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28850 Torrej́on de Ardoz (Spain).

Abstract

One of the barriers that prevents the expansion and
adoption of Grid technologies is the lack of a standard pro-
gramming paradigm to port existing applications among
different environments. The Distributed Resource Manage-
ment Application API (DRMAA) has been proposed to aid
the rapid development and distribution of these applications
across the Grid. In this paper we present the first implemen-
tation of the DRMAA standard on a Globus-based testbed,
and show its suitability to express typical scientific applica-
tions. As a case of study, we will consider in this paper the
implementation of the NAS Grid Benchmarks with DRMAA.
The DRMAA routines are supported by the functionality of-
fered by the GridWay framework, that provides the runtime
mechanisms needed for transparently executing jobs on a
dynamic Grid environment.
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1 Introduction

The deployment of existing applications across the Grid
continues requiring a high level of expertise and a signifi-
cant amount of effort, mainly due to the characteristics of
the Grid: complexity, heterogeneity, dynamism and high
fault rate. On the other hand, the lack of a standard pro-
gramming paradigm for the Grid has prevented the portabil-
ity of existing applications among different environments.

∗This research was supported by Ministerio de Ciencia y Tecnologı́a
through the research grant TIC 2003-01321 and Instituto Nacional de
Técnica Aeroespacial “Esteban Terradas (INTA).

To deal with the characteristics of the Grid, we have de-
veloped GridWay [7]: a Globus submission framework that
allows an easier and more efficient execution of jobs on
dynamic Grid environments. GridWay automatically per-
forms all the job scheduling steps [10], provides fault re-
covery mechanisms, and adapts job scheduling and execu-
tion to the changing Grid conditions [5].

Moreover, theDistributed Resource Management Ap-
plication API Working Group(DRMAA-WG)1, within the
Global Grid Forum(GGF)2, has recently developed an API
specification for job submission, monitoring and control
that provides a high level interface withDistributed Re-
source Management Systems(DRMS). In this way, DR-
MAA, or higher level tools that use DRMAA, could aid sci-
entists and engineers to express their computational prob-
lems by providing a portable direct interface to DRMS.

It is foreseeable, as it happened with other standards
like MPI or OpenMP, that DRMAA will be progressively
adopted by most DRMS, making them easier and worthier
to learn, thus lowering its barrier to acceptance, and mak-
ing Grid applications portable across DRMS adhered to the
standard.

In this work, we discuss several aspects of the implemen-
tation of DRMAA within the GridWay framework, and in-
vestigate the suitability of the DRMAA specification to dis-
tribute typical scientific workloads across the Grid. In this
sense theNAS Grid Benchmarkssuite (NGB) [12] consti-
tutes an excellent case-of-study, since it models distributed
communicatingapplications typically executed on the Grid.

In Section 2, we first analyze several aspects involved
in the efficient execution of distributed applications related

1http://www.drmaa.org (2004)
2http://www.gridforum.org (2004)



to the barriers to use the Grid, and how they are overcome
by the GridWay framework. Section 3 briefly describes the
DRMAA standard, and the development and execution pro-
cess adopted in this work. Then, in Section 4, we illustrate
how DRMAA can be used to implement several scientific
applications paradigms. Finally, in Section 5, we evaluate
the suitability of the DRMAA for implementing the NAS
Grid Benchmarks (NGB). The paper ends in Section 6 with
some conclusions.

2 The GridWay Framework

The GridWayframework [7] provides the following tech-
niques to allow a robust an efficient execution of jobs in
heterogeneous and dynamic Grids:

• Given the dynamic characteristics of the Grid, the
GridWay framework periodically adapts the schedule
to the available resources and their characteristics [5].
GridWay incorporates aresource selectorthat reflects
the applications demands, in terms of requirements and
preferences, and the dynamic characteristics of Grid
resources, in terms of load, availability and proximity
(bandwidth and latency) [8].

• The GridWay framework also provides adaptive job
execution to migrate running applications to more suit-
able resources. So improving application performance
by adapting it to the dynamic availability, capacity and
cost of Grid resources. Moreover, an application can
migrate to a new resource to satisfy its new require-
ments or preferences [5].

• GridWay also provides the application with fault tol-
erance capabilities by capturing GRAM callbacks, by
periodically probing the GRAM job-manager, and by
inspecting the exit codes of each job.

3 Distributed Resource Management Appli-
cation API

One of the most important aspects of Grid Computing
is its potential ability to execute distributed communicating
jobs. The DRMAA specification constitutes a homogenous
interface to different DRMS to handle job submission, mon-
itoring and control, and retrieval of finished job status. In
this sense the DRMAA standard represents a suitable and
portable framework to express this kind of distributed com-
putations.

In the following list we describe the DRMAA interface
routines implemented within the GridWay framework:

• Initialization and finalization routines:drmaa init
anddrmaa exit .
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Figure 1. Development and execution cycle
using the DRMAA interface

• Job template routines:drmaa set attribute ,
drmaa allocate job template and
drmaa delete job template . This routines
enable the manipulation of job definition entities (job
templates) to set parameters such as the executable, its
arguments or the standard output streams.

• Job submission routines: drmaa run job and
drmaa run bulk jobs . GridWay has native sup-
port for bulk jobs, defined as a group ofn similar jobs
with a separate job id.

• Job control and monitoring routines:
drmaa control , drmaa synchronize ,
drmaa wait anddrmaa job ps . This routines are
used to control (killing, resuming, suspending, etc..)
and synchronize jobs, and monitor their status.

The DRMAA interface (see [9] for a detailed descrip-
tion of the C API) includes more routines in some of the
above categories as well as auxiliary routines that provides
textual representation of errors, not implemented in the cur-
rent version. All the functions implemented in the GridWay
framework are thread-safe.

Although DRMAA could interface with DRMS at dif-
ferent levels, for example at the intranet level with SGE or
Condor, in the present context we will only consider its ap-
plication at Grid level. In this way, the DRMS (GridWay
in our case) will interact with the local job managers (Con-
dor, PBS, SGE...) through the Grid middleware (Globus).
This development and execution scheme with DRMAA,
GridWay and Globus is depicted in figure 1. There are sev-



Table 1. Characteristics of the machines in the UCM-CAB research testbed.
Name VO Model Speed OS Memory DRMS

babieca CAB 5×Alpha DS10 466MHz Linux 2.2 256MB PBS
hydrus UCM Intel P4 2.5GHz Linux 2.4 512MB fork
cygnus UCM Intel P4 2.5GHz Linux 2.4 512MB fork
cepheus UCM Intel PIII 600MHz Linux 2.4 256MB fork
aquila UCM Intel PIII 666MHz Linux 2.4 128MB fork

eral projects underway to implement the DRMAA specifi-
cation on different DRMS, like Sun Grid Engine (SGE) or
Condor. However, to the best of the authors’ knowledge,
DRMAA has never been implemented in a Globus-based
DRMS.

The DRMAA standard can help in exploiting the in-
trinsic parallelism found in some application domains, as
long as the underlying DRMS is responsible for the efficient
and robust execution of each job. We expect that DRMAA
will allow to explore several common execution techniques
when distributing applications across the Grid [1]. For ex-
ample fault tolerance could be improved by replicating job
executions (redundant execution) [11], the intrinsic paral-
lelism presented in the workflow of several applications
could be exploited, or several alternative task flow paths
could be concurrently executed (speculative execution).

4 Experiences

We next demonstrate the ability of the GridWay frame-
work when executing different computational workloads
distributed using DRMAA. The following examples re-
sembles typical scientific problems whose structure is well
suited to the Grid architecture. These experiments were
conducted in the UCM-CAB research testbed, based on the
Globus Toolkit [3], briefly described in table 1.

4.1 High-Throughput Computing Application

This example represents the important class of Grid
applications calledParameter Sweep Applications(PSA),
which constitute multiple independent runs of the same pro-
gram, but with different input parameters. This kind of
computations appears in many scientific fields like Biology,
Pharmacy, or Computational Fluid Dynamics. In spite of
the relatively simple structure of this applications, its effi-
cient execution on computational Grids involves challeng-
ing issues [7].

The general structure of a PSA and its implementation
with DRMAA are shown in figure 2. An initial job is sub-
mitted to perform some pre-processing tasks, and then sev-

eral independent jobs are executed with different input pa-
rameters. Finally a post-processing job is executed.

Pre−processing Job

Post−processing Job

Job 0 Job i Job n

rc = drmaa_init(contact, err);
// Execute initial job and wait for it
rc = drmaa_run_job(job_id, jt, err);
rc = drmaa_wait(job_id, &stat, timeout,

rusage, err);
// Execute n jobs simultaneously and wait
rc = drmaa_run_bulk_jobs(job_ids,jt,1,

JOB_NUM,1,err);
rc = drmaa_synchronize(job_ids, timeout, 1, err);
// Execute final job and wait for it
rc = drmaa_run_job(job_id, jt, err);
rc = drmaa_wait(job_id, &stat, timeout,

rusage, err);
rc = drmaa_exit(err_diag);

Figure 2. High-throughput scheme and its
codification using the DRMAA standard.

In this case we consider an application that comprises
the execution of 50 independent jobs. Each job calculates
the determinant of an square matrix read from an input
file (0.5MB). The overall execution time for the parame-
ter sweep application is 40 minutes, with an average job
turnaround time of 125 seconds. Figure 3 presents the dy-
namic productivity (jobs per minute) of the testbed during
the execution of the PSA. Compared to the single host ex-
ecution on the fastest machine in the testbed, these results
represents a 35% reduction in the overall execution time.
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Figure 3. Testbed productivity in the execu-
tion of the high-throughput computing appli-
cation.

4.2 Master-Worker Optimization Loop

We now consider a generalized Master-Worker
paradigm, which is adopted by many scientific appli-
cations like genetic algorithms, N-body simulations or
Monte Carlo simulations among others. A Master process
assigns a description (input files) of the task to be performed
by each Worker. Once all the Workers are completed, the
Master process performs some computations in order to
evaluate a stop criterion or to assign new tasks to more
workers (see figure 4).

In particular, we will consider a simple distribution
scheme for a genetic algorithm. The master acts as the
control process by creating worker jobs. Each worker task
is initiated with an identical-sized sets of individuals, and
evolves the population a fixed number of iterations. The
master receives the results, evaluates the fitness function,
and if convergence is not achieved it exchanges some indi-
viduals and repeats the process.

Figure 5 shows the execution profile of three generations
of the above Master-Worker application. The average ex-
ecution time per iteration is 120 seconds, with an average
computational and transfer times per worker of 15.7, and
23.3 seconds respectively. In this case the total turnaround
time is 360 seconds with an average CPU utilization of
22%.

5 The NAS Grid Benchmarks: A Case of
Study

TheNAS Grid Benchmarks[4] have been presented as a
data flow graph (DFG) encapsulating an instance of aNAS
Parallel Benchmarks(NPB) [2] code in each graph node,

Post−processing Job (POST)

Initialization Job (INI)

Master Job (M)

W0 Wi Wn

rc = drmaa_init(contact, err_diag);
// Execute initial job and wait for it
rc = drmaa_run_job(job_id, jt, err_diag);
rc = drmaa_wait(job_id, &stat, timeout,

rusage, err_diag);

while (exitstatus != 0) {
// Execute n Workers concurrently and wait
rc = drmaa_run_bulk_jobs(job_ids, jt, 1,

JOB_NUM, 1, err_diag);
rc = drmaa_synchronize(job_ids, timeout,

1, err_diag);
// Execute the Master, wait and get exit code
rc = drmaa_run_job(job_id, jt, err_diag);
rc = drmaa_wait(job_id, &stat, timeout,

rusage, err_diag);
rc = drmaa_wexitstatus(&exitstatus,

stat, err_diag);
}
rc = drmaa_exit(err_diag);

Figure 4. Master-Worker application and its
codification using the DRMAA standard.

whichcommunicateswith other nodes by sending/receiving
initialization data. The NGB suite models applications typ-
ically executed on the Grid and therefore constitutes an ex-
cellent case-of-study for testing the functionality of the DR-
MAA and the environment itself.

NGB is focused on computational Grids, which are used
mainly for running compute-intensive jobs that potentially
process large data sets. Each benchmark comprises the
execution of several NPB codes that symbolize scientific
computation (flow solvers SP, BT and LU), post-processing
(data smoother MG) and visualization (spectral analyzer
FT). Like NPB, NGB specifies several different classes or
problem sizes, in terms of mesh size and number of itera-
tions. The four families defined in the NGB are:

• Embarrassingly Distributed (ED) models High
Throughput Computing applications, whose structure
and implementation with DRMAA has been discussed
in section 4.1.



Figure 5. Execution profile for three iterations
of the Master-Worker application.

• Helical Chain (HC) represents long chains of repeat-
ing processes, such as a set of flow computations that
are executed one after the other, as is customary when
breaking up long running simulations into series of
tasks, or in computational pipelines.

• Visualization Pipe(VP) represents chains of com-
pound processes, like those encountered when visual-
izing flow solutions as the simulation progresses.

• Mixed Bag(MB) again involves the sequence of flow
computation, post-processing, and visualization, but
now the emphasis is on introducing asymmetry.

Grid benchmarks should provide a methodology to as-
sess the functionality, performance and quality of service
provided by a Grid environment. In this work we will con-
centrate in testing the functionality of our testbed made up
of: local schedulers (fork and PBS), middleware (Globus
toolkit), and high level tools (GridWayand DRMAA). In
the NGB reports presented below, for the shake of com-
pleteness, we also include some performance metrics like
job turnaround time, resource usage, and data transfers and
execution times. Moreover the Globus overhead, as well as
the GridWay overhead (scheduling time), are included in all
measurements.

5.1 Helical Chain

The HC benchmark consists in a sequence of jobs that
model long running simulations that can be divided in dif-
ferent tasks. Each job in the sequence uses the computed
solution of its predecessor to initialize. Considering this
dependences each job in the chain can be scheduled by
GridWay once the previous job has finished (see figure 6).

Results of the HC benchmark (class A) for this schedul-
ing strategy are shown in figure 7. The turnaround time is

Launch

Report

BT6 LU8SP7

BT3 LU5

BT0 LU2SP1

SP4

// Initialization
jobs[0].jt = bt;
jobs[1].jt = sp;
jobs[2].jt = lu;
jobs[3].jt = bt;
jobs[4].jt = sp;
jobs[5].jt = lu;
jobs[6].jt = bt;
jobs[7].jt = sp;
jobs[8].jt = lu;
drmaa_init(contact, err);
// Submit all jobs consecutively
for (i = 0; i<9; i++) {

drmaa_run_job(job_id, jobs[i].jt,
err);

drmaa_wait(job_id, &stat, timeout,
rusage, err);

}
drmaa_exit(err_diag);

Figure 6. Structure and implementation of the
HC benchmark using DRMAA.

17.56 minutes, with an average resource usage of 20.21%.
The MDS delay in publishing resource information results
in an oscillating scheduling of the jobs. This schedule
clearly reduces the performance obtained compared to the
optimal turnaround time3 of 6.18 minutes.

Nevertheless, this kind of applications can be submitted
through the GridWay framework as a whole. The output
files of each task in the chain are handled by the frame-
work as checkpoint files. In this way the application can
take advantage of the self-adapting capabilities provided by
GridWay:

• The application can progressively change its resource
requirements depending on the task of the chain to be
executed. So, the application does not have to impose
the most restricted set of requirements at the begin-
ning, since it limits the chance for the application to
begin execution [6].

3Belonging to a serial execution on the fastest machine.



Figure 7. Results with the HC.A benchmark.

• The application can generate a performance profile to
provide monitoring information in terms of application
metrics (for example time to perform each task of the
chain). This performance profile can be used to guide
the job scheduling. Thus, the application could mi-
grate to other host when some resources (disk space,
free CPU...) are exhausted [6].

• The application can be migrated when abetter re-
source is found in the Grid. In this case the time to
finalize, and file transfer costs must be considered to
evaluate if the migration is worthwhile [8].

When the HC benchmark is submitted as a whole job,
the average resource usage increases to 91%, since the nine
tasks of the same chain are scheduled to the same host
(cygnus). In this case, the turnaround time is 7 minutes and
the average execution time is reduced to 6.4 minutes. This
supposes a decrement in the job turnaround time of 60%
compared to the first scheduling strategy and an increment
of only 11% compared to the optimal case.

5.2 Visualization Pipe and Mixed Bag

Although this kind of benchmarks could be serialized
and adaptively executed like the previous one, they are more
suitable to be implemented as a workflow application to ex-
ploit the parallelism they exhibit.

Since GridWay does not directly support workflow exe-
cution, we have developed aworkflow enginetaking advan-
tage of the DRMAA programming interface, see figure 8.
This algorithm follows a greedy approach, although differ-
ent policies could be used to prioritize the jobs submitted
to at each moment, for example, submit first the job with
a more restricted set of requirements, with more computa-
tional work or with more jobs depending on it.

Launch

BT6

BT3

BT0
MG1

MG4

MG7

Report

FT8

FT5

FT2

// Initialization
jobs[0].jt = bt; jobs[0].dep = "";\\
jobs[1].jt = mg; jobs[1].dep = "0";\\
jobs[2].jt = ft; jobs[2].dep = "1";\\
jobs[3].jt = bt; jobs[3].dep = "0";\\
jobs[4].jt = mg; jobs[4].dep = "3";\\
jobs[5].jt = ft; jobs[5].dep = "2 4";\\
jobs[6].jt = bt; jobs[6].dep = "3";\\
jobs[7].jt = mg; jobs[7].dep = "6";\\
jobs[8].jt = ft; jobs[8].dep = "5 7";\\
drmaa_init(contact, err);
// Loop until all jobs are finished
while (there_are_jobs_left(jobs)) {

// Submit jobs with dependencies solved
for (i = 0; i<num_jobs; i++)

if (is_job_ready(jobs, i))
drmaa_run_job(jobs[i].id,

jobs[i].jt, err);
// Wait any submitted job to finish
job_id = "DRMAA_JOB_IDS_SESSION_ANY";
drmaa_wait(job_id, &stat, timeout,

rusage, err);
set_job_done(jobs, job_id);

} drmaa_exit(err_diag);

Figure 8. Structure and implementation of the
workflow engine for the VP benchmark.

These benchmarks are combinations of the ED (fully
parallel) and HC (fully sequential) benchmarks described
above. They exhibit some parallelism that should be ex-
ploited, but it is limited by the dependencies between jobs.
In the case of VP, the parallelism is even more limited due
to the low pipe width (only 3, for all classes) and the long
times to fill and drain the pipe (with class A, it only executes
once with full parallelism).

Figure 9 shows the results for the VP.A benchmark.
Dashed lines represent dependencies between jobs and
thicker lines represent the critical path. In this case, the
turnaround time is 21.68 minutes, with an average resource
usage of 35.25%. Execution and transfer times are 22.93
and 8.1 minutes, respectively.



Figure 9. Results with the VP.A benchmark.

6 Conclusions

DRMAA can clearly aid the rapid development and dis-
tribution across the Grid of typical scientific applications.
In this work, we have presented an implementation of DR-
MAA on top of the GridWay framework and Globus. The
functionality, robustness and efficiency of this environment
have been demonstrated through the execution of typical
scientific applications, in particular the DRMAA imple-
mentation of the NGB suite.

The use of standard interfaces allows the comparison be-
tween different Grid implementations, since neither NGB
nor DRMAA are tied to any specific Grid middleware. This
kind of comparisons will be the object of future work.

We believe that DRMAA will become a standard for
Grid application development. This would help users, mak-
ing Grid applications portable across DRMS adhered to the
standard, and DRMS vendors, making DRMS easier and
worthier to learn.
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