
José Herrera, Eduardo Huedo,
Rubén S. Montero and Ignacio M. Llorente

Loosely-Coupled Loop Scheduling
in Computational Grids

Advanced Computing Laboratory
Associated to NASA Astrobiology Institute

CSIC-INTA

Distributed Systems
Architecture Group

Universidad Complutense de Madrid

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

Outline

• Motivation

• Self-Scheduling Schemes

• The GridWay Framework

• DRMAA: Distributed Resource Management Application API

• Development Model

• Loosely-Coupled Loop Scheduler

• A Simple Example

• Experimental Results

• Conclusions

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

Motivation

• Loop distribution is one of the most useful techniques to reduce the execution
time of parallel applications.

• MPICH-G2 have been used to develop the self-scheduling loops application in
a Grid environment.

• Disadvantages:
• All resources must be allocated to begin execution of the application.
• It is necessary to restart the self-scheduling loop when a resource fails.
• It is no possible to join new resources to a running application.

• Our investigation: A new approach to implement loop distribution in Grid using
DRMAA API and GridWay meta-scheduling framework.

• The efficiency and reliability of before schema to solve the Mandelbrot set
problem is analyzed in a research testbed bases on the Globus Toolkit 4.0.

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

Self-Scheduling Schemes (1/2)

• Two kinds of loop schedulers:
• Static: The loop scheduling decision is made at compile-time.
• Dynamic: The decision is made at execution-time.

• Two kinds of dynamic loop schedulers;
• Simple: Also named self-scheduling schemes.
• Distributed: The speed of cluster computers, the actual load of each node,

etc.

• Master-Worker paradigm: The master node dynamically assigns tasks to the
rest to the worker nodes. When a worker node ends, send the results to the
master node.

• The different ways to compute the iterations assigned to each processor has
given rise to different kinds of self-scheduling algorithms.

IntroductionIntroduction

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

Self-Scheduling Schemes (2/2)

• Chunk Self-Scheduling(CSS).
• The chunk-size is fixed and is chosen by the user. When the chunk size is 1

it is named pure self-scheduling.

• Guided Self-Scheduling (GSS).
• The chunk-size is decreasing. The user can choose the minimum chunk-size

assigned to each processor.

• Trapezoid Self-Scheduling (TSS).
• The chunk-size is linearly decreased a given amount.

• Fixed Increase Self-Scheduling (FISS).
• During each phase, only a subset of the remaining loop iterations divided

equally among the available processors. In each phase the chunk-size is
linearly increased.

Kinds of AlgorithmsKinds of Algorithms

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

The GridWay Framework
GridWay provides an easier and more efficient execution (submit & forget) on
heterogeneous and dynamic Grid.

• Dynamic Scheduler: GridWay
periodically adapts the scheduler to
the available resources

• Resource Selector: Reflects the
applications demands, in terms of
requirements and preferences.

• Adaptive Job Execution: To migrate
running applications to more suitable
resources.

• Fault tolerance (callbacks) and Job
exit codes (Job-manager).

CharacteristicsCharacteristics

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

DRMAA

• The DRMAA specification constitutes a homogenous interface to different
DRMS to handle job submission, monitoring and control, and retrieval of finished
job status. Moreover, DRMAA has been developed by DRMAA-WG within the
Global Grid Forum (GGF).

• The DRMAA standard represents a suitable and portable framework to express
this kind of distributed computations.

• Some DRMAA interface routines:
• Initialization and finalization routines: drmaa_init and drmaa_exit.
• Job submission routines: drmaa_run_job and drmaa_run_bulk_jobs.
• Job control and monitoring routines: drmaa_control,
drmaa_synchronize, drmaa_wait and drmaa_job_ps.

• DRMAA interface routines has been implemented within the GridWay
framework.

Distributed Resource Management Application APIDistributed Resource Management Application API

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

Development Model

Grid-AwareGrid-Aware
ExecutableExecutable

GlobusGlobus
MiddlewareMiddleware

drmaa_initdrmaa_init()()

drmaa_finalizedrmaa_finalize()()

.C

ResultsResults

GridWay

Task ATask A

Task BTask B

Task CTask C

Computational
Problem

Distributed Resource
Management

PBSPBS SGESGE

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

Loosely-Coupled Loop Scheduler
Advantages and DisadvantagesAdvantages and Disadvantages

• Main characteristics of a loosely-coupled approach:

• Reliability: When a resource fails the execution of the whole application
continues.

• Dynamic Adaptation: The worker loops can migrate to more suitable
resources. New resources can be used to execute the remainder worker
loops.

• Transparency: The worker loop execution, fault tolerance and migration
are transparent from the developer point of view.

• Deployment: Resources exploitation GT4.0 pre-WS, GT4.0 WS and
EGEE. It allows the drivers creation to other infrastructures.

• Main disadvantage  The need for storing partial results in secondary storage.

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

A Example: Addition of 2-D Matrix
Implementation SchemeImplementation Scheme

int A[N][M], B[N,M], C[N,M];

...

for(i=0; i<=N;i++)

{

 for(j=0; j<=M;j++)

 A[i][j] = B[i][j]+C[i][j]);

 write(A);

}

for(i=0; i<=N;i++)

{

 j=0;

 while(j < M)

 {

 CHUNK=chunk_calculation(self_schedulig);

 setup_job_template(&jt, CHUNK);

 /*Launch the slave loop*/

 result = drmaa_run_job(job_id, jt, error);

 if (i >= N_NODES)

 drmaa_wait(DRMAA_JOB_IDS_SESSION_ANY,

 job_id, &stat, &rusage,rror);

j+=CHUNK;

 }

 read(A);

}

Classic C Code

Master Loop

 /*The value tstripe, bstripe and i

 are input parameters*/

 read(B);

 read(C);

 for(j=tstripe; j<=bstripe;j++)

 A[i][j] = B[i][j]+C[i][j]);

 write(A);

 Worker Loop

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

Experiences (1/3)

Host Model Hz OS Memory Nodes
hydrushydrus Intel Pentium 4Intel Pentium 4 3.2 3.2 GhzGhz Linux 2.6Linux 2.6 512MB512MB 44
ursaursa Intel Pentium 4Intel Pentium 4 3.2 3.2 GhzGhz Linux 2.6Linux 2.6 512MB512MB 11
dracodraco Intel Pentium 4Intel Pentium 4 3.2 3.2 GhzGhz Linux 2.6Linux 2.6 11
cygnuscygnus Intel Pentium 4Intel Pentium 4 2.5 2.5 GhzGhz Linux 2.6Linux 2.6 512MB512MB 11

GRAM
PBSPBS
forkfork

forkfork
forkfork512MB512MB

• We evaluate the functionality and efficiency of the loosely-coupled loop
scheduling in a computational Grid.

• We consider the simple self-scheduling schemes to distribute the Mandelbrot set
application on a slightly heterogeneous testbed based on the Globus Toolkit.

TestBedTestBed DescriptionDescription

ObjectivesObjectives

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

Experiences (2/3)

• We consider an application that solves the Mandelbrot set problem for a
windows size 60000x50000 pixels with 6 bits per pixel (2.1 Gigabytes).

• Domain, [-1.7, 0.8] x [-1.0, 1.0]
• Size of each stripe: 60000xchunk
• Example with 5 nodes:

Experiment DescriptionExperiment Description

Scheme Chunk size
CSS(2000)CSS(2000) 2000 2000 2000 2000 2000 2000 2000 …
GSS(1000)GSS(1000) 10000 8000 6400 5120 4096 3277 2622 …
TSS(5000, 1000)TSS(5000, 1000) 5000 4750 4500 4250 4000 3750 3500 …
FFIISSSS 2000 2000 2000 2000 2000 3334 3334 …

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

0

1

2

3

4

5

6

7

8

2 3 4 5 6 7
Grid Nodes

S
p

e
e
d

u
p

CSS(2000) GSS(1000) TSS(5000,1000)
FISS Optimum

Experiences (3/3)

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

Conclusions

• We have presented the implementation of a set of self-scheduling
algorithms using Grid technology (DRMAA API and GridWay
framework).

• We compare this approach with MPICH-G2 applications.

• Main advantages: Reliability, Dynamic Adaptation, Transparency and
Deployment.

• We have been demonstrated the functionality and efficiency of this
approach with the calculation of Mandelbrot set problem.

• We demonstrated how Grid characteristics can degrade the execution
time of the dynamic scheduling algorithms.

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

GridWay Information
Information and download in http://www.GridWay.org

Apache Licence

 J. Herrera, E. Huedo, R. S. Montero e I. M. Llorente www.gridway.org

Information about GridWay

Additional Information about GridWay

Grid Ecosystem in Globus site

Tutorial in IBM site

Solaris Instalation in Sun Microsystems site

“DRMAA” and “Grid Scheduling Architecture” WGs in
GGF

José Herrera, Eduardo Huedo,
Rubén S. Montero and Ignacio M. Llorente

Loosely-Coupled Loop Scheduling
in Computational Grids

Advanced Computing Laboratory
Associated to NASA Astrobiology Institute

CSIC-INTA

Distributed Systems
Architecture Group

Universidad Complutense de Madrid

