
Resource Performance Management on Computational Grids. �

O. San José� L. M. Suárez� E. Huedo� R. S. Montero� I. M. Llorente���

�Dpto. Arquitectura de Computadores y Automática
Facultad de Informática, Universidad Complutense

28040 Madrid (Spain)
�Lab. Computación Avanzada, Simulación y Aplicaciones Telemáticas

Centro de Astrobiologı́a (CSIC-INTA)
28850 Torrejón de Ardoz (Spain)

Abstract

The ability to have applications draw computing power
from a global resource pool to achieve high performance
has become a new challenge for distributed computing and
Internet technologies. This challenge not only involves solv-
ing technical difficulties in the construction of Grid environ-
ments, it also involves resource sharing and performance
concerns. This paper presents a resource performance man-
ager that fits in the current Globus implementation of com-
putational Grids, and shows how it can aid in the Grid’s ex-
pansion, illustrated by some experiments carried out on the
UCM-CAB testbed.

1. Introduction

For certain application domains the traditional concept
of computing based on a homogeneous, and centrally man-
aged environment is being displaced by a new model based
on the exchange of information and the sharing of dis-
tributed resources by applications [7]. However, such ap-
plications often involve large amounts of data and/or com-
puting elements and are not easily handled by today’s In-
ternet and web infrastructures. Grid technologies attempt
to provide the support needed for such an infrastructure,
enabling applications to use remote resources managed by
widespread ”virtual organizations”. The Globus project has
constructed an open-source toolkit [6] to build computa-
tional Grids, implementing a set of non-proprietary proto-
cols for securely identifying, allocating and releasing re-
sources from the Grid.

� This research was supported by Ministerio de Ciencia y Tecnologı́a,
through the research grant TIC 2002-00334, and Instituto Nacional de
Técnica Aeroespacial (INTA).

Due to its open-source nature and its increasing popu-
larity, the Globus toolkit has become a de facto standard
in Grid computing. Globus is a core Grid middleware that
provides the following components, which can be used sep-
arately or altogether, to support Grid applications: GRAM
(Globus Resource Allocation Manager), GASS (Global Ac-
cess to Secondary Storage), GSI (Grid Security Infras-
tructure), MDS (Monitoring and Discovery Service), and
GridFTP. These services allow secure and transparent ac-
cess to resources across multiple administrative domains,
and serve as building blocks to implement the stages of Grid
scheduling [12].

The Grid not only involves the technical challenge of
constructing and deploying this vast infrastructure, it also
brings up other issues related to resource-sharing policies.
Undoubtedly, a tool that allows administrators to have full
control of their resources should help solve these socio-
political difficulties [13]. This should not be regarded as a
cutback to the Grid’s expansion. On the contrary, the more
confident resource owners are, the more nodes they will add
to the Grid, overcoming the typical scenario where admin-
istrators will share only a small fraction of their hosts due
to their mistrust on the Grid.

This work focuses on an addition to the resource man-
agement pillar, providing a tool for system administrators
to determine the amount of resources they are willing to de-
vote to the Grid, avoiding their saturation by Grid jobs.

The next section outlines the steps involved in the sub-
mission of a Grid job and the way the Grid Resource Per-
formance Manager (GRPM) fits in this architecture to fil-
ter job requests transparently. Following this, section 3 de-
scribes how this model adjusts in a non-intrusive way with
general Grid schedulers. A detailed view of the tool’s archi-
tecture is given in section 4, describing the two components
that comprise the performance manager, namely the wrap-
per and the system monitor. In section 5 we show the tool

Proceedings of the Second International Symposium on Parallel and Distributed Computing (ISPDC’03) 
0-7695-2069-3/03 $ 17.00 © 2003 IEEE 



at work on the UCM-CAB testbed. The paper ends in sec-
tion 6 with some conclusions.

2. Globus Resource Allocation Manager

GRAM (see figure 1) is the core of the Resource Man-
agement pillar of the Globus Toolkit. When a job is submit-
ted, the request is sent to the gatekeeper of the remote com-
puter. The gatekeeper is a service running on every node
of a Globus Grid. The gatekeeper handles each request and
creates a job manager for each job, mutually authenticat-
ing with the client, and mapping the request to a local user.
The job manager starts and monitors the job according to its
RSL specification [2], communicating state changes back to
the GRAM client via callbacks. When the job terminates, ei-
ther normally or by failing, the job manager terminates as
well, ending the life cycle of the Grid job.

Gatekeeper

Job Manager

GRAM Reporter

GRAM Client

MDS

Status

Local Resource
Manager

Grid
Job

GRAM Protocol
Callbacks

(GSI)
Authentication

&
Authorization Request

Execute

Monitor & Control

Query Resource

Create

GRAM Request

Update Resource
Information

Client Host

Remote Host

Figure 1. Architecture of the Globus Re-
source Allocation Manager (GRAM).

GRAM operates in conjunction with a number of sched-
ulers including Condor, PBS and a simple ”fork” scheduler.
The job manager provides a plugin architecture for extensi-
bility. When the job manager is created by the gatekeeper to
process the job request, it maps the request to a local sched-
uler. These plugins provide a set of programs and scripts
that map job manager requests to scheduler commands such
as queue, submit, poll and remove.

GRPM, like GRAM, relies heavily on the interaction
with these job schedulers through scripts. A further discus-
sion of these scripts is given once the GRPM tool is intro-
duced. Support for a new scheduler by GRPM requires only
the implementation of the relevant scripts, many of which
can be taken directly from Globus.

The main drawback of this client/server model, which
GRPM tackles, is that Globus doesn’t provide any mech-
anism to deny job requests under stress conditions. Once
the job manager spawns the Grid job, the job behaves like
any other process, competing for the host’s resources such
as CPU time, physical or swap memory, or I/O devices, in-
evitably degrading the overall throughput. Many system ad-
ministrators would like to regard remote Grid jobs as being
guest applications that are welcome to use local resources as
long as the overall performance remains above certain con-
figurable thresholds.

This architecture makes it adequate to provide a wrap-
per for the gatekeeper service, rejecting or allowing job re-
quests according to the current work load. In Grid environ-
ments, resources are constantly being added, removed or
temporarily declared out of service. It is therefore evident
that Grid based frameworks must tolerate and respond ade-
quately to these inconveniences, including those caused by
the denial of a job request by the GRPM tool (see discus-
sion in the next section).

3. General Architecture of Grid Schedulers

Grid scheduling or superscheduling [7], has been defined
in the literature as the process of scheduling resources over
multiple administrative domains. In general, this process in-
cludes the following phases: system selection and prepara-
tion; and job submission, monitoring, migration and termi-
nation [12]. Therefore, to coexist with any Grid scheduling
system the design of a performance management architec-
ture must consider the phases of the scheduling process.

In the following list we analyze the Grid scheduling steps
that could be affected by the performance management ar-
chitecture proposed in this paper:

� Resource Discovery and Selection: This step involves
the selection of a resource (or resource set) from a list
of candidate resources, all of which meet the appli-
cation specific requirements. An authorization filter is
also performed in this phase to guarantee user access
to each candidate resource. GRPM will deny connec-
tions to the GRAM gatekeeper when a system-defined
threshold has been exceeded, failing any authentica-
tion/authorization attempt. Therefore any overloaded
resource will be transparently excluded from the candi-
date resource list. Moreover, most of the Grid schedul-
ing systems access a Grid information service (MDS,
Network Weather Service [15]...) to prevent schedul-
ing jobs on overloaded resources [11, 14, 8, 3, 4, 5, 10].
However the information published by these services
may be obsolete. In this way, GRPM protects resource
performance from both degradation or absence of Grid
information, and selfish scheduling systems.

Proceedings of the Second International Symposium on Parallel and Distributed Computing (ISPDC’03) 
0-7695-2069-3/03 $ 17.00 © 2003 IEEE 



� Job Monitoring: As explained in the previous section,
job state transitions are notified to the client by the
job manager. GRPM can suspend Grid jobs to pre-
serve resource performance and resume them when
the resource becomes idle. The job manager will no-
tify these changes to the Grid scheduling system, en-
suring that the appropriate scheduling decision can al-
ways be taken, for example re-scheduling the job if it
has been suspended by GRPM for a long time.

� Job Termination: In order to provide detailed error in-
formation (job exit code, system call or Globus error
codes...) most of the Grid scheduling frameworks [4,
1, 3, 9] use a job wrapper to execute the actual job.
GRPM may cancel Grid jobs when a system-defined
threshold has been exceed to prevent resource perfor-
mance degradation. This will lead to an undefined job
exit code, that could be used by the Grid scheduler [9]
to detect the job cancellation.

4. Grid Resource Performance Manager

The architecture of the Grid Resource Performance Man-
ager (GRPM), depicted in figure 2, is divided into two mod-
ules: GRPM wrapper (GRPMW) and GRPM system moni-
toring and administration daemon (GRPMD). GRPMW fil-
ters out Grid requests attending to the current state of the
system. The other module, GRPMD, continously monitors
the system, proceeding to cancel, suspend or resume Grid
jobs if system resources satisfy certain conditions. In this
way, GRPM can assure certain minimum computational re-
sources devoted exclusively to local users, even in the worst
stress conditions.

The philosophy used in the implementation of GRPM
is the one followed by the Globus project. The main fea-
ture of this architecture is the use of system-dependant plu-
gins to accomplish the tasks that require an interaction with
the system, or the local job manager. This modular architec-
ture enables an easy deployment of GRPM in an heteroge-
neous Grid, and an easy adaptation to a system using either
GRPM-, Globus-supplied or custom scripts.

4.1. GRPM Wrapper

The GRPM wrapper is placed between the Globus gate-
keeper and Grid clients. It replaces Globus gatekeeper ser-
vice at the Internet daemon (inetd) level, so Grid connec-
tions will be handled by it before reaching the Globus gate-
keeper, rejecting these connections when the system is over-
loaded.

Since different administrators are willing to devote dif-
ferent amounts of resources to Grid, and every system is dif-
ferent in performance and availability, GRPMW allows ad-
ministrators to configure the desired behavior of the tool.

Grid connectionSystem

GRPMD

GRPMWGate Keeper

Resume script

GRPM

Job

Job
Grid Job

Grid
Job

Grid
Job

Grid
Job Job Managers

Job manager
monitor

GRPMW.CONF

Monitoring script

GRPMW−CLOSE

Cancel scriptSuspend script

GRPMD−job.CONF

Figure 2. Architecture of the Grid Resource
Performance Manager (GRPM).

This is accomplished by supplying an interface to the local
job manager, and by configuring the threshold that will fil-
ter out incoming connections.

The former consists in writing (or choosing) a script
(JOB MANAGER MONITOR) that will provide GRPMW
with access to the lists of processes/jobs and users cur-
rently on the system. The way of obtaining the current
list of users and jobs may vary depending on the sys-
tem and local job manager. The latter requires adminis-
trators to determine the value of the threshold variables,
namely:

� MAXUSERS: Maximum number of users log on to the
system.

� MAXGRIDUSERS: Maximum number of Grid users,
those registered in the gridmap-file.

� MAXJOBS: Maximum number of running jobs belong-
ing to local users.

� MAXGRIDJOBS: Maximum number of running jobs
belonging to Grid users.

These variables will hold the maximum values up to which
GRPMW will continue accepting Grid connections (thereby
new jobs). All that is required is to assign them an integer
value in the configuration file (grpmw.conf), but in order
to optimize local/Grid ratio of resource performance admin-
istrator must choose them carefully.

Note that this architecture enables assigning different
policies to the job managers of a given resource. Typ-
ically, clusters use fork at the cluster front-end for file
transfer operations, while job execution is handled using
the batch system job manager [9] (PBS, Condor, SGE...).
Therefore, access to the front-end (jobmanager-fork)
could be more restrictive than the access to the batch sys-
tem (jobmanager-pbs, for example).

Proceedings of the Second International Symposium on Parallel and Distributed Computing (ISPDC’03) 
0-7695-2069-3/03 $ 17.00 © 2003 IEEE 



Every time a GRAM request is received, the wrapper
proceeds to gather some information on the system through
the JOB MANAGER MONITOR, and evaluates the connec-
tion according to the following circumstances:

1. The threshold has been exceeded (this means the ac-
tual value of any of the threshold variables described
above exceeds the maximum allowed).

2. The connection has been closed by an external source,
such as GRPMD or the system administrator. This is
done through the creation of a ’lock file’ (grpmw-
close).

In either of these two cases, the connection will be rejected,
and the client will receive a GRAM related error. Other-
wise, the connection will be forwarded to the Globus gate-
keeper, which will begin its normal operation. A summary
of GRPMW’s operation flow is shown in figure 3.

Service closed?
Yes

Grid connection

Gather actual
values

ACTUAL>MAX?

Reject connection

Forward connection
to gatekeeper

Yes

No

Check if file
grpmw−close exists

manager monitor
Invoke job

No

Read threshold

grpmw.conf
values from

Figure 3. Grid Resource Performance Man-
ager Wrapper operation flow.

4.2. GRPM System Monitoring and Administra-
tion Daemon

GRPMW alone is not enough to handle all the situations
that may lead to a lack of resources due to excessive Grid
computing demands or growing requirements of local users.
Local users can be given priority over Grid users in a vari-
ety of ways, usually platform and job manager dependant,

such as user or group policies. However this is non-trivial
and not easily portable, which can be a problem, especially
in a large-sized domain. GRPMD offers a homogeneous,
easily-configurable, deployable and decentralized-managed
way of administrating these priorities.

The system monitoring and administration dae-
mon (GRPMD) is periodically monitoring the system
and, when some system-level defined conditions are sat-
isfied, it proceeds to suspend, cancel or resume some
Grid jobs, to allocate resources to real-time needs of local
users and system capabilities. Administrators must config-
ure the tool through a set of variables. These variables are
divided into two groups: script-location variables, and con-
figuration variables.

The former are paths to the job manager plugins that will
provide GRPMD with access to the following:

1. Basic operations of local job manager (such as sus-
pend, cancel or resume jobs). Since this is also the way
Globus middleware issues commands to a given sys-
tem, administrators can use the scripts shipped with
Globus, custom scripts or the ones provided with
GRPM.

2. An interface for retrieving information from the sys-
tem (SYSTEM MONITOR). This is a basic part of the
daemon, since it will give GRPMD a snapshot of the
state of the system at a given time. Since Globus uses
GRAM reporter scripts to gather information associ-
ated with each job manager, administrators can use
them to gather information from the system. All this
information exchange is done in text mode using the
following format:

�����

�����	
�� � ��
���

� � �

�����	
�� � ��
���

��

where �����	
�� could be, for example, the number
of users and processes currently on the system, the
amount of free memory and swap space, or the CPU
usage. Every administrator can use the variables con-
sidered appropriate, according to system specific met-
rics. The only requisite is that a particular variable
must appear and be given a value in the monitoring
script.

Triggering expressions are the way administrators will
tell the daemon when they want it to intervene. They are ex-
pressions involving comparisons between the monitor vari-
ables (provided by the SYSTEM MONITOR) and values, and
boolean operators (with a C-like syntax). On each monitor-
ing interval, GRPMD will read the monitor variables, and
will use their values to evaluate the triggering expressions.

Proceedings of the Second International Symposium on Parallel and Distributed Computing (ISPDC’03) 
0-7695-2069-3/03 $ 17.00 © 2003 IEEE 



If a particular expression evaluates to true, GRPMD will use
the associated script to manipulate a predefined number of
Grid jobs, trying to suspend, cancel or resume them. In par-
ticular, these expressions are:

1. CANCEL: if the cancel expression is satisfied, GRPMD
starts cancelling Grid jobs at each monitoring inter-
val until the cancel condition evaluates to false. Also,
GRPMD creates the grpm-close file to reject any
new GRAM request.

2. SUSPEND: similarly when the suspend triggering ex-
pression is satisfied Grid jobs are suspended at each
monitoring interval. In this case GRPMD also creates
the grpm-close file.

3. RESUME: if none of the above conditions are satisfied
any suspended Grid job is resumed when the resume
triggering expression evaluates to true. In this situation
the grpm-close file is removed.

This mechanism allows every administrator to focus dae-
mon’s behavior on resources considered critical in the sys-
tem’s performance. This is done by writing an expression
based on variables that represents the state of that resource,
and making a monitoring script capable of assigning them a
value based on the actual state of that resource.

5. Experiences

We next demonstrate the capabilities of GRPM when
managing the performance of a Grid resource. In particu-
lar, we are interested in preserving the CPU performance
for the owner of a workstation (pegasus) in the testbed. The
configuration files for the GRPM wrapper and system mon-
itor are as follows:

1. The GRPM wrapper only allows one si-
multaneous Grid user to use the system
(MAX GRID USERS = 1).

2. The GRPM system monitor guarantees that
the CPU usage is devoted to pegasus local
users when they require it, thus it cancels
Grid jobs when the local CPU load increases
(CANCEL = local cpu load > 25). Once
the system is no longer used by local users,
GRPM accepts Grid requests again (RESUME =
local cpu load < 15).

A parameter sweep application consisting of 50 indepen-
dent tasks is executed in the testbed. Each task calculates the
flow over a flat plate for a different Reynolds number, rang-
ing from ��

� to ��
�. The experiment files consists of the ex-

ecutable (2MB), and the computational mesh (0.5MB), pro-
vided for all the resource architectures in the testbed. Once

Resource Model Speed Mem. Nodes
(MHz) (MB)

ursa Sun Blade 100 500 256 1
draco Sun Ultra 1 167 128 1
pegasus Intel Pentium 4 2400 1024 1
solea Sun Enterp. 250 296 256 2
babieca Alpha DS10 466 1024 4

Table 1. Summary of the UCM-CAB grid re-
source hardware characteristics.

Resource OS GRAM VO

ursa Solaris 8 fork UCM
draco Solaris 8 fork UCM
pegasus Linux 2.4 fork UCM
solea Solaris 8 fork UCM
babieca Linux 2.4 PBS CAB

Table 2. Summary of the UCM-CAB grid re-
source software characteristics.

the job finishes, the standard output (8KB) and the veloc-
ity profile (5KB) at the middle of the flat plate are trans-
ferred back to the client. The experiment was conducted
on the UCM-CAB testbed (see tables 1 and 2), using the
GridWay [9] framework to schedule the 50 jobs.

Let us first consider the performance obtained when the
testbed was fully available. In this case, the overall execu-
tion time for parameter sweep application was 2376 sec-
onds, with an average job turnaround time of 47.5 seconds
(see figure 4, upper chart).

This experiment was repeated introducing an artificial
workload in pegasus during 815 seconds at the middle of the
execution. As can be expected, while GRPM removed pe-
gasus from the testbed a degradation in the job turnaround
was observed (58.4 seconds) and the total execution time in-
creased to 2662 seconds. Once pegasus becomes available
again the average job turnaround time decreases to 52.4 sec-
onds.

Figure 4, lower chart, shows the CPU load registered
in pegasus during the experiment. From the beginning, to
time step 1100, pegasus executed seven grid tasks, clearly
shown by the file transfer and job execution times. At time
step 1100 the artificial workload decreased the performance
of both the grid task and local process. The GRPM mon-
itors detected this situation by firing the cancel triggering
expression, aborting the grid job that just entered the sys-
tem and rejecting further connections. Pegasus executed the

Proceedings of the Second International Symposium on Parallel and Distributed Computing (ISPDC’03) 
0-7695-2069-3/03 $ 17.00 © 2003 IEEE 



0 500 1000 1500 2000 2500

40

60

80

100

120

140
Jo

b 
T

ur
na

ro
un

d 
T

im
e 

(s
ec

on
ds

)

Time (seconds)

testbed fully available
pegasus saturation

Grid Job
cancellation

Resource
saturation

grid user
local user

Unavailable
Pegasus

Available
Pegasus

Available
Pegasus

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500

C
PU

 L
oa

d
(%

)

Time (seconds)

File Transfer

Computation

Job turnaround degradation

Figure 4. Dynamic job turnaround time in the
execution of the parameter sweep application
when the UCM-CAB testbed is fully available
and when pegasus is saturated (upper chart).
CPU load on pegasus induced by local and
grid processes (lower chart).

local job until its termination on time step 1920. At that
point the CPU became idle so Grid connections were ac-
cepted again, and four more jobs entered the system until
the moment the experiment ended.

During the time the GRPM wrapper rejected connec-
tions, the GridWay framework adaptively scheduled the
pending jobs to other Grid resources. In particular, the can-
celed job was dynamically rescheduled by the GridWay
framework, and submitted to babieca (see figure 5).

6. Conclusions

The tests carried out demonstrate that the performance
manager behaves as expected and doesn’t interfere with
Grid schedulers in any of the possible situations that can oc-
cur: connection forwarding or denial, and job suspension or

testbed fully available

pegasus saturation

0

5

10

15

20

25

30

Sc
he

du
le

d 
jo

bs

dr
ac

o

so
le

a

ur
sa

ba
bi

ec
a

pe
ga

su
s

Figure 5. Number of jobs scheduled on each
resource when the testbed is fully available,
and when pegasus is saturated.

cancellation. As seen, the tool is easily configurable and de-
ployable due to the scripting interface it provides.

These reasons, together with the rest of its features make
GRPM a good choice for administrators to configure their
Grid infrastructure. We hope GRPM will aid in the expan-
sion of the Grid, leading users to embrace Grid technolo-
gies and share their resources with more confidence, be-
cause their performance will always be assured.

References

[1] Comparison of HTB and Nimrod/G: Job Dispatch. Available
at http://www-unix.mcs.anl.gov/�giddy/comp.html.

[2] Globus Resource Allocation Manager (gram 1.6) Docu-
mentation. Available at http://www-unix.globus.org/api/c-
globus-2.2/globus gram documentation/html/, 2002.

[3] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An Ar-
chitecture for a Resource Management and Scheduling Sys-
tem in a Global Computation Grid. In Proceedings of the 4th
IEEE International Conference on High Performance Com-
puting in Asia-Pacific Region (HPC Asia), 2000.

[4] S. Cavalieri and S. Monforte. Resource Broker Architec-
ture and APIs. Available at http://server11.infn.it/workload-
grid/documents.html, 2001.

[5] H. Dail, H. Casanova, and F. Berman. A Decoupled Schedul-
ing Approach for the GrADS Program Development Enviro-
ment. In Proc. of the SuperComputing (SC02), 2002.

[6] I. Foster and C. Kesselman. Globus: A Metacomputing In-
frastructure Toolkit. Intl. J. Supercomputer Applications,
11(2):115–128, 1997.

[7] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan-Kaufman, 1999.

[8] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke.
Condor/G: A Computation Management Agent for Multi-
Institutional Grids. In Proc. of the 10th Symp. on High Per-
formance Distributed Computing (HPDC10), August 2001.

Proceedings of the Second International Symposium on Parallel and Distributed Computing (ISPDC’03) 
0-7695-2069-3/03 $ 17.00 © 2003 IEEE 



[9] E. Huedo, R. S. Montero, and I. M. Llorente. A Framework
for Adaptive Execution in Grids. Intl. J. of Software – Prac-
tice & Experience, 2003. To appear.

[10] C. Liu, L. Yang, I. Foster, and D. Angulo. Design and Eval-
uation of a Resource Selection Framework for Grid Appli-
cations. In Proc. of the 11th IEEE Symposium on High-
Performance Distributed Computing, 2002.

[11] R. S. Montero, E. Huedo, and I. M. Llorente. Grid Resource
Selection for Opportunistic Job Migration. In Intl. Conf.
on Parallel and Distributed Computing (Euro-Par), volume
2790 of Lecture Notes on Computer Science, pages 366–373.
Springer-Verlag, August 2003.

[12] J. M. Schopf. Ten Actions when Superscheduling. Technical
Report WD8.5, The Global Grid Forum, 2001. Scheduling
Working Group.

[13] J. M. Schopf and B. Nitzberg. Grids: The Top Ten Ques-
tions. Available at http://www-unix.mcs.anl.gov/�schopf,
2002. To appear in Scientific Programming, special issue
on Grid Computing.

[14] S. Vadhiyar and J. Dongarra. A Performance Oriented Mi-
gration Framework for the Grid. In Proc. of the 3rd Intl.
Symp. on Cluster Computing and the Grid (CCGrid), 2003.

[15] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing. Journal of Future Generation
Computing Systems, 15(5-6):757–768, 1999.

Proceedings of the Second International Symposium on Parallel and Distributed Computing (ISPDC’03) 
0-7695-2069-3/03 $ 17.00 © 2003 IEEE 


