages of
Grid scheduling [8]. Resource management is maybe the most important compo-
nent for computational grids, although it could be also extended to other non-
computational resources. The Globus Resource Allocation Manager (GRAM) [9]
is the core of the resource management pillar of the Globus Toolkit.

In pre-WS GRAM (see Figure 1), when a job is submitted, the request is
sent to the Gatekeeper service of the remote computer. The Gatekeeper is a
service running on every node of a Globus grid. The Gatekeeper handles each
request, mutually authenticating with the client and mapping the request to a
local user, and creates a Job Manager for each job. The Job Manager starts,
controls and monitors the job according to its RSL (Resource Specification Lan-
guage) specification, communicating state changes back to the GRAM client
via callbacks. When the job terminates, either normally or by failing, the Job
Manager terminates as well, ending the life cycle of the Grid job.

getState

Local System

submit

Services

start

exec

start
monitor
control

Implementation Objects Scripts and Tools

callback

Gatekeeper

submit
poll
cancel

JobManager Local SchedulerScheduler Adapter

submit
poll
cancel

Job Manager

Job

Fig. 1. Architecture of the pre-WS Globus Resource Allocation Manager (GRAM)

In WS GRAM (see Figure 2), when a job is submitted, the request is sent
to the Managed Job Factory service of the remote computer. The Managed Job
Factory and Managed Job are two services running on every node of a Globus
grid. The Managed Job Factory handles each request and creates a Managed
Job resource for each job. Authentication is performed via Web Services mech-
anisms and some operations are mapped to a local user via sudo. The Managed
Job service uses a Job Manager to start and control the job according to its



Coordinated Use of Globus Pre-WS and WS Resource Management Services 237

ManagedJobFactory

event

exec cancel
submit

notify

create

submit
cancel

start
monitor
control

read log

createJob

terminate
subscribe

Local System

Scheduler Event

Scripts and ToolsServices

Generator

start
setRP(status)

Implementation ObjectsResources

ManagedJobFactory

ManagedJob JobManager Local SchedulerScheduler Adapter

Job State Monitor

ManagedJob

Job

Fig. 2. Architecture of the WS Globus Resource Allocation Manager (GRAM)

RSL specification, mapping the request to a local user and communicating state
changes back to the GRAM client via WS-Notifications [10]. When the job ter-
minates, either normally or by failing, the Managed Job resource is destroyed,
ending the life cycle of the Grid job.

Although the use of Web Services entails some overhead, the implementation
of WS GRAM has been optimized in several ways. For example, it provides better
job status monitoring mechanism through the use of a Job State Monitor (JSM),
which in turns uses a Scheduler Event Generator (SEG), instead of implementing
a polling mechanism in the Job Manager, as in pre-WS GRAM. It also provides
a more scalable/reliable file handling through the use of a Reliable File Transfer
(RFT) service instead of the globus-url-copy command used directly by the
Job Manager in pre-WS GRAM. Moreover, WS GRAM only supports GridFTP
for file transfer and the use of GASS (Global Access to Secondary Storage)
caching has been removed. In any case, WSRF-based Grid services in GT4 clearly
outperforms heavy-weight OGSI-based Grid services in GT3 [11].

As can be seen in Figure 2, WSRF separates services, resources and imple-
mentation objects. This way, it is easier to standardize a service architecture, like
OGSA, since only services and resource properties representing resource state
have to be specified in the standardization documents.

GRAM operates in conjunction with a number of schedulers including Con-
dor, PBS and a simple “fork” scheduler. The Job Manager provides a plugin
architecture for extensibility. When the Job Manager is respectively invoked by
the Gatekeeper or Managed Job to process a job request, it maps the request to
a local scheduler. These plugins provide a set of programs and scripts that map
job requests to scheduler commands such as submit, poll or cancel.

4 The GridW ay Approach for Job Management

GridW ay is a job management system, whose main objective is to provide a de-
centralized, modular and loosely-coupled architecture for scheduling and execut-
ing jobs in dynamic Grid environments. The core of the framework is a personal



238 E. Huedo, R.S. Montero, and I.M. Llorente

submission agent that performs all submission stages [8] and watches over the
efficient execution of the job. Adaptation to changing conditions is achieved by
dynamic rescheduling. Once the job is initially allocated, it is rescheduled when
performance slowdown or remote failure are detected, and periodically at each
discovering interval. Application performance is evaluated periodically at each
monitoring interval. The submission agent consists of the following components:

– Request Manager (RM): To handle client requests.
– Dispatch Manager (DM): To perform job scheduling.
– Submission Manager (SM): To perform the stages of job execution, including

job migration.
– Execution Manager (EM): To execute each job stage.
– Performance Monitor (PM): To evaluate the job performance.

The flexibility of the framework is guaranteed by a well-defined API for each
submission agent component. Moreover, the framework has been designed to be
modular to allow adaptability, extensibility and improvement of its capabilities.
The following modules can be set on a per job basis:

– Resource Selector (RS): Used by the Dispatch Manager to select the most
adequate host to run each job according to the host’s rank, architecture and
other parameters.

– Middleware Access Driver (MAD): Used by the Execution Manager to sub-
mit, monitor and control each job stage.

– Performance Evaluator (PE): Used by the Performance Monitor to check the
progress of the job.

– Prolog (P): Used by the Submission Manager to prepare the remote machine
and transfer the executable, input and restart (in case of migration) files.

– Wrapper (W): Used by the Submission Manager to run the executable file
and capture its exit code.

– Epilog (E): Used by the Submission Manager to transfer back output or
restart (in case of stop) files and clean up the remote machine.

Therefore, RS interfaces Grid Information services (e.g. Globus pre-WS and
WS MDS), MAD interfaces Resource Management services (e.g. Globus pre-WS
and WS GRAM), Prolog and Epilog interfaces Data Management services (e.g.
Globus GridFTP, Reliable File Transfer and Data Replication Service), Wrapper
interfaces Execution services and PE interfaces Performance services. The result
is that the GridW ay core is independent of the underlying middleware.

4.1 The Request Manager and Dispatch Manager

The client application uses the GridW ay client API or the DRMAA API [12] to
communicate with the Request Manager in order to submit the job along with its
configuration file, or job template, which contains all the necessary parameters
for its execution. Once submitted, the client may also request control operations
to the request manager, such as job stop/resume, kill or reschedule.



Coordinated Use of Globus Pre-WS and WS Resource Management Services 239

The Dispatch Manager periodically wakes up at each scheduling interval,
and tries to submit pending and rescheduled jobs to Grid resources. It invokes
the execution of the Resource Selector module, which returns a prioritized list
of candidate hosts. The Dispatch Manager submits pending jobs by invoking a
Submission Manager, and also decides if the migration of rescheduled jobs is
worthwhile or not. If this is the case, the Dispatch Manager triggers a migration
event along with the new selected resource to the Submission Manager, which
manages the job migration.

4.2 The Submission Manager and Performance Monitor

The Submission Manager is responsible for the execution of the job during its
lifetime, i.e. until it is done or stopped. It is invoked by the Dispatch Manager
along with a selected host to submit a job, and is also responsible for performing
job migration to a new resource. The Globus management components and pro-
tocols are used to support all these actions. The Submission Manager performs
the following tasks:

– Prologing: Submission of Prolog executable.
– Submitting: Submission of Wrapper executable, monitoring its correct ex-

ecution, updating the submission states and waiting for events from the
Dispatch Manager.

– Cancelling: Cancellation of the submitted job if a migration, stop or kill
event is received by the Submission Manager.

– Epiloging: Submission of Epilog executable.

This way, GridW ay doesn’t rely on the underlying middleware to perform
preparation and finalization tasks. Moreover, since both Prolog and Epilog are
submitted to the front-end node of a cluster and Wrapper is submitted to a com-
pute node, GridW ay doesn’t require any middleware installation nor network
connectivity in the compute nodes. This is one of the main advantages of the
“end-to-end” architecture of GridW ay.

The Performance Monitor periodically wakes up at each monitoring interval.
It requests rescheduling actions to detect better resources when performance
slowdown is detected and at each discovering interval.

4.3 The Execution Manager

In order to provide an abstraction with the resource management middleware
layer, the Execution Manager uses a Middleware Access Driver (MAD) module
to submit, monitor and control the execution of the Prolog, Wrapper and Epilog
modules. The MAD module provides basic operations with the resource man-
agement middleware, like submitting, polling or cancelling jobs, and receives
asynchronous notifications about the state of each submitted job. The use of
standard input/output makes easy the debugging process of new MADs.

Currently, the are two MADs available. One, written in C, interfaces pre-
WS GRAM services and other, written in Java, interfaces WS GRAM services.
Java Virtual Machine (JVM) initialization time doesn’t affect, since the JVM is
initiated before the start of measurements.



240 E. Huedo, R.S. Montero, and I.M. Llorente

5 Experiences

5.1 Application

In this work we have used the NGB Embarrassingly Distributed (ED) bench-
mark [13]. The ED benchmark represents the important class of Grid appli-
cations called Parameter Sweep Applications (PSA), which constitute multiple
independent runs of the same program with different input parameters. This
kind of computations appears in many scientific fields like Biology, Pharmacy,
or Computational Fluid Dynamics. In spite of the relatively simple structure of
these applications, its efficient execution on Grids involves challenging issues [14].

The ED benchmark comprises the execution of several independent tasks.
Each one consists in the execution of the SP flow solver [15] with a different
initialization parameter for the flow field. In the present work, we have used the
FORTRAN serial version of the SP flow solver code. We have used a problem
size of class A but, instead of submitting 9 tasks, as NGB class A specifies, we
submitted more tasks in order to have a real high-throughput application.

For these experiments we have used a simple Resource Selector consisting
of a list of resources, along with their characteristics (including the MAD that
should be used to access each of them). Resources are used in a round-robin
fashion, as long as they have free slots.

5.2 Testbed

In this section, we show the coordinated use of a research testbed with WS
GRAM (described in Table 1) and a production testbed (described in Table 2),
which is composed of some spanish sites enroled in EGEE, with pre-WS GRAM
as part of the LCG (LHC Computing Grid) middleware. The whole testbed is
connected by the Spanish National Research and Education Network (RedIRIS).

The resulting environment is highly dynamic and heterogeneous, due to the
shared use of compute and network resources, the different DRMS, processors
and network links, the different middleware and services, etc. In this case, we
have submitted an array jobs with 100 tasks. We have imposed the limitation to
only use four nodes simultaneously on each compute resource. In the following
experiments, cygnus is used as client.

Table 1. Characteristics of the resources in the research testbed

Name Site Location Nodes Processor Speed Memory DRMS
per node

cygnus UCM Madrid 1 Intel P4 2.5GHz 512MB -
ursa UCM Madrid 1 Intel P4 3.2GHz 512MB fork
draco UCM Madrid 1 Intel P4 3.2GHz 512MB fork
hydrus UCM Madrid 4 Intel P4 3.2GHz 512MB PBS
aquila UCM Madrid 2 Intel PIII 600MHz 250MB SGE



Coordinated Use of Globus Pre-WS and WS Resource Management Services 241

Table 2. Characteristics of the resources in the production testbed

Name Site Location Nodes Processor Speed Memory DRMS
per node

egeece IFCA Cantabria 28 2×Intel PIII 1.2GHz 512MB PBS
lcg2ce IFIC Valencia 117 AMD Athlon 1.2GHz 512MB PBS
lcg-ce CESGA Galicia 72 Intel P4 2.5GHz 1GB PBS
ce00 INTA-CAB Madrid 4 Intel P4 2.8GHz 512MB PBS
ce01 PIC Cataluña 65 Intel P4 3.4GHz 512MB PBS

There are several differences between the version of Globus included in LCG
and a Globus version installed out of the box. For example, the automatic
generation of Grid map files, the use of GLUE schema for MDS, the use of
BDII instead of GIIS, and the fact th at file systems are not shared by de-
fault between cluster nodes. In a previous work [16], we have shown the coor-
dinated use of two Grid infrastructures, one based on Globus pre-WS services
and one based on the LCG middleware, by only using Globus pre-WS pro-
tocols and interfaces. In this work, we have extended the modularity of the
GridW ay framework to the resource management interfacing layer, through the
MAD, in order to support the coordinated use of both pre-WS and WS Grid
services.

5.3 Results

Figures 3 and 4 respectively show the dynamic throughput achieved and schedul-
ing performed during the four experiments. Experiment 1 reaches the maximum
throughput (212 jobs/hour) since all resources are available. During experiment

Fig. 3. Dynamic throughput in the four experiments



242 E. Huedo, R.S. Montero, and I.M. Llorente

Fig. 4. Scheduling performed in the four experiments

2, PIC is unavailable, so no job is allocated to this site and the other sites
receive more jobs. Therefore, the throughput drops considerably (154 jobs/hour).
During experiment 3, INTA-CAB is partially busy, being only two nodes avail-
able for execution. This is reflected in the schedule (INTA-CAB receives half as
jobs as in the first experiment) and in the achieved throughput (181 jobs/hour).
During experiment 3, CESGA and PIC receive some Grid jobs not related to
the experiment. In all the experiments, UCM receives more jobs than the other
sites since it presents more compute nodes (10 vs. 4) due to the limitation of
four simultaneously running jobs on the same resource.

In most experiments, throughput drops at the end (last five jobs). This is
due to bad scheduling decisions (remember the simple RS used) or unexpected
conditions triggering job migrations. If there are lots jobs and the testbed is
saturated, their effects are hidden, but when few jobs remain, they arise.

6 Conclusions

We have shown that our proposed user-level Grid middleware, GridW ay, can
work over different Grid infrastructures and service technologies in a loosely-
coupled way. In this case, we have shown the use of GridW ay over a research
testbed based on Globus WS Grid services and a production testbed based on
Globus pre-WS Grid services, as part of the LCG middleware, demonstrating
that GridW ay can simultaneously work with both pre-WS and WS GRAM. The
smooth process of integration of two so different infrastructures and services
demonstrates that the GridW ay approach, based on a modular, decentralized
and “end-to-end” architecture, is appropriate for the Grid.

We would like to acknowledge all the institutions that have contributed re-
sources to perform the experiments.



Coordinated Use of Globus Pre-WS and WS Resource Management Services 243

References

1. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. J.
Supercomputer Applications 11 (1997) 115–128

2. Czajkowski, K., Ferguson, D.F., Foster, I., et al.: The WS-Resource Framework
Version 1.0. Technical report (2004) Available at http://www.globus.org/wsrf.

3. Allan, R.J., Gordon, J., McNab, A., Newhouse, S., Parker, M.: Building Overlap-
ping Grids. Technical report, University of Cambridge (2003)

4. Snelling, D., van den Berghe, S., von Laszewski, G., et al.: A UNICORE Globus
Interoperability Layer. Computing and Informatics (2002) 399–411

5. Foster, I.: What Is the Grid? A Three Point Checklist. GRIDtoday 1 (2002)
Available at http://www.gridtoday.com/02/0722/100136.html.

6. Foster, I., Czajkowski, K., et al.: Modeling and Managing State in Distributed
Systems: The Role of OGSI and WSRF. Proc. IEEE 93 (2005) 604–612

7. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Technical
report, OGSI Working Group – GGF (2002)

8. Schopf, J.M.: Ten Actions when Superscheduling. Technical Report GFD-I.4,
Scheduling Working Group – GGF (2001)

9. Czajkowski, K., Foster, I., Karonis, N., et al.: A Resource Management Archi-
tecture for Metacomputing Systems. In: Proc. IPPS/SPDP Workshop on Job
Scheduling Strategies for Parallel Processing. Volume 1459 of LNCS. (1998) 62–82

10. Graham, S., Niblett, P., et al.: Publish-Subscribe Notification for Web Services
Version 1.0. Technical report (2004) Available at http://www.globus.org/wsrf.

11. Raicu, I.: A Performance Study of the Globus Toolkit and Grid Services via
DiPerF, an Automated DIstributed PERformance Testing Framework. Master’s
thesis, University of Chicago, Computer Science Department (2005)

12. Rajic, H., Brobst, R., et al.: Distributed Resource Management Application API
Specification 1.0. Technical report, DRMAA Working Group – GGF (2003)

13. Frumkin, M.A., Van der Wijngaart, R.F.: NAS Grid Benchmarks: A Tool for Grid
Space Exploration. J. Cluster Computing 5 (2002) 247–255

14. Huedo, E., Montero, R.S., Llorente, I.M.: Experiences on Adaptive Grid Schedul-
ing of Parameter Sweep Applications. In: Proc. 12th Euromicro Conf. Parallel,
Distributed and Network-based Processing (PDP), IEEE CS (2004) 28–33

15. Bailey, D.H., Barszcz, E., Barton, J.T.: The NAS Parallel Benchmarks. J. Super-
computer Applications 5 (1991) 63–73

16. Vázquez, J.L., Huedo, E., Montero, R.S., Llorente, I.M.: Execution of a Bioinfor-
matics Application in a Joint IRISGrid/EGEE Testbed. In: Proc. PPAM Workshop
on Large Scale Computations on Grids (LaSCoG). LNCS (2005) (to appear).


	Introduction
	From Pre-WS to WS Grid Services
	The Globus Approach for Resource Management
	The GridWay Approach for Job Management
	The Request Manager and Dispatch Manager
	The Submission Manager and Performance Monitor
	The Execution Manager

	Experiences
	Application
	Testbed
	Results

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




