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Abstract

Grid resource management has been traditionally limited to just two levels of
hierarchy, namely local resource managers and metaschedulers. This results in a
non manageable, and thus not scalable, architecture, where each metascheduler has
to be able to access thousands of resources, which also implies having a detailed
knowledge about their interfaces and configuration. This paper presents a recur-
sive architecture allowing an arbitrary number of levels in the hierarchy. This way,
resources can be arranged in different ways, for example, following organizational
boundaries or aggregating them by similarity, while hiding the access details. An
implementation of this architecture is shown, as well as its benefits in terms of au-
tonomy, scalability, deployment and security. The proposed implementation is based
on existing interfaces, allowing for standardization.
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1 Introduction

The high expectations raised by grid computing have favored the develop-
ment and deployment of a growing number grid infrastructures, like EGEE 1 ,
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TeraGrid 2 or OSG 3 . However, interoperability between these grids is still
limited, so reducing the potential large-scale application of grid technology,
in spite of efforts made by grid community, mainly within the Open Grid Fo-
rum 4 . Current approaches to federate different grid infrastructures usually
have a single layer of (one or more) metaschedulers or grid workload man-
agers with plain access to several underlying grid infrastructures. To achieve
interoperation when no common or standard interfaces are available, each of
these metaschedulers use the appropriate adapter to interface each different
middleware stack [1].

Nowadays, grid technology is mainly applied to multiple research fields with
unquestionable success. But, same way that happened with the Internet, grid
technology will be key for business development, giving birth to numerous
business models, like IT outsourcing, on-demand and utility computing, ap-
plication service providers, and so on. However, grid computing still does not
meet the requirements for enterprise adoption, like complexity hiding, service
orientation, transparent access and stability [2], mainly due to the architecture
currently used for grids.

The grid architecture presented in this work uses different layers of metasched-
ulers arranged in a hierarchical structure. Moreover, each target grid is handled
as another resource, in a recursive way, using the same interfaces for resource
management. This architecture allows a straightforward federation of grid in-
frastructures, observing organizational boundaries, as well as an easier interop-
eration of grid middlewares, and provides better control over shared, but still
owned, resources. Therefore, it will encourage research and business organiza-
tions to start sharing resources with partners, and will foster the growth of a
healthy computing market of resource and service providers and consumers [3].

The rest of the paper is organized as follows. After discussing some related
work in Section 2, Section 3 introduces the recursive architecture for hierarchi-
cal resource management in grids. To demonstrate its viability and suitability,
Section 4, 5 and 6 present an implementation, some use cases of the proposed
technology, and some experiences and results, respectively. Finally, Section 7
ends up with some conclusions and hints about future work.

2 http://www.teragrid.org
3 http://www.opensciencegrid.org
4 http://forge.ogf.org/projects/gin
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2 Related Work

There are several efforts to classify grid resource management systems, show-
ing the different alternatives typically followed [4,5]. For example, hierarchical
approaches have been widely used for information [6] and data management [7]
services, but their application for resource management services (i.e. broker-
ing, scheduling, execution and so on) have been limited to just two levels: the
scheduler or LRMS, and the metascheduler, or resource broker.

A recursive architecture for grid resource management has been previously
applied to federate LCG and GridX1 infrastructures [8], where a GridX1 user
interface is hosted in a LCG computing element. However, this solution im-
poses software, middleware and network requirements on worker nodes. The
Globus project is also interested on this kind of recursive architectures, and
is working on Bouncer [9], which is a Globus job forwarder initially conceived
for federating TeraGrid and Open Science Grid infrastructures.

Based on a study of Internet and similar network-based systems, some au-
thors have recently proposed a three-level hierarchical architecture for the
InterGrid [10] (as an analogy with the Internet), enabling peering of grids
and exchange of resources. It has the InterGrid Gateways (IGGs) on top, co-
ordinating between the different grids, followed by the IntraGrid Resource
Managers (IRM), taking care of resource allocation, using the resource shares
assigned by Resource Providers (RP), on the bottom.

Previously, Condor’s Flocking and GlideIn mechanisms [11] allowed job trans-
fers across Condor pools’ boundaries or the deployment of remote Condor
daemons, respectively. Nevertheless, these solutions were not based on stan-
dards and require the same resource manager to be installed on all resources.
In this sense, the Open Grid Forum’s Grid Scheduling Architecture research
group (GSA-RG) 5 is working on a standard architecture for the interaction
between different metaschedulers.

Other non-hierarchical approaches have been proposed. For example, peer-to-
peer (P2P) techniques have been widely used for resource discovery [12] and
job scheduling. For example, the DIANA scheduling system is implemented
as a P2P system [13], making use of a P2P network to track the available
resources on the Grid. However, these techniques are valid only when dealing
with similar peers. For example, the infrastructure of an international partner
grid and that of a SME are not at the same level, so they can not be considered
peers. Nevertheless, they can serve to join desktop PCs, different sites or, as
in the InterGrid case, separate grids.

5 http://forge.ogf.org/projects/gsa-rg
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3 Recursive Architecture

The Globus Toolkit 6 has become a de facto standard in Grid computing.
Globus services allow secure and transparent access to resources across multi-
ple administrative domains [14], and serve as building blocks to implement the
stages of Grid scheduling. Resource management is maybe the most impor-
tant component for computational grids, although it could be also extended to
other non-computational resources. The Globus layer provides a uniform in-
terface to many different Distributed Resource Management (DRM) systems,
allowing the development of grid workload managers that optimize the use of
the underlying computing platforms.

Following an hourglass model, grid workload managers or metaschedulers
should have access to a wide range of resources provided through a limited,
standardized set of protocols and interfaces. The Globus core grid middle-
ware provides this set. Just as in the Internet, the protocols and interfaces
are provided through IP. The main innovation of our architecture is the use of
Globus Toolkit services to recursively interface to the resource management
services available in a whole Globus-based grid. This allow us to create the
required virtualization technology in order to provide a powerful abstraction
of the underlying grid resource management services.

It is sometimes difficult to expose all the functionality of a metascheduler just
using Globus interfaces, but the functionality usually needed is rather simple,
since complex features (like workflow management or parametric execution)
are handled in client tools. This is in line with end-to-end arguments, which
suggest that functions placed at low levels of a system may be redundant or of
little value when compared with the cost of providing them at that low level,
and that low-level mechanisms to support these functions are justified only as
performance enhancements [15]. For example, the arguments that are used in
support of RISC architecture, encryption, and operating system kernels are
similar to end-to-end arguments. But the best-known example is the architec-
ture of the Internet [16], that fostered the spectacular development of Web
and communication technologies in the past decade.

As a performance enhancement, thus compatible with end-to-end arguments,
it is possible to access local resources (i.e. those located in the same adminis-
tration domain as the metascheduler) using other interfaces with more func-
tionality and less overheads, for example a simple remote shell (SSH prefer-
ably) or DRMAA [17]. For example, GridWay provides SSH MADs to access
local resources in an opportunistic way and, in the future, it will provide DR-
MAA MADs to interact directly with LRMS (Local Resource Management

6 http://www.globus.org
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Systems).

Besides the already discussed benefits, the recursive, hierarchical approach for
grid resource management presents additional advantages, in terms of [18]:

• Decentralized control: the operation inside each level of the hierarchy is
autonomous, with different policies for user access control, identity mapping,
scheduling (e.g. assigning different priorities for local and external users),
resource sharing (e.g. when to accept, suspend or cancel external jobs to
preserve the performance of local ones [19]), accounting, billing, etc.

• Standardization and interoperability: the use of, de-facto standard,
Globus interfaces (WSRF, GridFTP, GSI...) provides innumerable benefits,
since it provides an environment in which final users, ISVs and technology
providers can undertake investments with greater confidence. Also, there
is no need to deploy new services, easing the configuration and keeping
well-known firewall settings.

• Access transparency: the access to another infrastructure is performed
using the same interfaces for resource management. Therefore, there is no
need to change existing tools, like workflow engines, parametric tools or
LRMS.

• Scalability: there are less entities at each level, therefore processes like
information dissemination or scheduling perform better and take advantage
of spatial locality. For example, external resources should be used only when
local ones are overloaded.

• Reconfigurability: this solution allows a gradual migration, from fully in-
house provision to fully outsourced. This will help to deal with the obstacles
for adoption such as enterprise skepticism and IT staff and management
resistance.

• Security: configuration details can be hidden and only one machine should
be accessible from the Internet with a limited set of services, so drastically
reducing firewall requirements.

However, this architecture shows higher overheads, which can be reduced by
means of file and information caches, using performance models to summa-
rize the dynamic monitoring information about resource availability [20], and
taking care of the nature of jobs when deciding whether to forward or execute
them locally.

4 Implementation Details

The Grid Resource Allocation and Management (GRAM) service is the core
of the resource management pillar of the Globus Toolkit. GRAM operates in
conjunction with a number of schedulers, including Condor, PBS, SGE and
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a simple “fork” scheduler. GRAM provides a plugin architecture for exten-
sibility. When the Job Manager is invoked by the Managed Executable Job
service to process a job request, it maps the request to a local scheduler using
the appropriate plugin. Each plugin provides a set of programs and scripts
that map job requests to specific scheduler commands such as submit, poll
or cancel. Latest version of GRAM (WS-GRAM or GRAM4) is based on the
WSRF (Web Services Resource Framework) specification 7 .

GridWay 8 is an open source metascheduling technology that provides a decen-
tralized and modular architecture for resource brokering and workload man-
agement, in dynamic and loosely-coupled Grid environments [21,22]. GridWay
provides an environment for submitting, monitoring, synchronizing and con-
trolling jobs, which is very similar to that found on typical LRMS, in fact,
GridWay implements the DRMAA standard [23].

A GridGateWay offers the possibility of encapsulating a virtualized grid inside
GRAM, using GridWay as the underlying LRMS, as shown in Figure 1. To in-
terface GridWay through GRAM, a new scheduler adapter has been developed
along with a scheduler event generator. Also, a scheduler information provider
has been developed in order to feed MDS (Monitoring and Discovery Service)
with scheduling information. For file transfer, both GridFTP and RFT can be
used.

Fig. 1. GridGateWay solution based on the Globus Toolkit and the GridWay
Metascheduler.

This way, a GridGateWay provides the standard functionality required to im-
plement a gateway to a enterprise, partner or outsourced grid. It is worth not-
ing that any other workload management tool could be used for the GridGate-
Way, but the fact that GridWay provides a LRMS-like interface makes easier
its integration with GRAM.

7 http://www.oasis-open.org/committees/wsrf/
8 http://www.gridway.org
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5 Use Cases

Next sections provide use cases of the proposed GridGateWay technology, from
a simple WSRF interface for GridWay, through grid federation and transpar-
ent access from a cluster, to a Utility Computing service.

5.1 A WSRF Interface for GridWay

The GridGateWay enables the remote access to GridWay’s metascheduling
capabilities through a WSRF interface. Not all the functionality is accessible
this way (e.g. workflows are not available), but in turn it provides an interface
that can be used with Globus clients (e.g. globusrun-ws), is accessible through
Globus APIs (Globus Java Core, Java CoG) and also can be put to work with
the various workflow tools based on Globus, like, for example, the one offered
by Java CoG (Karajan).

For example, AstroGrid-D 9 , which is a community grid within the German
D-Grid initiative 10 , uses GridGateWay technology for job submission from
different Globus clients to a central GridWay instance [24], as shown in Fig-
ure 2.

Fig. 2. Scheme of job submission in AstroGrid-D using GridGateWay technol-
ogy [24].

5.2 Federation of Grid Infrastructures

9 http://www.gac-grid.org
10 http://www.dgrid.de
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A GridGateWay can serve as an entry point to a grid infrastructure. For ex-
ample, GRIDIMadrid 11 uses GridGateWay technology to access the EGEE 12

infrastructure on demand. Figure 3 shows how one instance of the GridWay
metascheduler manages resources of the GRIDIMadrid regional grid and out-
sources jobs to a GridGateWay that virtualizes the EGEE international grid.
To have a fully federated infrastructure, it would be possible that EGEE re-
source brokers also use a GridGateWay to send jobs to GRIDIMadrid, avoiding
cycles. Section 6 provides some results related to this.

Fig. 3. Federation of GRIDIMadrid and EGEE infrastructures.

5.3 From Cluster to Grid Computing

Most local resource management systems, like Sun Grid Engine (SGE), PBS
or Condor, provide a way to interact with other resource managers and, in
particular, with GRAM. For example, Figure 4 shows a SGE domain with
the usual local queues and a special grid queue (that can be configured to be
available only under certain special conditions), that enables SGE to submit
jobs to a GRAM service or to GridWay. The GRAM service can, in turn,
encapsulate a GridWay Metascheduler (thus conforming a GridGateWay) that
gives transparent access to another grid infrastructure [25].

Fig. 4. SGE transfer queue to Globus in order to access a GridGateWay.

11 http://www.gridimadrid.org
12 http://www.eu-egee.org
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5.4 Utility and On-Demand Computing

The deployment of a utility computing solution involves a full separation be-
tween the provider and the consumer. The consumer requires a uniform, se-
cure and reliable functionality to access the utility computing service and the
provider requires a scalable, flexible and adaptive infrastructure to provide the
service. The solution should be based on standards and allow a gradual deploy-
ment in order to obtain a favorable response from the application developers
and the information technology staff [3].

The proposed architecture overcomes such challenges by means of its stan-
dard functionality for flexible integration of diverse distributed resources. The
GridGateWay acts as a utility computing service, providing a uniform stan-
dard interface based on Globus protocols and services for the secure and reli-
able submission and control of jobs, including file staging, on grid resources.
For example, the use of GridGateWays is being evaluated in the BEinGRID 13

EU project in the context of the Business Experiment #14 for on-demand pro-
vision of resources.

6 Experiences and Results

In order to illustrate the overheads imposed by the recursive architecture,
Figure 5 shows the throughput achieved at UCM when accessing resources
from EGEE both directly and through a GridGateWay. We used a application
composed of 100 tasks, each taking about 10 seconds to execute. As expected,
there are differences in latency (response time) and throughput in each case,
but the use of a GridGateWay supposes a performance loss of only 10.85%.
Notice that this performance loss has been obtained with a small application
requiring a few seconds to execute. Since the overheads are independent on the
computational time required by the application, they will suppose a smaller
fraction of the total time if more demanding applications were used.

Related to the use case presented in Section 5.2, Figure 6 shows the through-
put achieved at UCM when simultaneously accessing local resources and a
GridGateWay to the EGEE infrastructure, using the same application. No-
tice that, in this case, the whole EGEE infrastructure is accessed as a single
GRAM resource, allowing the definition of compulsory grid-wide policies for
external users as long as the GridGateWay is the only entry point.

13 http://www.beingrid.eu
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Fig. 5. Throughput achieved at UCM when accessing resources from EGEE both
directly and through a GridGateWay.

Fig. 6. Throughput achieved at UCM when simultaneously accessing local resources
and a GridGateWay giving access to the EGEE infrastructure.

7 Conclusions

We have shown the potential benefits of a recursive architecture for hier-
archical grid resource management. To better illustrate them, we have pre-
sented some implementation details, real use cases and experiences. The main
strength of the proposed approach is the use of Globus interfaces for grid in-
frastructure access and federation. This makes existing tools ready to be used
without modifications and enormously simplifies interoperation.

There are a lot of lines for future research and work, including the investiga-
tion of resource sharing policies, the use of simulation tools to evaluate com-
plex scenarios, policies and techniques, the development of mechanisms for
authorization and identity mapping, or the definition accounting and billing
methods to implement utility computing provision models.
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