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Abstract
The large number of protein sequences, provided by genomic projects

at an increasing pace, constitutes a challenge for large scale computa-

tional studies of protein structure and thermodynamics. Grid technology

is very suitable to face this challenge, since it provides a way to access the

resources needed in compute and data intensive applications. In this pa-

per, we show the procedure to adapt to the Grid an algorithm for the pre-

diction of protein thermodynamics, using the GridW ay tool. GridW ay

allows the resolution of large computational experiments by reacting to

events dynamically generated by both the Grid and the application.

Keywords Bioinformatics, Grid Technology, Adaptive Scheduling and

Execution.

§1 Introduction
Bioinformatics, which has to do with the management and analysis of

huge amounts of biological data, could enormously benefit from the suitability

of the Grid to execute high-throughput applications. It is foreseeable that the

Grid will be soon adopted, because biological data is growing very fast, due
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to the proliferation of automated high-throughput experimental techniques and

organizations dedicated to Biotechnology. Therefore, the resources required to

manage and analyze this data will be only accessible through the Grid.

One of the main challenges in Computational Biology concerns with the

analysis of the huge amount of protein sequences provided by genomic projects

at an ever increasing pace. The structure of a protein is coded in its amino

acid sequence, but deciphering it has turned out to be a very difficult problem,

which is still waiting for a complete solution. Nevertheless, in several cases,

particularly when homologous proteins are known, computational methods can

be quite reliable. At an higher level of complexity, a very significant effort is being

dedicated to mapping the protein interactions, which ultimately determine many

of the response properties of the cell. Also for this task, intensive computational

methods are needed to complement the different experimental approaches, and

analyze their results.

The aim of this paper is to present some experiences obtained on ap-

plying Grid technology to Bioinformatics. In particular, we will consider an

algorithm to predict the structure and thermodynamic properties of proteins,

which could be applied to several kinds of large scale studies, to demonstrate

the usefulness of the Grid to build sequence-structure alignments for a large set

of sequences. The main characteristics of the structure prediction algorithm are

briefly described in Section 2. Then, in Section 3, we present the GridW ay

framework to deal with the complexity of the Grid, and we enumerate the steps

needed to adapt the application to take advantage of the GridW ay features. In

Section 4, we show the biological problems for which experimental computational

results are presented. Finally, we give some conclusions in Section 5.

§2 Prediction of Protein Structure and Ther-
modynamics

In the past decades, a great effort has been dedicated to the prediction of

the native structure of proteins from the knowledge of their amino acid sequence.

Despite promising recent progress, the accepted principle that the native state is

the thermodynamic state of minimal free energy of the protein plus solvent sys-

tem is still unable to allow the prediction of protein structure on purely physical

grounds. The most successful methods are based on the biological principle that

protein structure is very conserved during evolution. Inspired by this principle,

homology modelling aims at detecting an evolutionary relationship between the
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target sequence and the sequence of a protein with known structure, in order to

infer the target structure by analogy. A third class, known as threading methods,

combines both the evolutionary and the physical approach. Based on the obser-

vation that protein sequences can diverge through evolution to the point that

their similarity is undetectable, while conserving roughly the same structure,

these methods try to fit all known protein structures to the target sequences,

scoring the match in terms of both sequence similarity and some simplified free

energy function. Methods of this class can in principle identify even distant ho-

mologous proteins sharing the same fold as the query protein. Here we use such

methods to obtain estimates of protein thermodynamics functions.

In this work we will consider an effective free energy function able to

assign to the experimentally known native structure lowest energy of the whole

set of candidate structures obtained aligning without gaps the target sequence

with structures in the Protein Data Bank (PDB)5, 2). This procedure for gener-

ating candidate structures is called gapless threading. In this way, the correct

structure is recognized for most of the sequences in the PDB. Exceptions are

proteins with large cofactors (i.e. non-proteic molecules needed for the function-

ing of the protein, like the heme group in hemoglobin), which are not included

in the effective energy function, small fragments, and multimeric proteins with

strong inter-chain interactions. The effective energy function is able to estimate

to a satisfactory accuracy the folding free energy (difference in free energy be-

tween the native state and the almost random unfolded state) of proteins whose

structure is known.

We have applied the effective energy function to estimate the normalized

energy gap12, 4), a parameter involved in folding efficiency, for sets of orthologous

proteins performing the same function in different organisms. This study showed

that proteins of intracellular bacteria have smaller folding efficiency than the

corresponding proteins of free living bacteria20). This result was expected from

the argument that intracellular bacteria live in small populations, and natural

selection is less effective in maintaining the properties of their macromolecules.

In order to use the effective energy function described above for pro-

tein structure prediction, we have to apply it to gapped alignments between the

query sequences and the candidate structures. Gaps in the alignment represent

residues that are deleted either from the sequence or from the structure in order

to fit them together. This is motivated by the fact that during evolution amino

acids are inserted in or deleted from protein sequences, thus spoiling the perfect
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gapless alignment that two sequences had when they originated from a common

ancestor. Introducing gaps increases enormously the space of candidate struc-

tures for protein structure prediction. In order to eliminate spurious matches

obtained by placing a large number of gaps, one has to penalize the introduction

of gaps. We therefore score an alignment ali(A,B) from each residue in the

protein A to the corresponding residue in the protein B with the expression:

Energy(Seq(A), Str(B), ali(A,B)) + G0 · Ngap + G1 · Lgap,

where Ngap and Lgap are respectively the number and total length of gaps, and

G0 and G1 are two parameters that have to be set by trial and error. Details

on the implementation of the scoring function and its optimization will be given

elsewhere.

For each structure in the PDB, our algorithm builds the gapped align-

ment between the target sequence and the structure which maximizes the above

score. The method has been tested in the 5th round of Critical Assessment of

techniques for protein Structure Prediction (CASP5)∗1 1). Although it is less

efficient than homology based methods in recognizing distantly related proteins,

when a close relative of the target structure is present in the PDB, even with

very low sequence similarity, the algorithm recognizes it and produces a good

alignment between sequence and structure. In such cases, the algorithm can be

used to estimate thermodynamic parameters of the target sequence, such as the

folding free energy and the normalized energy gap, and as such it has been used

to confirm our previous results on the folding efficiency of proteins of different

bacteria3).

§3 The GridW ay Framework
The Globus toolkit has become a de facto standard in Grid computing11).

Globus services allow secure and transparent access to resources across multiple

administrative domains, and serve as building blocks to implement the stages

of Grid scheduling19): resource discovery and selection, and job preparation,

submission, monitoring, migration and termination. However, the user is re-

sponsible for manually performing all the scheduling steps in order to achieve

any functionality. Moreover, the Globus toolkit does not provide support for

adaptive execution, required in dynamic Grid environments. In fact, one of

the most challenging problems that the Grid computing community has to deal

∗1 http://PredictionCenter.llnl.gov/casp5/
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with is the fact that Grids present a high fault rate and unpredictable changing

conditions (dynamic resource availability, load and cost).

To overcome these limitations, we have recently developed the GridW ay

experimental framework∗2. The core of the GridW ay framework15) is a personal

submission agent that performs all scheduling stages and watches over the correct

and efficient execution of jobs. Adaptation to changing conditions is achieved by

dynamic rescheduling of jobs, which can lead to a job migration if it is considered

feasible and worthwhile17), when one of the following events is detected:

• A “better” resource is discovered (opportunistic migration)17).

• The remote resource or its network connection fails.

• The submitted job is cancelled or suspended.

• Performance degradation is detected.

• The resource demands of the application change (self-migration).

The architecture of the GridW ay framework is depicted in Figure 1.

The user interacts with the framework through a programming or command line

interface, which forwards client requests (submit, kill, stop, resume...) to the dis-

patch manager. The dispatch manager periodically wakes up at each scheduling

interval, and tries to submit pending and rescheduled jobs to Grid resources.

Once a job is allocated to a resource, a submission manager and a performance

monitor are started to watch over its correct and efficient execution15).
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Fig. 1 Architecture of the GridW ay framework.

∗2 http://asds.dacya.ucm.es
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The framework has been designed to be modular, thus allowing exten-

sibility, adaptation and improvement of its capabilities. The following modules

can be set on a per job basis:

• resource selector, which searches for candidate resources following the

application demands.

• performance evaluator, which evaluates the application performance.

• prologue, which prepares the remote system and stages input files.

• wrapper, which executes the actual job and returns its exit code.

• epilogue, which stages output files and cleans up the remote system.

The submission agent also provides the application with the fault toler-

ance capabilities needed in such a faulty environment. When an unrecoverable

failure is detected, the submission agent retries the submission of prologue, wrap-

per or epilogue a number of times specified by the user and, when no more retries

are left, it performs an action chosen by the user among two possibilities: stop

the job for manually resuming it later, or automatically reschedule it.

We have developed both an API and a command line interface to interact

with the submission agent. They allow scientists and engineers to express their

computational problems in a Grid environment. The capture of the job exit

code allow users to define complex jobs, where each depends on the output and

exit code from the previous job. They may even involve branching, looping and

spawning of subtasks, allowing the exploitation of the parallelism on the work

flow of certain type of applications.

Our framework is not bounded to a specific class of applications, does

not require new services, and does not necessarily require source code changes.

We would like to remark that the GridW ay framework does not require new sys-

tem software to be installed in the Grid resources. The framework is currently

functional on any Grid testbed based on Globus. We believe that is an impor-

tant advantage because of socio-political issues: cooperation between different

research centers, administrators, and users can be very difficult.

The management of jobs within the same department is addressed by

many research and commercial systems9): Condor, Load Sharing Facility, Sun

Grid Engine, Portable Batch System, LoadLeveler... Some of these tools, such

as Sun Grid Engine Enterprise Edition13), also allow the interconnection of mul-

tiple departments within the same administrative domain. Other tools, such as

Condor Flocking10), even allow the interconnection of multiple domains, as long

as they run the same distributed resource management software. However, they
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are unsuitable in computational Grids where resources are scattered across sev-

eral administrative domains, each with its own security policies and distributed

resource management systems.

The AppLeS project6) has previously dealt with the concept of adap-

tive scheduling on Grids. AppLeS is currently focused on defining templates

for characteristic applications, like APST for parameter sweep and AMWAT for

master/worker applications. Also, Nimrod/G7) dynamically optimizes the sched-

ule to meet the user-defined deadline and budget constraints. On the other hand,

the need for a nomadic migration approach for adaptive execution on Grids has

been previously discussed in the context of the GrADS project16).

3.1 Changes to Make the Application Grid-Aware

Due to the high fault rate and the dynamic rescheduling, the application

must generate restart files in order to restart the execution from a given

point in the case of automatic job migration. If these files are not provided,

the job is restarted from the beginning. User-level checkpointing managed by

the programmer must be implemented because system-level checkpointing is not

currently possible among heterogeneous resources. The application has been

modified to periodically generate an architecture independent restart file

that stores the best candidate proteins found to that moment and the next

protein in the PDB to analyze.

In order to detect performance slowdown, the application is advised to

keep a performance profile with its performance activity in terms of applica-

tion intrinsic metrics. We have modified the application to provide a performance

profile that stores the time spent on each iteration of the algorithm, where an

iteration consists of the analysis of a given number of sequences.

In order to adapt the execution of a job to its dynamic demands, the ap-

plication must specify its host requirements through a requirement expression.

The target application does not impose any requirement to the resources.

Also, in order to prioritize the resources that fulfill the requirements

according to its runtime needs, the application must specify its hosts preferences

through a ranking expression. The ranking expression uses a performance

model to estimate the job turnaround time as the sum of the estimated execution

and transfer times, derived from the performance and proximity of the candidate

resources14).
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§4 Experiences

4.1 Biological Problem

In Figure 2, we compare the results of the thermodynamic calculations of

the folding free energy and the normalized energy gap obtained with the present

method and with a simpler one previously used20). In the former method, whose

results are shown on the x axis, the alignment between the target sequence

and the representative structure is obtained from their sequence alignment, in

the spirit of homology modelling, where the alignment between query sequence

and candidate structure is built maximizing their sequence similarity. In the

method described here (y axis), the alignment between sequence and structure

is optimized as described in Section 2.
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Fig. 2 Comparison of the folding free energy (left-hand chart) and the normalized energy

gap (right-hand chart) estimated by using a fixed alignment (previous algorithm), and by

optimizing the sequence-structure alignment (current algorithm).

The structures and the thermodynamic properties predicted with the

two methods are very similar. In fact, all predicted structures are TIM barrels,

and the folding free energies and normalized energy gaps predicted with the two

methods correlate nicely. Nevertheless, the second method is able to estimate

lower values of the folding free energy, and more reliable normalized energy

gaps, due to its improved ability to explore alternative states with low energy.

The three points in the right-hand chart of Figure 2, whose normalized energy

gap appears significantly lower with the second method, are in fact proteins

of intracellular bacteria, whose folding efficiency is expected, on evolutionary

grounds, to be lower than for free living bacteria20).
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The method described above can be applied in two kinds of large scale

studies. In both cases it will be necessary to build sequence-structure align-

ments for a large set of sequences. One study consists in predicting structure

and thermodynamic properties of the proteins in a whole genome. This applica-

tion still requires some improvements in the method, which fails if no structure

closely related to the target is present in the PDB. We are currently working

at improving the energy function and enlarging the space of candidate struc-

tures evaluated. Grid technology will make possible to apply our methods of

thermodynamic predictions on a genome scale.

In the other study, we want to apply the structure prediction algorithm

to a large number of families of orthologous proteins (i.e. proteins with common

origin which perform the same function in different organisms), extending the

study described previously. This comparative study has shown that folding

efficiency is lower in proteins of intracellular bacteria than in their free-living

relatives20). If a representative structure of one protein of the set is known, we

expect from our previous experience that the algorithm recognizes it as the best

structural model for each sequence, and allows to estimate its thermodynamics

properties. The test presented in Section 4.2 is an example of this application,

where we have applied the structure prediction algorithm to 88 sequences of

the Triose Phosphate Isomerase enzyme expressed in different organisms. The

protein assumes the TIM barrel fold, which is the most common fold in the

whole space of protein structures18).

The results of the comparative study of protein folding for this and

other proteins have shown that there is a correlation between genomic features,

such as the genome size and the base content of DNA, and protein folding

thermodynamics3).

4.2 Computational Results

We have performed the experiments in the UCM-CAB research testbed,

depicted in Table 1. The testbed is highly heterogeneous and dynamic, and

consists of three virtual organizations, two of them connected through a campus

area network, and both connected to the other one through the RedIRIS Spanish

academic network.

The experiment files consist of the executable (provided for all the re-

source architectures in the testbed), the PDB files (preprocessed and compressed,

to reduce the transfer time), some parameter files, and the file with the sequence



10 E. HUEDO, U. BASTOLLA, R.S. MONTERO and I.M. LLORENTE

Table 1 The UCM-CAB research testbed.

Host Processors Speed Mem. OS DRMS

ursa.dacya.ucm.es 1× US-IIe 500MHz 256MB Solaris fork

draco.dacya.ucm.es 1× US-I 167MHz 128MB Solaris fork

pegasus.dacya.ucm.es 1× P4 2.4GHz 1GB Linux fork

solea.quim.ucm.es 2× US-II 296MHz 256MB Solaris fork

babieca.cab.inta.es 5× EV6 466MHz 256MB Linux PBS

to be analyzed. The final name of the executable file is obtained by resolving

the variable GW ARCH at runtime for the selected host, and the final name of the

file holding the sequence to be analyzed, with the variable GW TASK ID for the

current job. Input files can be local or remote (specified as a GASS, Global

Access to Secondary Storage, or GridFTP URL), and both can be compressed

(to be decompressed on the selected host) and declared as shared (to be stored

in the GASS cache and shared by all the jobs submitted to the same resource).

Most of the time spent on file transfers is due to the transferring of the PDB

files, with a total file size of 40MB (12MB when compressed), but once the files

are transferred to the remote resource, they are highly reused.

All the information needed to schedule and execute the job is included

in the job template file. The whole experiment is submitted as an array job,

consisting of 88 tasks where each task analyzes one sequence. Figure 3 shows the

behavior when all machines in the testbed were up. Total experiment time was

7.15 hours, and the mean throughput was 12.30 jobs/hour, which supposes a

mean job turnaround time of 4.88 minutes. Figure 4 shows the average transfer

and execution times for each resource in the testbed for this scenario.

Fig. 3 Throughput when all machines in the testbed were up.
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Fig. 4 Average transfer and execution times for each resource in the testbed.

Figure 5 (left-hand chart) shows the attained throughput when babieca

was temporarily shutdown for maintenance. As a consequence, the resource se-

lector removes babieca from the candidate resource list. Moreover, jobs already

allocated to babieca were dynamically rescheduled to other Grid hosts. Total

experiment time was 7.31 hours (only 9.6 minutes more than the previous ex-

periment), and the mean throughput was 12.04 jobs/hour, which supposes a

mean job turnaround time of 4.98 minutes. The mean throughput dropped from

12.71 to 10.61 jobs/hour during the period when babieca was down, but when it

recovered, the throughput increased up to 12.04 jobs/hour.

Fig. 5 Throughput when babieca was temporarily down (left-hand chart) and when pegasus

was discovered in the middle of the experiment (right-hand chart).

Figure 5 (right-hand chart) shows the attained throughput when pegasus

was discovered in the middle of the experiment, because it was turned on in that

moment. The dispatch manager, wisely chose to send pending jobs to the new

resource discovered rather than to migrate a running one. Total experiment time

was 8.65 hours, and the mean throughput was 10.17 jobs/hour, which supposes a



12 E. HUEDO, U. BASTOLLA, R.S. MONTERO and I.M. LLORENTE

mean job turnaround time of 5.9 minutes. Before discovering pegasus, the mean

throughput was only 8.31 jobs/hour, and after that, it increased to 10.17.

We will next evaluate the schedule performed by the GridW ay frame-

work in the above scenarios compared to the optimum static schedule. This

comparison can only be seen as a reference, whose main goals are to establish an

upper performance bound and to highlight the relevance of adaptive scheduling

in a Grid environment. The optimum Grid schedule will minimize the makespan

of the application8):

minimize

max{NiT i} ∀i ∈ GR

subject to
∑

i∈GR

Ni − 88 = 0;

0 ≤ Ni ≤ 88 ∀i ∈ GR, (1)

where Ni is the number of jobs executed on host i, T i is the average job

turnaround time on host i (as shown on Figure 4), and GR is the set of all Grid

resources (GR = {draco, pegasus, solea× 2, babieca× 5}). Figure 6 shows the

comparison. The theoretical experiment time for the optimum schedule would

be 6.46 hours, which is nearly 10% better than the one obtained by GridW ay

when all machines were up. This is a very good result, since the worse time

obtained by GridW ay is mainly due to the overhead of gathering the dynamic

information in order to adapt the schedule to the changing Grid conditions.

Fig. 6 Schedule performed by GridW ay in different scenarios and optimum schedule stati-

cally calculated.
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§5 Conclusions and Future Work
In this paper, we have presented some experiences obtained on applying

Grid technology to Bioinformatics. We have shown a procedure to adapt an

existing Bioinformatics application to the dynamism of the Grid, with the help

of the GridW ay framework. Moreover we have demonstrated the benefits of

adaptive scheduling and execution to provide both performance improvement

and fault tolerance in a dynamic and faulty Grid environment.

In the scope of the target application, this promising experiment show

the potentiality of the Grid for the study of large numbers of protein sequences,

and they suggest the possible application of this methods to the whole set of

proteins in a complete microbial genome. However, this problem still requires

some improvements in the structure prediction algorithm itself.
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