"Execution of a Bioinformatics Application in a Joint IRISGrid/EGEE Testbed"

José Luis Vázquez-Poletti Eduardo Huedo (huedoce@inta.es) Rubén S. Montero Ignacio M. Llorente

Advanced Computing Laboratory Centre for Astrobiology (INTA-CSIC)

Distributed Systems Architecture and Security group Complutense University of Madrid

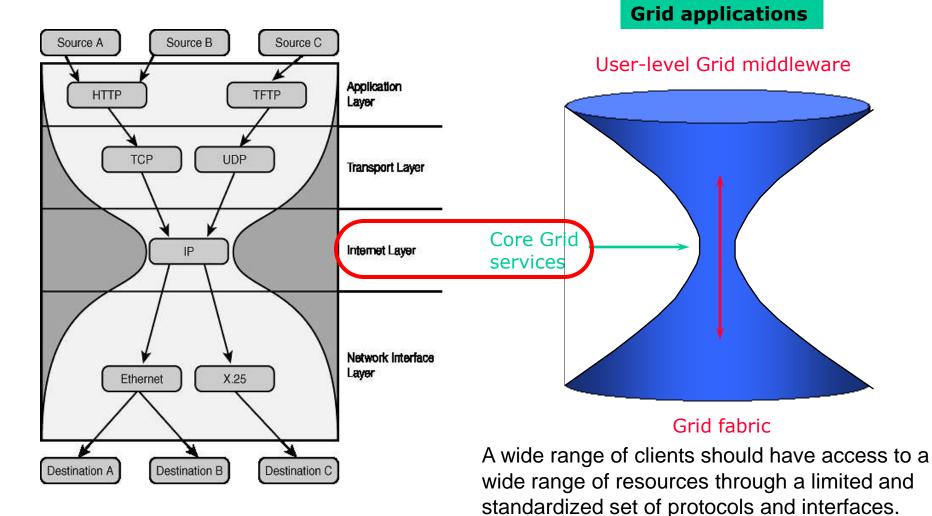
1st LaSCoG Workshop / PPAM 2005 Conference

Objectives

- Demonstrate the feasibility of building *loosely-coupled* Grid environments:
 - based only on Globus services, while
 - obtaining non trivial levels of quality of service through appropriate user-level Grid middleware.
- Resolve the problem of:
 - using several testbeds simultaneously (from an user's viewpoint), and
 - contribute the same resources to more than one project (from an administrator's viewpoint).
- Don't try to:
 - tailor the core Grid middleware to our needs (since in such case the resulting infrastructure would be application specific), nor
 - homogenize the underlying resources (since in such case the resulting infrastructure would be a highly distributed cluster).

A grid is a system that...

- 1) ... coordinates resources that are not subject to a centralized control...
- 2) ... using standard, open, general-purpose protocols and interfaces...
- 3) ... to deliver nontrivial qualities of services.

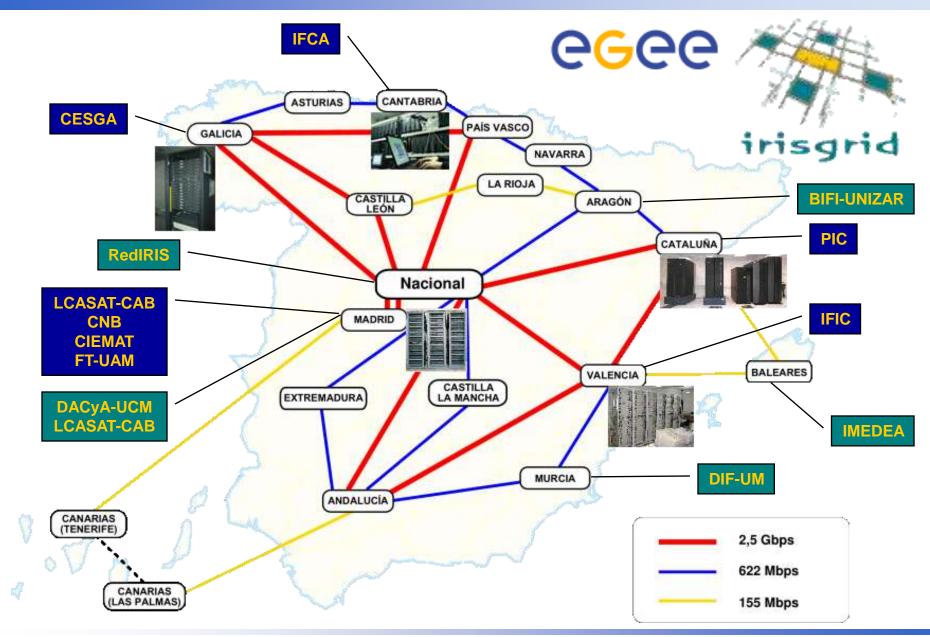

Ian Foster What is the Grid? A Three Point Checklist (2002)

- In a loosely-coupled grid, the different layers of the infrastructure should be separated from each other, being only communicated with a limited and well defined set of interfaces and protocols.
- These layers are:
 - Grid fabric
 - core Grid middleware
 - user-level Grid middleware, and
 - Grid applications.

TCP/IP and Globus

The IP hourglass model

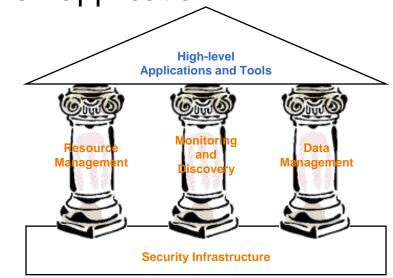
The Globus hourglass model


5/15

Grid Fabric: IRISGrid and EGEE resources

Testbed	Site	Resource	Processor	Speed	Nodes	RM	
IRISGrid	RedIRIS	heraclito	Intel Celeron	700MHz	1	Fork	and the an
		platon	$2 \times Intel PIII$	$1.4 \mathrm{GHz}$	1	Fork	
		descartes	Intel P4	$2.6 \mathrm{GHz}$	1	Fork	
		socrates	Intel P4	$2.6 \mathrm{GHz}$	1	Fork	
	DACYA-UCM	aquila	Intel PIII	$700 \mathrm{MHz}$	1	Fork	
		cepheus	Intel PIII	$600\mathrm{MHz}$	1	Fork	14
		cygnus	Intel P4	$2.5 \mathrm{GHz}$	1	Fork	• • • • •
		hydrus	Intel P4	$2.5 \mathrm{GHz}$	1	Fork	irisgrid
	LCASAT-CAB	babieca	Alpha $EV67$	$450\mathrm{MHz}$	30	PBS	
	CESGA	bw	Intel P4	$3.2 \mathrm{GHz}$	80	PBS	7 sites and 195 CPUs
	IMEDEA	llucalcari	AMD Athlon	$800\mathrm{MHz}$	4	PBS	
	DIF-UM	augusto	$4 \times \text{Intel Xeon}^{\star\star}$	$2.4 \mathrm{GHz}$	1	Fork	
		caligula	$4 \times \text{Intel Xeon}^{\star\star}$	$2.4 \mathrm{GHz}$	1	Fork	
		claudio	$4 \times \text{Intel Xeon}^{\star\star}$	$2.4 \mathrm{GHz}$	1	Fork	
	BIFI-UNIZAR	lxsrv1	Intel P4	$3.2 \mathrm{GHz}$	50	SGE	
EGEE	LCASAT-CAB	ce00	Intel P4	$2.8 \mathrm{GHz}$	8	PBS	eGee
	CNB	mallarme	$2 \times $ Intel Xeon	$2.0 \mathrm{GHz}$	8	PBS	COCC
	CIEMAT	lcg02	Intel P4	$2.8 \mathrm{GHz}$	6	PBS	
	FT-UAM	grid003	Intel P4	$2.6 \mathrm{GHz}$	49	PBS	7 sites and 333 CPUs
	IFCA	gtbcg12	$2 \times Intel PIII$	$1.3 \mathrm{GHz}$	34	PBS	
	IFIC	lcg2ce	AMD Athlon	$1.2 \mathrm{GHz}$	117	PBS	
	PIC	lcgce02	Intel P4	$2.8 \mathrm{GHz}$	69	PBS	

Total: 13 sites and 528 CPUs. Limitation of 4 running jobs per resource (64 CPUs)


Grid Fabric: IRISGrid and EGEE resources

Globus allows secure remote operation over multiple administration domains with different resource management systems and access policies.

Globus is...

- a set of services, commands, libraries and APIs
- a *software* infrastructure, or *middleware*.
- Globus is **NOT**...
 - a scheduler, a resource broker or an application
 - an end-user tool.

Globus Toolkit (GT2.X y GT3.X), with the following core pre-WS Grid services:

Component	IRISGrid	EGEE		
Security Infrastructure	IRISGrid CA and manually generated grid-mapfile	DATAGRID-ES CA and automatically generated grid-mapfile		
Resource Management	GRAM with shared home directory in clusters	GRAM without shared home directory in clusters		
Information Services	IRISGrid GIIS and local GRIS, using the MDS schema	CERN BDII and local GRIS, using the GLUE schema		
Data Management	GASS and GridFTP	GASS and GridFTP		

User-Level Grid Middleware: Grid *W*ay

Easier and efficient execution in dynamic and heterogeneous grids in a *submit & forget* fashion.

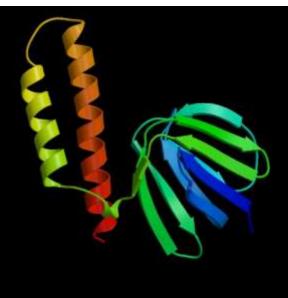
Functionality:

- Adaptive scheduling
- Adaptive execution

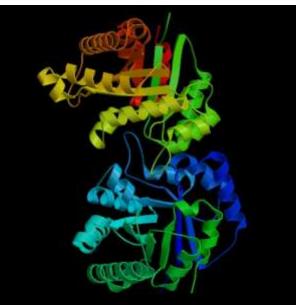
•High throughput apps.

Design Guidelines:

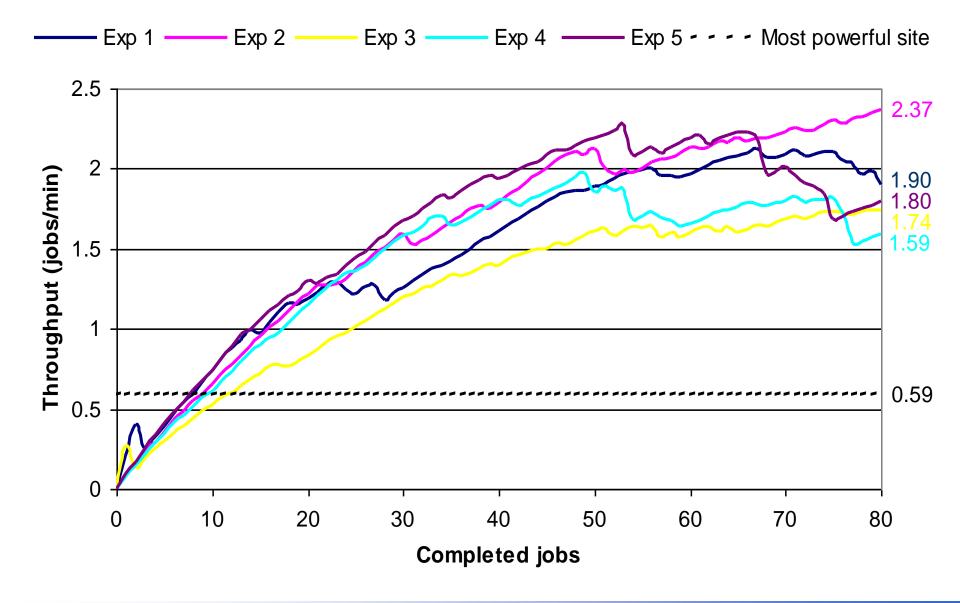
- •Adaptable/extensible (modular design)
- •Scalable (decentralized architecture)
- •Deployable (user, standard services)
- •Applicable (wide application range)


Grid Application: Computational Proteomics

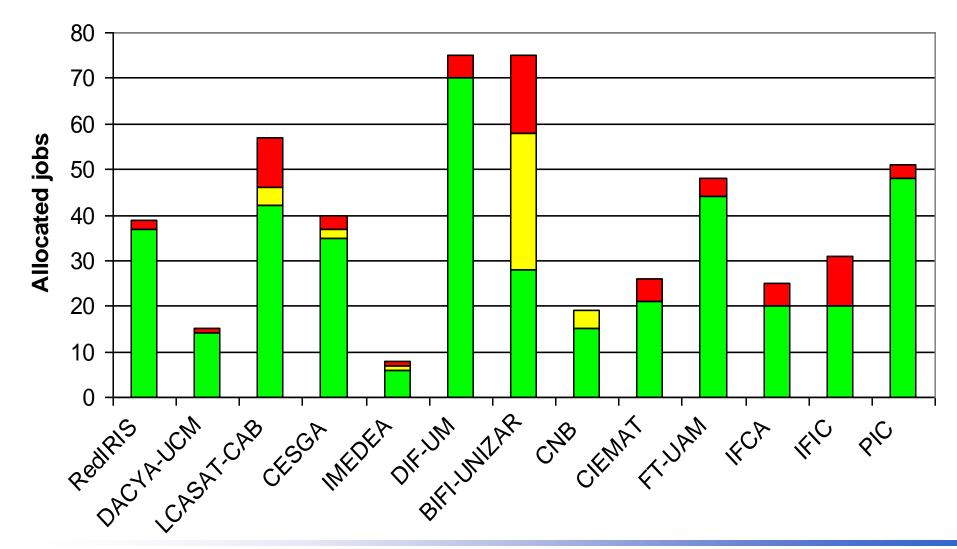
Protein structure prediction and thermodynamic studies from their aminoacid sequences by means of *threading* methods.


Application to families of **orthologous roteins** \Rightarrow **High Throughput**

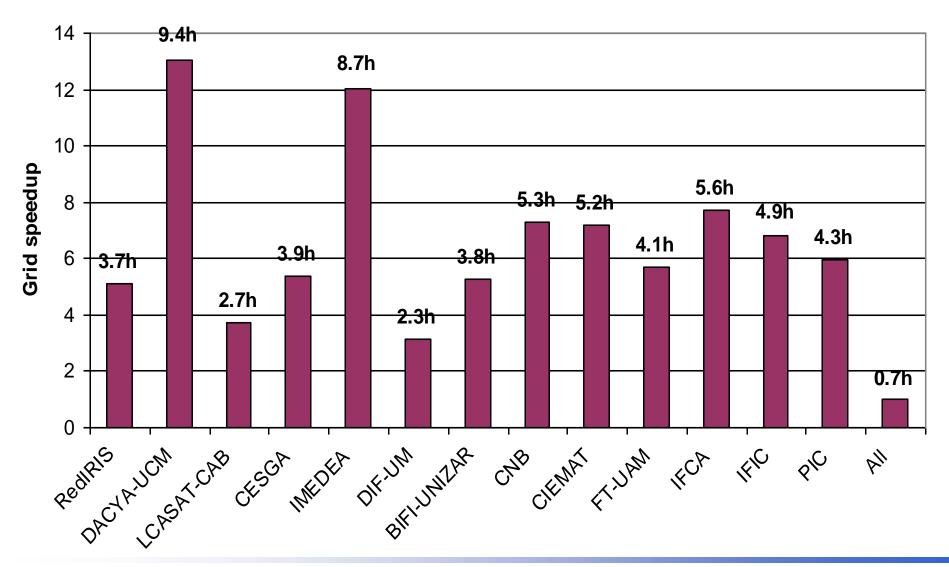
-MTYHLDVVSAEQQMFSGLVEKIQVTGSEGELGIYPGHAPLLTAIKP GMIRIVKQHGHEEFIYLSGGILEVQPGNVTVLADTAIRGQDLDEARA MEAKRKAEEHISSSHGDVDYAQASAELAKAIAQLRVIELTKK


ATP Sintase (ɛ chain)

Triose Phosphate Isomerase


Results: Dynamic Throughput

Result: Schedule


Aggregated schedule performed during the five experiments

■ Done □ Suspended ■ Failed

13/15

S_{Grid}=T_{site}/T_{Grid}

Conclusions

- Grid Way, as user-level Grid middleware, can work with Globus, as a standard core Grid middleware, over any Grid fabric in a *loosely-coupled* way.
- The Grid Way approach (the Grid way), based on a modular and decentralized architecture, is appropriate for the Grid.
- Advantages of *loosely-coupled* grids:
 - They allow a straightforward resource sharing, since resources are accessed and exploited through de facto standard protocols and interfaces, similar to the early stages of the Internet.
 - They allow an easier, scalable and compatible deployment.
 - They reduce the firewall configuration to a minimum, which is also welcome by the security administrators.