
DRMAA Implementation within the GridW ay

Framework.∗

J. Herrera † R.S. Montero † E. Huedo ‡

I.M. Llorente †,‡

Email : jherrera@fdi.ucm.es, rubensm@dacya.ucm.es, huedoce@inta.es, llorente@dacya.ucm.es

†Dpto. Arquitectura de Computadores y Automática
Facultad de Informática, Universidad Complutense

28040 Madrid (Spain)

‡Lab. Computación Avanzada, Simulación y Aplicaciones Telemáticas

Centro de Astrobioloǵıa (CSIC-INTA),
28850 Torrejón de Ardoz (Spain).

September 13, 2004

Abstract

One of the barriers that prevents the expansion and adoption of Grid technolo-
gies is the lack of a standard programming paradigm. The Distributed Resource
Management Application API (DRMAA) has been proposed to support the rapid
development and distribution of applications across Distributed Resource Manage-
ment Systems (DRMS). In this paper we describe an implementation of the DRMAA
standard on a Globus-based testbed, and show its suitability to express typical sci-
entific applications. As a case of study, we consider the implementation of the NAS
Grid Benchmarks (NGB) with DRMAA. The DRMAA routines are supported by the
functionality offered by the GridW ay framework, which provides the runtime mech-
anisms needed for transparently executing jobs on a dynamic Grid environment.

1 Introduction

In recent years a great research investment has been made in Grid computing technologies.
However, deployment of applications across the Grid requires a high level of expertise and

∗This research was supported by Ministerio de Ciencia y Tecnoloǵıa through the research grant TIC
2003-01321 and Instituto Nacional de Técnica Aeroespacial “Esteban Terradas” (INTA).



a significant amount of effort. The most important barriers arise from the nature of the
Grid itself: multiple administration domains, heterogeneity, dynamism and high fault rate.
In a previous work [3] we have developed a Globus submission framework, GridW ay, which
allows an easier and more efficient execution of jobs on a dynamic Grid environment in
a “submit and forget” fashion. GridW ay automatically performs all the job scheduling
steps [6] (resource discovery and selection, and job preparation, submission, monitoring,
migration and termination), provides fault recovery mechanisms, and adapts job execution
to the changing Grid conditions.

On the other hand, the Grid lacks of standard programming paradigms. The Distributed
Resource Management Application API Working Group (DRMAA-WG)1 has developed
an API specification for job submission, monitoring and control that provides a high level
interface with Distributed Resource Management Systems (DRMS). In this way, DRMAA
could aid scientists and engineers to express their computational problems by providing a
portable direct interface to DRMS.

In this work we describe the implementation of DRMAA within the GridW ay frame-
work, and investigate the suitability of the DRMAA specification to distribute typical
scientific workloads across the Grid. In this sense the NAS Grid Benchmarks (NGB)
suite [7] constitutes an excellent case-of-study, since it models distributed communicating
applications typically executed on the Grid.

In Section 2, we describe the functionality provided by the GridW ay framework to
overcome the barriers to efficiently exploit a Grid environment. Section 3 briefly describes
the implemented DRMAA routines, and the development and execution process adopted in
this work. Finally, in Section 4, we evaluate the suitability of the DRMAA implementation
for executing NGB. The paper ends in Section 5 with some conclusions.

2 The GridW ay Framework

Although the DRMAA standard can help in exploiting the intrinsic parallelism found in
some application domains, the underlying DRMS is responsible for the efficient and robust
execution of each job. In particular the following aspects are considered by the GridW ay
framework:

• Given the dynamic characteristics of the Grid, the GridW ay framework periodically
adapts the schedule to the available resources and their characteristics [3]. GridW ay
incorporates a resource selector that reflects the applications demands, in terms of
requirements and preferences, and the dynamic characteristics of Grid resources, in
terms of load, availability and proximity (bandwidth and latency) [4].

• The GridW ay framework also provides adaptive job execution to migrate running
applications to more suitable resources. So improving application performance by
adapting it to the dynamic availability, capacity and cost of Grid resources. Moreover,

1http://www.drmaa.org (2004)



drmaa_init();

drmaa_finalize();

.C

Task B

Task C

Task A

Computational
Problem

Grid−Aware
Executable

Distributed
Resource

Management

PBS SGE

Results

Globus
Grid Middleware

GridWay

Local Jobmanagers

Figure 1: Development and execution cycle using the DRMAA interface

an application can migrate to a new resource to satisfy its new requirements or
preferences [3].

• GridW ay also provides the application with fault tolerance capabilities by capturing
GRAM callbacks, by periodically probing the GRAM jobmanager, and by inspecting
the output of each job.

We expect that DRMAA will allow to explore several execution techniques when dis-
tributing applications across the Grid. For example fault tolerance could be improved by
replicating job executions (redundant execution), the intrinsic parallelism presented in the
workflow of several applications could be exploited, or several alternative task flow paths
could be concurrently executed (speculative execution).

3 Distributed Resource Management Application API

One of the most important aspects of Grid Computing is its potential ability to execute
distributed communicating jobs. The DRMAA specification constitutes a homogeneous
interface to different DRMS to handle job submission, monitoring and control, and retrieval
of finished job status. In this sense the DRMAA standard represents a suitable and portable
framework to express this kind of distributed computations.

Although DRMAA could interface with DRMS at different levels, for example at the
intranet level with SGE or Condor, in the present context we will only consider its appli-
cation at global Grid level. In this way, the DRMS (GridW ay in our case) will interact
with the local jobmanagers (Condor, PBS, SGE...) through the Grid middleware (Globus).
This development and execution scheme with DRMAA, GridW ay and Globus is depicted
in figure 1.

In the following list we describe the DRMAA interface routines implemented within
the GridW ay framework:

• Initialization and finalization routines: drmaa init and drmaa exit.



Table 1: Characteristics of the machines in the UCM-CAB research testbed.

Name VO Model Speed OS Memory jobmanager

babieca CAB 5×Alpha DS10 466MHz Linux 2.2 256MB PBS
hydrus UCM Intel P4 2.5GHz Linux 2.4 512MB fork
cygnus UCM Intel P4 2.5GHz Linux 2.4 512MB fork
cepheus UCM Intel PIII 600MHz Linux 2.4 256MB fork
aquila UCM Intel PIII 666MHz Linux 2.4 128MB fork

• Job template routines: drmaa set attribute, drmaa allocate job template and
drmaa delete job template. These routines enable the manipulation of job defini-
tion entities (job templates) to set parameters such as the executable, its arguments
or the standard output streams.

• Job submission routines: drmaa run job and drmaa run bulk jobs. GridW ay has
native support for bulk jobs, defined as a group of n similar jobs with a separate job
id.

• Job control and monitoring routines: drmaa control, drmaa synchronize, drmaa wait

and drmaa job ps. This routines are used to control (killing, resuming, suspending,
etc..) and synchronize jobs, and monitor their status.

The DRMAA interface (see [5] for a detailed description of the C API) includes more
routines in some of the above categories as well as auxiliary routines that provides tex-
tual representation of errors, not implemented in the current version. All the functions
implemented in the GridW ay framework are thread-safe. We would like to mention that
the implementation of the DRMAA routines is straightforward thanks to the functionality
offered by the GridW ay framework.

4 The NAS Grid Benchmarks: A Case of Study

The NAS Grid Benchmarks (NGB) [2] have been presented as a Data Flow Graph (DFG)
encapsulating an instance of a NAS Parallel Benchmarks (NPB) [1] code in each graph
node, which communicates with other nodes by sending/receiving initialization data. NGB
is focused on computational Grids, which are used mainly for running compute-intensive
jobs that potentially process large data sets. Each benchmark comprises the execution of
several NPB codes that symbolize scientific computation (flow solvers SP, BT and LU),
post-processing (data smoother MG) and visualization (spectral analyzer FT).

Like NPB, NGB specifies several different classes (i.e. problem sizes), in terms of mesh
size and number of iterations. The NGB problems considered in this section belong to
the A class, as defined in [2]. The four families of problems defined in the NGB suite



model applications typically executed on the Grid and therefore constitutes an excellent
case-of-study for testing the functionality of the DRMAA and the environment itself. The
experiments were conducted in the UCM-CAB research testbed, based on the Globus
Toolkit, briefly described in table 1.

4.1 Embarrassingly Distributed

Embarrassingly Distributed (ED) family represents the important class of Grid applica-
tions called Parameter Sweep Applications (PSA), which constitute multiple independent
runs of the same program, but with different input parameters. In particular, each one con-
sists in the execution of the SP flow solver [1] with a different initialization parameter for
the flow field. Parameter Sweep Applications (PSA) like this can be directly expressed with
the DRMAA interface as bulk jobs. The general structure of ED and its implementation
with DRMAA are shown in figure 2.

Launch

Report

SP 0 SP i SP 9

//Initialization

jt= SP;

rc= drmaa_init(contact,err);

// Execute 9 jobs simultaneously and wait

rc= drmaa_run_bulk_jobs(job_ids,jt,1,9,1,err);

rc= drmaa_synchronize(job_ids,timeout,1,err);

rc= drmaa_exit(err_diag);

Figure 2: Structure and implementation of the ED benchmark using DRMAA.

Figure 3 shows an execution profile of the ED benchmark. Each suitable resource in
the Grid consecutively executes three SP tasks, which results in a total turnaround time
of 18.88 minutes and so a throughput of 0.5 jobs per minute. The average execution and
file transfer times for each task are 4.25 minutes and 18 seconds, respectively.

4.2 Helical Chain

The Helical Chain (HC) family represents long chains of repeating processes, such as a set
of flow computations that are executed one after the other, as is customary when breaking
up long running simulations into series of tasks, or in computational pipelines. Each job in
the sequence uses the computed solution of its predecessor to initialize. Considering these
dependencies each job in the chain can be scheduled by GridW ay once the previous job
has finished (see figure 4).

An execution profile of the HC benchmark is shown in figure 5. The turnaround time
is 17.56 minutes, with an average resource usage of 20.21%. The MDS delay in publish-
ing resource information results in an oscillating scheduling of the jobs. This schedule



Figure 3: Execution profile of the ED benchmark class A.

Launch

Report

BT6 LU8SP7

BT3 LU5

BT0 LU2SP1

SP4

// Initialization

jobs[0].jt= BT; jobs[1].jt= SP; jobs[2].jt= LU;

jobs[3].jt= BT; jobs[4].jt= SP; jobs[5].jt= LU;

jobs[6].jt= BT; jobs[7].jt= SP; jobs[8].jt= LU;

drmaa_init(contact, err);

// Submit all jobs consecutively

for (i= 0; i<9; i++) {

drmaa_run_job(job_id, jobs[i].jt,err);

drmaa_wait(job_id, &stat, timeout,rusage, err);

}

drmaa_exit(err_diag);

Figure 4: Structure and implementation of the HC benchmark using DRMAA.

clearly reduces the performance obtained compared to the optimal turnaround time2 of
6.18 minutes.

4.3 Visualization Pipe and Mixed Bag

Visualization Pipe (VP) represents chains of compound processes, like those encountered
when visualizing flow solutions as the simulation progresses. Mixed Bag (MB) again in-
volves the sequence of flow computation, post-processing, and visualization, but now the
emphasis is on introducing asymmetry. These benchmarks are combinations of the ED
(fully parallel) and HC (fully sequential) benchmarks described above. They exhibit some
parallelism that should be exploited, but it is limited by the dependencies between jobs.
In the case of VP, the parallelism is even more limited due to the low pipe width (only 3,
for all classes) and the long times to fill and drain the pipe (with class A, it only executes

2Belonging to a serial execution on the fastest machine.



Figure 5: Execution profile of the HC benchmark class A.

once with full parallelism).
Since neither GridW ay nor DRMAA directly support workflow execution, we have de-

veloped a simple workflow engine taking advantage of the DRMAA programming interface,
see figure 6. This workflow engine submits jobs as the jobs they depend on are completing.

drmaa_init(contact, err);

// Loop until all jobs are finished

while (there_are_jobs_left(jobs)) {

// Submit jobs with dependencies solved

for (i= 0; i<num_jobs; i++)

if (is_job_ready(jobs,i))

drmaa_run_job(jobs[i].id,jobs[i].jt,err);

// Wait any submitted job to finish

job_id= "DRMAA_JOB_IDS_SESSION_ANY";

drmaa_wait(job_id,&stat,timeout,rusage,err);

set_job_done(jobs,job_id);

}

drmaa_exit(err_diag);

Figure 6: Implementation of the workflow engine.

Figure 7 shows the structure and workflow engine initialization of the VP benchmark.
Figure 8 shows an execution profile of the VP benchmark. Dashed lines represent de-
pendencies between jobs and thicker lines represent the critical path. In this case, the
turnaround time is 21.68 minutes, with an average resource usage of 35.25%. Total exe-
cution and transfer times are 22.93 and 8.1 minutes, respectively. Total execution time is
slightly greater than the turnaround time, which shows that the parallelism is very limited
due to the low pipe width, the long times to fill and drain the pipe, and the Grid overhead.



Launch

BT6

BT3

BT0
MG1

MG4

MG7

Report

FT8

FT5

FT2

// Initialization

jobs[0].jt= BT; jobs[1].jt= MG; jobs[2].jt= FT;

jobs[3].jt= BT; jobs[4].jt= MG; jobs[5].jt= FT;

jobs[6].jt= BT; jobs[7].jt= MG; jobs[8].jt= FT;

jobs[0].dep= ""; jobs[1].dep= "0"; jobs[2].dep= "1";

jobs[3].dep= "0"; jobs[4].dep= "3"; jobs[5].dep= "2 4";

jobs[6].dep= "3"; jobs[7].dep= "6"; jobs[8].dep= "5 7";

Figure 7: Structure and workflow engine initialization of the VP benchmark.

Figure 8: Execution profile of the VP benchmark class A.

5 Conclusions

We have shown how DRMAA can aid the rapid development and distribution across the
Grid of typical scientific applications, and we have demonstrated the robustness and effi-
ciency of its implementation on top of the GridW ay framework and Globus. The function-
ality of this environment has been demonstrated through its ability to execute the NGB
suite using DRMAA. In this sense, the use of standard interfaces allows the comparison
between different Grid implementations, since neither NGB nor DRMAA are tied to any
specific Grid middleware.

References

[1] D. H. Bailey, E. Barszcz, and J. T. Barton. The NAS Parallel Benchmarks. Intl. J. of
Supercomputer Applications, 5(3):63–73, 1991.



[2] M. A. Frumkin and R. F. Van der Wijngaart. NAS Grid Benchmarks: A Tool for Grid
Space Exploration. J. of Cluster Computing, 5(3):247–255, 2002.

[3] E. Huedo, R. S. Montero, and I. M. Llorente. A Framework for Adaptive Execution
on Grids. Intl. J. of Software – Practice and Experience (SPE), 34:634–651, 2004.

[4] R. S. Montero, E. Huedo, and I. M. Llorente. Grid Resource Selection for Opportunistic
Job Migration. In Proc. of the 9th Intl. Conf. on Parallel and Distributed Computing
(Euro-Par 2003), volume 2790 of Lecture Notes in Computer Science, pages 366–373.
Springer–Verlag, August 2003.

[5] H. Rajic et al. Distributed Resource Management Application API Specification 1.0.
Technical report, DRMAA Working Group – The Global Grid Forum, 2003.

[6] J. M. Schopf. Ten Actions when Superscheduling. Technical Report GFD-I.4, Schedul-
ing Working Group – The Global Grid Forum, 2001.

[7] R. F. Van der Wijngaart and M. A. Frumkin. NAS Grid Benchmarks Version 1.0.
Technical Report NAS-02-005, NASA Advanced Supercomputing (NAS), NASA Ames
Research Center, Moffett Field, CA, 2002.


