
Execution of a Bioinformatics Application in a
Joint IRISGrid/EGEE Testbed?

J. L. Vázquez-Poletti1, E. Huedo2, R. S. Montero1, and I. M. Llorente1,2

1 Departamento de Arquitectura de Computadores y Automática. Facultad de
Informática, Universidad Complutense de Madrid. 28040 Madrid, Spain.

2 Laboratorio de Computación Avanzada, Simulación y Aplicaciones Telemáticas.
Centro de Astrobioloǵıa (CSIC-INTA). 28850 Torrejón de Ardoz, Spain.

Abstract. This paper describes the execution of a Bioinformatics ap-
plication over the largest ever spanish testbed. This testbed is composed
of resources devoted to EGEE and IRISGrid projects and has been inte-
grated by taking advance of the modular, decentralized and “end-to-end”
architecture of the GridW ay framework. Results show the feasibility of
building loosely-coupled Grid environments only based on Globus ser-
vices, while obtaining non trivial levels of quality of service. Such ap-
proach allows a straightforward resource sharing as the resources are
accessed by using de facto standard protocols and interfaces.

1 Introduction

Different Grid infrastructures are being deployed within growing national and
transnational research projects. The final goal of these projects is to provide
the end user with much higher performance than that achievable on any single
site. However, from our point of view, it is arguable that some of these projects
embrace the Grid philosophy, and to what extent. This philosophy, proposed by
Foster [1], claims that a Grid is a system (i) not subject to a centralized control
and (ii) based on standard, open and general-purpose interfaces and protocols,
(iii) while providing some level of quality of service (QoS), in terms of security,
throughput, response time or the coordinated use of different resource types.
In current projects, there is a tendency to ignore the two first requirements in
order to get higher levels of QoS. However, those requirements are even more
important because they are the key to the success of the Grid.

The Grid philosophy leads to computational environments, which we call
loosely-coupled Grids, mainly characterized by [2]: autonomy (of the multiple
administration domains), heterogeneity, scalability and dynamism. In a loosely-
coupled Grid, the different layers of the infrastructure should be separated and

? This research was supported by Ministerio de Ciencia y Tecnoloǵıa, through the
research grants TIC 2003-01321 and 2002-12422-E, and by Instituto Nacional de
Técnica Aeroespacial “Esteban Terradas” (INTA) – Centro de Astrobioloǵıa. The
authors participate in the EGEE project, funded by the European Union under
contract IST-2003-508833.



independent, being communicated between them with a limited and well de-
fined set of interfaces and protocols. This layers are [2]: Grid fabric, core Grid
middleware, user-level Grid middleware, and Grid applications.

The coexistence of several projects, each with its own middleware develop-
ments, adaptations or extensions, arise the idea of using them simultaneously
(from an user’s viewpoint) or contribute the same resources to more than one
project (from an administrator’s viewpoint). One approach could be the devel-
opment of gateways between different middleware implementations [3]. Other
approach, more in line with the Grid philosophy, is the development of client
tools that can adapt to different middleware implementations. We hope this
could lead to a shift of functionality from resources to brokers or clients, al-
lowing the resources to be accessed in a standard way and easing the task of
sharing resources between organizations and projects. We should consider that
the Grid not only involves the technical challenge of constructing and deploying
this vast infrastructure, it also brings up other issues related to security and
resource sharing policies [4] as well as other socio-political difficulties [5].

Practically, the majority of the Grid infrastructures are being built on proto-
cols and services provided by the Globus Toolkit1, becoming a de facto standard
in Grid computing. Globus architecture follows an hourglass approach, which
is indeed an “end-to-end” principle [6]. Therefore, instead of succumbing to the
temptation of tailoring the core Grid middleware to our needs (since in such case
the resulting infrastructure would be application specific), or homogenizing the
underlying resources (since in such case the resulting infrastructure would be a
highly distributed cluster), we propose to strictly follow the “end-to-end” prin-
ciple. Clients should have access to a wide range of resources provided through
a limited and standardized set of protocols and interfaces. In the Grid, these are
provided by the core Grid middleware, Globus, just as, in the Internet, they are
provided through the TCP/IP set of protocols. Moreover, the “end-to-end” prin-
ciple reduces the firewall configuration to the minimum, which is also welcome
by the security administrators.

One of the most ambitious projects to date is EGEE2 (Enabling Grids for
E-sciencE), which is creating a production-level Grid infrastructure providing a
level of performance and reliability never achieved before. EGEE currently uses
the LCG (LHC Computing Grid)3 middleware, which is based on Globus. Other
much more modest project is IRISGrid4 (the Spanish Grid Initiative), whose
main objective is the creation of a stable national Grid infrastructure. The first
version of the IRISGrid testbed is based only on Globus services, and it has been
widely used through the GridW ay framework5.

For the purposes of this paper we have used a Globus-based testbed to run a
Bioinformatics application through the GridW ay framework. This testbed was

1 http://www.globus.org
2 http://www.eu-egee.org
3 http://lcg.web.cern.ch
4 http://irisgrid.rediris.es
5 http://www.gridway.org



built up from resources inside IRISGrid and EGEE projects. The aim of this
paper is to demonstrate the application of an “end-to-end” principle in a Grid
infrastructure, and the feasibility of building loosely-coupled Grid environments
only based on Globus services, while obtaining non trivial levels of quality of
service through an appropriate user-level Grid middleware.

The structure of the paper follows the layered structure of Grid systems.
The Grid fabric is described Section 2. Section 3 describes the core Grid middle-
ware. Section 4 introduces the functionality and characteristics of the GridW ay
framework, used as user-level Grid middleware. Section 5 describes the target
application. Finally, Section 6 presents the obtained results and Section 7 ends
up with some conclusions.

2 Grid Fabric: IRISGrid and EGEE resources

This work has been possible thanks to the collaboration of those research cen-
ters and universities that temporarily shared some of their resources in order to
set up a geographically distributed testbed. The testbed results in a very het-
erogeneous infrastructure, since it presents several middlewares, architectures,
processor speeds, resource managers (RM), network links, etc. A brief descrip-
tion of the participating resources is shown in Table 1.

Some centers are inside IRISGrid, which is composed of around 40 groups
from different spanish institutions. In the experiment, 7 of them participated
donating a total number of 195 CPUs. Other centers participate in the EGEE
project, which is composed of more than 100 contracting and non-contracting
partners. In the experiment, 7 spanish centers participated, donating a total
number of 333 CPUs.

Together, the testbed is composed of 13 sites (note that LCASAT-CAB is
both in IRISGrid and EGEE) and 528 CPUs. In the experiments below, we lim-
ited to four the number of jobs simultaneously submitted to the same resource,
with the aim of not saturating the whole testbed, so only 64 CPUs were used at
the same time. All sites are connected by RedIRIS, the Spanish Research and
Academic Network. The geographical location and interconnection links of the
different sites are shown in Figure 1.

3 Core Grid Middleware: Globus

Globus services allow secure and transparent access to resources across multiple
administrative domains, and serve as building blocks to implement the stages of
Grid scheduling [7]. Table 2 summarizes the core Grid middleware components
existing in both IRISGrid and EGEE resources used in the experiments. In
the case of EGEE, we only use Globus basic services, ignoring any higher-level
services, like the resource broker or the replica location service.

We had to introduce some changes in the security infrastructure in order
to perform the experiments. For authentication, we used a user certificate is-
sued by DATAGRID-ES CA, so we had to give trust to this CA on IRISGrid



Table 1. IRISGrid and EGEE resources contributed to the experiment.

Testbed Site Resource Processor Speed Nodes RM

IRISGrid RedIRIS heraclito Intel Celeron 700MHz 1 Fork
platon 2×Intel PIII 1.4GHz 1 Fork
descartes Intel P4 2.6GHz 1 Fork
socrates Intel P4 2.6GHz 1 Fork

DACYA-UCM aquila Intel PIII 700MHz 1 Fork
cepheus Intel PIII 600MHz 1 Fork
cygnus Intel P4 2.5GHz 1 Fork
hydrus Intel P4 2.5GHz 1 Fork

LCASAT-CAB babieca Alpha EV67 450MHz 30 PBS
CESGA bw Intel P4 3.2GHz 80 PBS
IMEDEA llucalcari AMD Athlon 800MHz 4 PBS
DIF-UM augusto 4×Intel Xeon?? 2.4GHz 1 Fork

caligula 4×Intel Xeon?? 2.4GHz 1 Fork
claudio 4×Intel Xeon?? 2.4GHz 1 Fork

BIFI-UNIZAR lxsrv1 Intel P4 3.2GHz 50 SGE

EGEE LCASAT-CAB ce00 Intel P4 2.8GHz 8 PBS
CNB mallarme 2×Intel Xeon 2.0GHz 8 PBS
CIEMAT lcg02 Intel P4 2.8GHz 6 PBS
FT-UAM grid003 Intel P4 2.6GHz 49 PBS
IFCA gtbcg12 2×Intel PIII 1.3GHz 34 PBS
IFIC lcg2ce AMD Athlon 1.2GHz 117 PBS
PIC lcgce02 Intel P4 2.8GHz 69 PBS

?? These resources actually present two physical CPUs but they appear as four logical
CPUs due to hyper-threading

Fig. 1. Geographical distribution and interconnection network of sites.



Table 2. Core Grid middleware.

Component IRISGrid EGEE

Security
Infrastructure

IRISGrid CA and manually
generated grid-mapfile

DATAGRID-ES CA and
automatically generated
grid-mapfile

Resource
Management

GRAM with shared home
directory in clusters

GRAM without shared
home directory in clusters

Information
Services

IRISGrid GIIS and local
GRIS, using the MDS
schema

CERN BDII and local
GRIS, using the GLUE
schema

Data
Management

GASS and GridFTP GASS and GridFTP

resources. Regarding authorization, we had to add an entry for the user in the
grid-mapfile in both IRISGrid and EGEE resources. Another possibility would
be to use two different user certificates, each to access one testbed. Moreover,
in large projects there are VO management systems, like VOMS, so it could
be possible to create gateways between them, so we can have a VO in EGEE
consisting of all the IRISGrid users and viceversa [3].

4 User-Level Grid Middleware: GridW ay

User-level middleware is required in the client side to make it easier and more
efficient the execution of applications. Such client middleware should provide the
end user with portable programming paradigms and common interfaces.

In a Globus-based environment, the user is responsible for manually perform-
ing all the submission steps [7] in order to achieve any functionality. To overcome
this limitation, GridW ay [8] was designed with a submit & forget philosophy in
mind. The core of the GridW ay framework is a personal submission agent that
performs all scheduling stages and watches over the correct and efficient execu-
tion of jobs on Globus-based Grids. The GridW ay framework provides adaptive
scheduling and execution, as well as fault tolerance capabilities to handle the
dynamic Grid characteristics.

A key aspect in order to follow the “end-to-end” principle is how job execu-
tion is performed. In EGEE, file transfers are initiated by a job wrapper running
in the compute nodes, therefore they act as client machines, so needing net-
work connectivity and client tools to interact with the middleware. In GridW ay,
however, job execution is performed in three steps by the following modules:

1. prolog : It prepares the remote system by creating a experiment directory
and transferring the input files from the client.

2. wrapper: It executes the actual job and obtains its exit status code.



3. epilog : It finalizes the remote system by transferring the output files back
to the client and cleaning up the experiment directory.

This way, GridW ay doesn’t rely on the underlying middleware to perform prepa-
ration and finalization tasks. Moreover, since both prolog and epilog are submit-
ted to the front-end node of a cluster and wrapper is submitted to a compute
node, GridW ay doesn’t require any middleware installation nor network con-
nectivity in the compute nodes.

Other projects [9–12] have also addressed resource selection, data manage-
ment, and execution adaptation. We do not claim innovation in these areas, but
remark the advantages of our modular, decentralized and “end-to-end” architec-
ture for job adaptation to a dynamic environment.

In this case, we have taken full advance of the modular architecture of
GridW ay, as we didn’t have to directly modify the source code of the submission

agent. Instead, we had to only modify several modules that were implemented as
scripts, so the modification was straightforward. For example, another resource

selector module had to be developed in order to understand the GLUE schema
used in EGEE, since the former one only understood the Globus MDS schema.
We also developed a super resource selector to merge results from the other two.
The wrapper module had also to be modified in order to perform an explicit file
staging between the front-end and the compute nodes in EGEE clusters.

5 Grid Application: Computational Proteomics

In the following experiments, we will consider a Bioinformatics application aimed
at predicting the structure and thermodynamic properties of a target protein
from its amino acid sequence. The algorithm, tested in the 5th round of Criti-
cal Assessment of techniques for protein Structure Prediction (CASP5)6, aligns
with gaps the target sequence with all the 6150 non-redundant structures in
the Protein Data Bank (PDB)7, and evaluates the match between sequence and
structure based on a simplified free energy function plus a gap penalty item. The
lowest scoring alignment found is regarded as the prediction if it satisfies some
quality requirements. In such cases, the algorithm can be used to estimate ther-
modynamic parameters of the target sequence, such as the folding free energy
and the normalized energy gap [13].

We have applied the algorithm to the prediction of thermodynamic properties
of families of orthologous proteins, i.e. proteins performing the same function in
different organisms. The biological results of the comparative study of several
families of orthologous proteins are presented elsewhere [14].

6 Experiences and Results

The experiments presented here consist in the analysis of a family of 80 ortholo-
gous proteins of the Triose Phosphate Isomerase enzyme (an enzyme is a special

6 http://PredictionCenter.llnl.gov/casp5/
7 http://www.pdb.org



case of protein). Five experiments were conducted in different days during a
week. The average turnaround time for the five experiments was 43.37 minutes.

Figure 2 shows the dynamic throughput achieved during the five experiments
alongside the theoretical throughput of the most powerful site, where the prob-
lem could be solved in the lowest time, in this case DIF-UM (taking into account
the limitation in the number of simultaneously used nodes). The throughput
achieved on each experiment varies considerably, due to the dynamic availability
and load of the testbed. For example, resource ce00 at site LCASAT-CAB was
not available during the execution of the first experiment. Moreover, fluctuations
in the load of network links and computational resources induced by non-Grid
users affected to a lesser extent in the second experiment, as it was performed
at midnight.

Fig. 2. Testbed dynamic throughput during the five experiments and theoretical
throughput of the most powerful site.

7 Conclusions

We have shown that the “end-to-end” principle works at the client side (i.e. the
user-level Grid middleware) of a Grid infrastructure. Our proposed user-level
Grid middleware, GridW ay, can work with Globus, as a standard core Grid
middleware, over any Grid fabric in a loosely-coupled way. The easy process of
integration of two so different testbeds, although both are based on Globus,
demonstrates that the GridW ay approach (i.e. the Grid way), based on a mod-
ular, decentralized and “end-to-end” architecture, is appropriate for the Grid.



Moreover, loosely-coupled Grids allow a straightforward resource sharing
since resources are accessed and exploited through de facto standard proto-
cols and interfaces, similar to the early stages of the Internet. This way, the
loosely-coupled model allows an easier, scalable and compatible deployment.

8 Acknowledgments

We would like to thank all the institutions involved in the IRISGrid initiative
and the EGEE project, in particular those who collaborated in the experiments.
We would like to also thank Ugo Bastolla, staff scientist in the Bioinformatics
Unit at Centro de Astrobioloǵıa (CAB) and developer of the Bioinformatics
application used in the experiments.

References

1. Foster, I.: What Is the Grid? A Three Point Checklist. GRIDtoday 1 (2002)
Available at http://www.gridtoday.com/02/0722/100136.html.

2. Baker, M., Buyya, R., Laforenza, D.: Grids and Grid Technologies for Wide-Area
Distributed Computing. Software – Practice and Experience 32 (2002) 1437–1466

3. Allan, R.J., Gordon, J., McNab, A., Newhouse, S., Parker, M.: Building Overlap-
ping Grids. Technical report, University of Cambridge (2003)

4. San José, O., Suárez, L.M., Huedo, E., Montero, R.S., Llorente, I.M.: Resource
Performance Management on Computational Grids. In: Proc. 2nd Intl. Symp.
Parallel and Distributed Computing (ISPDC 2003), IEEE CS (2003) 215–221

5. Schopf, J.M., Nitzberg, B.: Grids: The Top Ten Questions. Scientific Programming,
special issue on Grid Computing 10 (2002) 103–111

6. B. Carpenter, E.: RFC 1958: Architectural Principles of the Internet (1996)
7. Schopf, J.M.: Ten Actions when Superscheduling. Technical Report GFD-I.4,

Scheduling Working Group – The Global Grid Forum (2001)
8. Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution

on Grids. Intl. J. Software – Practice and Experience (SPE) 34 (2004) 631–651
9. Berman, F., Wolski, R., Casanova, H., et al.: Adaptive Computing on the Grid

Using AppLeS. IEEE Trans. Parallel and Distributed Systems 14 (2003) 369–382
10. Buyya, R., D.Abramson, Giddy, J.: A Computational Economy for Grid Comput-

ing and its Implementation in the Nimrod-G Resource Broker. Future Generation
Computer Systems 18 (2002) 1061–1074

11. Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.: Condor/G: A Com-
putation Management Agent for Multi-Institutional Grids. Cluster Computing 5

(2002) 237–246
12. Vadhiyar, S., Dongarra, J.: A Performance Oriented Migration Framework for the

Grid. In: Proc. 3rd Intl. Symp. Cluster Computing and the Grid (CCGrid 2003),
IEEE CS (2003) 130–137

13. Bastolla, U., Vendruscolo, M., Knapp, E.W.: A Statistical Mechanical Method
to Optimize Energy Parameters for Protein Folding. Proc. National Academy of
Sciences (PNAS) of USA 97 (2000) 3977–3981

14. van Ham, R., Kamerbeek, J., Palacios, C., et al.: Reductive Genome Evolution in
Buchnera Aphidicola. Proc. National Academy of Sciences (PNAS) of USA 100

(2003) 581–586


