
Integration of GRID superscalar and GridWay
Metascheduler with the DRMAA OGF

Standard.?

R.M. Badia1, D. Du3, E. Huedo2, A. Kokossis3, I. M. Llorente2, R. S.
Montero2, M. de Palol1, R. Sirvent1, and C. Vázquez2

1 Barcelona Supercomputing Center
2 Universidad Complutense de Madrid

3 University of Surrey

Abstract. With the goal of promoting the adoption of the grid tech-
nologies from the business and enterprise, BEinGRID EU project is or-
ganized as a set of pilots with partners with complementary roles, from
end users to technology providers. The expected output is a set of busi-
ness reference cases leading towards the business exploitation of the grid.
The paper shares experience with one of the pilots, BE14, from a techno-
logical point of view. The experiment has integrated GRID superscalar
(as programming model) with GridWay (as metascheduler) through the
DRMAA standard and has been successfully used to speed up an ap-
plication that enables new processes and products development in the
Chemistry sector with considerable success.

Keywords: Grid Computing, DRMAA, GRID superscalar, GridWay Metasched-
uler

1 Introduction

Business Experiments in GRID (BEinGRID), is an European Unions integrated
project funded by the Information Society Technologies (IST) research, part of
the EUs sixth research Framework Programme (FP6). The BEinGRID consor-
tium is composed of 75 partners who are running eighteen Business Experiments
designed to implement and deploy Grid solutions in industrial key sectors.

The main objective of BEinGRID project is to foster the adoption of the
so-called Next Generation Grid technologies by the realization of several busi-
ness experiments and the creation of a toolset repository of Grid middleware
upper layers. BEinGRID is undertaking a series of targeted business experiment
pilots designed to implement and deploy Grid solutions in a broad spectrum of
European business sectors (entertainment, financial, industrial, chemistry, gam-
ing, retail, textile, etc). Eighteen business experiments are ongoing in the initial

? This research was supported by European Union, through BEinGRID project EU
contract IST-2005-034702.



stage of the project with a second open call that recently accepted a second
bunch of experiments. Secondly, a toolset repository of Grid service components
and best practise will be created to support European businesses that wish to
take-up the Grid. To minimise redevelopment of components, BEinGRID will
deploy innovative Grid solutions using existing Grid components from across the
European Union and beyond.

The authors of this paper are involved in the Business Experiment 14 (BE14),
”New Product and Process Development”, that addresses the creation of an inte-
grated environment that enables the automation of new products and processes
in the Chemistry sector in a Grid environment.

The process industry spends a lot of resources in the development of new
products and processes. Nowadays these processes depend heavily on computers
and are basically manual and sequential. The objective of this work is to imple-
ment a development environment that is able to automate these processes in a
computational Grid. Grids appear as the ideal venue to enable such an applica-
tion since they offers tremendous scope to automate studies with virtual access
to experts and resources and capabilities to launch integrated experiments.

The added value of the experiment is the increase of the efficiency measured
by reductions in development times, systematic accumulation of industrial know-
how, and effective use (and re-use) of knowledge and expertise. The application is
developed on top of the integration of two powerful grid tools: GRID superscalar
(GRIDSs) [1], which provides a grid-unaware programming environment and
GridWay [2], a metascheduler which provides reliable execution in heterogeneous
Grids. The integration of both tools have been performed through the OGF
standard DRMAA [3, 4], which has also become the first OGF recommendation.

In this work we focus on the technical aspects of the experiment: how GRIDSs
and GridWay have been extended and modified to be able to work in cooper-
ation and how an end-user application has been successfully developed on top
of this environment. The paper structure is as follows: section 2 presents the
Grid Applications Development solution (GridAD) developed in the framework
of the BE14. Section 3 gives an overview of the enabling technologies of GridAD:
GRIDSs and GridWay. Section 4 describes how GRIDSs and GridWay have been
modified to enable their integration through the DRMAA OGF standard. In sec-
tion 5 we present the early results obtained with the BE application. Finally,
section 6 concludes the paper and presents future work.

2 Grid Applications Development Solution (GridAD)

GridAD is the result of the integration through the DRMAA OGF standard of
two powerful grid tools: GRIDSs and GridWay Metascheduler. The combination
of GRIDSs and GridWay (GridAD) provides a complete and powerful toolset for
the development and deployment of applications in the grid. GRIDSs is specially
unique for the possibility that offers to the programmers to make the grid “in-
visible”. On the other hand, GridWay is an efficient metascheduler, worldwide
known and used. Additionally, there is no solution equivalent to the combination



of both. GridAD can be used for computational grids and also on clusters, by
linking to other DRMAA libraries intended for DRMS (Condor, SGE, etc).

3 Enabling Grid Technologies

3.1 GRID superscalar

GRID superscalar (GRIDSs) [1] is an innovative grid programming framework
that enables non-grid experts to develop applications that can be run in a com-
putational grid. GRIDSs provides a very user-friendly programming framework
to grid environments. GRIDSs not only provides an abstract layer to program
applications in the grid, but also is able to increase the performance of the appli-
cations by automatically parallelising parts of the application. Applications that
can take advantage of GRIDSs are those composed of one or more coarse grain
tasks that are called several times during the application execution. GRIDSs
will execute the coarse grain tasks in independent grid servers and will exe-
cute sequentially those that have data dependencies. However, when no data
dependencies exist between two or more tasks, GRIDSs is able to execute them
concurrently.

GRIDSs is composed of:

– User Interface: GRIDSs applications are composed of three parts: main pro-
gram, tasks’ code, and interface of the tasks. A small set of primitives (up
to seven) are offered for the main program, and two primitives for the tasks’
code. The interface of the tasks is simply an interface specification that in-
cludes the direction of the tasks’ parameters (input, output or input/output).
Expert users can complete their applications by giving resource constraints
(memory, disk, OS, ...) and performance costs models of their tasks.

– Automatic code generation: From the interface definition some code is auto-
matically generated by gsstubgen, a tool provided with the GRIDSs distri-
bution. This automatically generates code for stubs and skeletons that will
be run on the grid servers and clients.

– Deployment Center: The deployment center is a graphical interface that
performs the automatic deployment of the applications in the grid, by trans-
fering the code files, automatic building of the binaries in the servers and
configuration file generation.

– GRID superscalar Monitor: The GRID superscalar monitor (GSM) visualizes
the task dependence graph (TDG) at run time, so the user can study the
structure of the application and track the progress of execution.

– Run-time: The runtime is the more complex component of the system and
performs: task dependency maintenance, task scheduling, file renaming (to
further exploit the application concurrency), file transfer taking into account
shared file systems, checkpointing, and fault tolerance. It is important to em-
phasize here that the runtime of GRIDSs makes the decision on which Grid
resource should be used to execute each task. To take this decision, several
parameters are considered: location of input files, to reduce file transfers



(and therefore exploiting file locality) and resource constraints specified by
the user in the constraints interface. Another important feature is file renam-
ing: this technique consists in the generation of several instances of the same
file (i.e., several temporal files that have the same in the application, but in
fact are different instances) to further increase the application parallelism.
GRID superscalar run-time handles the renaming, maintaining at each mo-
ment for each renamed file the original filename and for each original filename
which is the last renamed filename, and taking this renaming into account
in the data dependence analysis. The run-time also keeps track of the server
where each file is located. Files are transferred only on demand and if re-
quired. Together with a locality-aware scheduling policy, the number of file
transfers is largely reduced.

GRIDSs is distributed as Open Source under Apache v2 license [5].

3.2 GridWay Metascheduler

GridWay provides the end-user with a working environment and functionality
similar to those found on local DRM systems, such as SGE, LSF or PBS. The
end-user is able to submit, monitor and control his jobs by means of DRM-like
commands (gwsubmit, gwwait, gwkill...) or standard programming interfaces.

– Efficient, reliable and unattended execution of jobs: GridWay automatically
performs all the job scheduling steps, provides fault recovery mechanisms,
and adapts job scheduling and execution to the changing grid conditions

– Broad application scope: GridWay is not bounded to a specific class of appli-
cation generated by a given programming environment and does not require
application deployment on remote hosts, which extends its application range
and allows reusing of existing software. GridWay allows Submission of single,
array or complex jobs consisting of task dependencies, which may require file
transferring and/or database access.

– DRM-like command line interface: The GridWay command line interface
is similar to that found on Unix and resource management systems such as
PBS or SGE. It allows users to submit, kill, migrate, monitor and synchronize
jobs, that could be described using the OGF standard JSDL.

– DRMAA application programming interface: GridWay provides full support
for OGF standard DRMAA to develop distributed applications (C, JAVA,
Perl, Python and Ruby bindings).

Moreover, GridWay modular architecture (see Figure 1) offers easy deploy-
ment, adaptability and extension capabilities, as well as support for site au-
tonomy and dynamic environments. GridWay and the Globus Toolkit support
the deployment of enterprise grids, that enable diverse resource sharing to im-
prove internal collaboration and achieve a better return from their information
technology investment; partner grids, allowing access to a higher computing per-
formance to satisfy peak demands and also provide support to face collaborative



Fig. 1. Architecture of the GridWay Metascheduler.

projects; and outsourced grids, managed by dedicated service providers, that
supply resources on demand over the Internet.

Since the release of GridWay 4.0, intended for Globus Toolkit 4 components,
in January 2005, it is distributed under a liberal license (Apache v2). GridWay
is a Globus project, and GridWay 5.2.2 is included in Globus Toolkit 4.0.5.

4 Integration

In this section, we discuss about the integration of the technologies explained
above by means of DRMAA. The OGF Distributed Resource Management Appli-
cation API Working Group (DRMAA-WG)4 has developed an API specification
for job submission, monitoring and control that provides a high level interface
with Distributed Resource Management Systems (DRMS) [3]. In this way, DR-
MAA could aid scientists and engineers to express their computational problems
by providing a portable direct interface to DRMS. DRMAA has been the first
recommendation proposed by the OGF.

The functional description of the system was devised as follows: GRID super-
scalar runtime generates tasks that will be submitted to the GridWay metasched-
uler taking into account data dependencies between the tasks The GridWay
metascheduler receives the tasks submitted by GRID superscalar runtime, fol-
lowing the DRMAA standard, and run them in a remote resource through Globus
Toolkit 4. GRIDSs polls GridWay for notifications on job state changes. The
application makes several requests to GRIDSs runtime, which derives in the
creation of a task in the task-graph. This task, whenever does not have data de-
pendencies with other tasks, is submitted to GridWay for execution in a remote
resource.

4 http://www.drmaa.org



4.1 DRMAA Implementation in GridWay Metascheduler

In the following list we describe the DRMAA interface routines implemented in
GridWay [4]:

– Initialization and finalization routines: drmaa init and drmaa exit.
– Job template routines: drmaa set attribute, drmaa allocate job template

and drmaa delete job template. These routines enable the manipulation
of job definition entities (job templates) to set parameters such as the exe-
cutable, its arguments or the standard input/output streams.

– Job submission routines: drmaa run job and drmaa run bulk jobs. Grid-
Way has native support for bulk jobs, defined as a group of n similar jobs
with a separate job id.

– Job monitoring and control routines: drmaa control, drmaa wait, drmaa ps,
drmaa synchronize... These routines are used for holding, releasing, sus-
pending, resuming and killing jobs, to monitor job status (see Figure 2), to
wait for the completion of a job and check its exit status, or to synchronize
jobs.

– Auxiliary routines: These routines are needed to obtain a textual represen-
tation of errors and other DRMAA implementation-specific information.

GridWay provides both C and Java bindings for DRMAA, as a dynamic
library (libdrmaa.so), and as a JAR package (drmaa.jar), respectively. It also
provides binding for dynamic languages like Python, Perl and Ruby by using
SWIG.

4.2 DRMAA Usage in GRIDSs

We faced here problems with the job submission with DRMAA and with the
direct transfer of files, both of them related to the implementation of the file
transfer and resource selection policy in GRIDSs. As explained in section 3.1
originally, GRIDSs decides where to submit a job taking into account the task

Fig. 2. DRMAA job state transition diagram [3].



resource requirements and its own information about file location. With the
integration with GridWay, we faced two options: either to delegate GridWay the
decision where to execute the tasks, but this would have mean either losing the
file-locality exploitation policy or a large reimplementation of GridWay; or to
allow GRIDSs to take the resource selection decisions. Current implementation is
based on the second option, using GridWay in order to get information regarding
the available machines.

Another problem detected is that GRIDSs is event-driven, while DRMAA
only provides polling and blocking synchronization routines. This is due to the
fact that GRIDSs originally worked with Globus directly, which gives notifica-
tions about the change of the jobs status. DRMAA blocking synchronization
routines are just about one job status change, and that is when the job status
changes to finished. This is not enough for GRIDSs, since it needs to know other
changes as well, like from Queued to Running (as seen in Figure 2), to take
better advantage of file locality, since then it knows that data needed for one
job and that may be useful for another is already present in a particular worker
node. To overcome this problem GRIDSs changed the way it waits for events,
implementing a proactive polling to GridWay using DRMAA polling routines
that enables it to be aware of GridWay jobs state changes.

4.3 Portal Development

We’ve implemented a Web Portal for providing the end-users a graphical, easy
to use interface for some of the main functionalities of GridAD, these are: File
management, uploading and downloading of files, let it be source code files or
data files; and binary application deployments to worker nodes. The second
functionality requires the portal the ability to deal with source code and being
able to send the code to all the machines in the grid as well as compiling that
code in the machines and checking the results.

The portal is implemented using Gridsphere 2.2.9 [6], which is a portlet based
open-source portal framework which supports an interface for working with the
Globus Toolkit version 4. The deployment functionality of the portal is based on
the GRID superscalar Deployment Center [1], a java based tool, which deploys
the code and compiles it in all worker nodes on an execution. This application has
been migrated to portlets, which run into the Gridsphere framework and we’ve
used the Gridsphere grid framework (Gridportlets) to implement the usage of
grid services from the portal. With this new grid portlet and MyProxy [7], the
user can easily upload the source code of his/her application into the portal, from
there select the machines that will run the application, splitting them between
workers and a master node and then deploy the code, which will be compiled in
a transparent way in each machine, and leave the system ready to be run.

5 Experiences

In the framework of the BE14 experiment, an application is presented that inte-
grates the computation stages of a high-throughput environment for product and



Fig. 3. Application environment

process development. The experiment allows the integration of models for opti-
mization and simulation providing a flexible environment on top of GridAD [8, 9].
As a result of using the grid, the performance of the experiment is dramatically
increased. The high-throughput environment involves generic stages common to
a variety of industrial problems, product synthesis applications, process design,
materials design, and high-throughput experimentation in specialties, pharma-
ceuticals, and high-value chemicals. Such problems involve multiple runs, each
using availablephysico-chemical and economic data, to target and screen options
for products and processes. The combined use of computer and experiments
is seen as the future environment for the development of novel products and
processes.

In the specific experiment a process and catalyst development problems are
modelled mathematically and solved with a combination of stochastic algo-
rithms, deterministic algorithms, and graph-based methods. Among others, the
application inputs contain (see Figure 3) superstructure models, kinetic data,
configuration seeds and solver controls. The stochastic search takes the form of
a Tabu search with parallel steps for intensification and diversification. In each
step of the Tabu search, m different initial solutions goes through s slots, and
in each slot 4 tasks are executed. Therefore, the number of tasks in one slot is
m× s×4 . The system then updates the solutions with the best results, and the
process is repeated i iterations and h times for a neighborhood factor. The total
number of simulations is calculated as m× s× 3× i×h since one of the 4 initial
tasks is very small.

Table 1 presents a summary of statistical information for three different pro-
cesses: a Van de Vusse kinetic scheme, a catalyst design experiment for acetic
acid production, and a biotechnology (biocatalytic) process with excessive re-
quirements for computing. The number of tasks and simulations required for



Application case Van de Vusse Acetic Acid Biocatalytic

Number of initial solutions (m) 10 6 6
Number of slots (s) 50 20 50

Number of tasks (N) 2,000 480 1,200
Number of iterations per slot (i) 5 5 35

Neighborhood size (h) 7 20 20

Total number of tasks (n) 52,500 36,000 157,500

Sequential execution time 5 hours 22 mins 90 hours 55 hours
Grid execution time 40 mins 45 secs 15 hous 6 mins 7 hours

Speed up 8 6 7.9
Table 1. Summary of application cases configuration

each experiment are summarized in table 1. Real-life applications would require
multiples of such simulations (typically by 3-5 orders of magnitude).

Main barriers for the adoption of the grid technology have been the differ-
ences in the supporting environment: whereas the language bindings offered by
GRIDSs are mainly C/C++ (and Java) and GRIDSs can only run on Linux/UNIX
based platforms (due to GT4), the user application is in Fortran (asi many simi-
lar industrial models) and the users’ environment is based on Windows OS. The
language barrier was overcome by the use of wrappers from C to Fortran. The
implementation of the portal subsequently allows now to link Windows OS to a
grid based on Linux/UNIX machines.

GridAD environment has been installed and deployed in a grid composed by
3-site machines (UCM in Madrid, BSC in Barcelona and UniS in Surrey) with
up to 20 servers. Preliminary execution results are also shown in Table 1. For
these runs, 5 machines were used, with 8 workers. For two of the examples an
optimal speedup is obtained, while in the second one, the performance obtained
is slightly smaller. This optimal speedup has to be considered knowing that
the machine used for the sequential execution time was measured on a machine
with slightly less specifications than the ones used for the Grid execution time
measure, although this by no means implies that the speedup is remarkable. The
results explain that a computer-based, high-throughput experimentation is now
possible and viable. The deployment of a larger network of computers and better
automation could further offer much smaller times to handle the actual volume
of experiments in real-life problems. Moreover, the authors currently research
asynchronous versions of the optimization search to reap additional benefits in
the intelligence of the search and a better parallelization of the computing.

6 Conclusions and Future Work

GridAD benefits from its components. From GRIDSs takes the ability to be able
to write gridified applications in a really easy way, by just defining which func-
tions we want to execute remotely on an IDL file. GRIDSs then automatically
generated the necessary code and in run-time it uses techniques to assure an opti-
mal use of data locality. From GridWay it takes the fault tolerance mechanisms,



the ability to dynamically deploy the application, the ability to interoperate
with different middlewares (EGEE, TeraGrid, Open Science Grid ,etc) and the
resource provisioning among others. Also, there are benefits for their separated
components. We can see this in the use of DRMAA for the components com-
munication, how it benefits GRIDSs since now it can be plugged to traditional
DRMS and run the application on a local cluster or it can be plugged to GridWay
and run it on a Grid infrastructure.

The paper presented the application of a high-throughput prototype that
would enable the synthesis and design of novel products and processes. The
use of grids facilitated the combined deployment of optimization and simulation
searches, using problems and data from real-life cases. Grid-enabled computing
produces realistic times to complete the experiments and reports a rather promis-
ing message for the future of similar applications. Work in progress includes the
gridification of the algorithmic stages, the automation of the underlying work-
flows, and the parallel visualization of the synthesis search, all beyond the scope
of our initial effort.

One should note that there exist hundreds of thousands of models in reaction,
separation, catalysis, and energy integration. On the basis of the evidence shown
in the paper, one could envisage future utility services that could be offered
through the grid. Apparently, future models are left with a task to upgrade
their communication capabilities, possibly through ontologies and semantics, so
that to fully exploit the available computing power and enable their abilities to
integrate in similar high-throughput experiments.

References

1. Badia, R.M., Labarta, J., Sirvent, R., Pérez, J.M., Cela, J.M., Grima, R.: Pro-
gramming grid applications with grid superscalar. Journal of Grid Computing 1(2)
(2003) 151–170

2. Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution on
Grids. Software - Practice and Experience 34(7) (2004) 631–651

3. Rajic, H., Brobst, R., Chan, W., Ferstl, F., Gardiner, J., Robarts, J.P., Haas, A.,
Nitzberg, B., Tollefsrud, J.: Distributed Resource Management Application API
Specification 1.0. Technical report, DRMAA Working Group – The Global Grid
Forum (2003)

4. Herrera, J., Huedo, E., Montero, R.S., Llorente, I.M.: GridWay DRMAA 1.0 Imple-
mentation – Experience Report. Document GFD.E-104, DRMAA Working Group
– Open Grid Forum (2007)

5. : GRID superscalar website http://www.bsc.es/grid/gridsuperscalar.
6. : Gridsphere website http://www.gridsphere.org.
7. : MyProxy website http://grid.ncsa.uiuc.edu/myproxy.
8. Antonopoulos N, P.L., Kokossis, A.: A prototype GRID framework for the Chemical

Process Industries. Chemical Engineering Communications 192(10-12) (2005) 1258–
1271

9. A., K.: Modelling power as a utility. White Paper for the future of simulation,
optimization, and engineering computing (2005)


