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Abstract

Grids constitute a promising platform to execute loosely coupled, high-throughput parameter sweep applications,
which arise naturally in many scientific and engineering fields like bio-informatics, computational fluid dynamics, particle
physics, etc. In spite of the simple computational structure of these applications, its efficient execution and scheduling are
challenging because of the dynamic and heterogeneous nature of Grids. In this work, we propose a benchmarking meth-
odology to analyze the performance of computational Grids in the execution of high throughput computing applications,
that combines: (i) a representative benchmark included in the NAS Grid Benchmark suite; (ii) a performance model that
provides a way to parametrize and compare different Grids; and (iii) a set of application-level performance metrics to ana-
lyze and predict the performance of this kind of applications. The benchmarking methodology will be applied to the per-
formance analysis of a Globus-based research testbed that spans heterogeneous resources in five institutions.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Grid computing has emerged as a promising computing platform that can support the execution of next
generation scientific applications, and will arguably open up avenues in many research disciplines. However,
the performance that these platforms can potentially deliver to applications remain poorly understood. In this
way, to attain an efficient usage of current Grid infrastructures it is necessary to define a standard methodol-
ogy for its evaluation and benchmarking.
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Benchmarking is a widely accepted method to evaluate the performance of computer architectures. Tradi-
tionally, benchmarking of computing platforms has been successfully performed through low level probes that
measure the performance of specific aspects of the system when performing basic operations, e.g. LAPACK
[1], as well as representative applications of the typical workload, e.g. SPEC [2] or NAS Parallel Benchmarks
[3]. In this sense, benchmarking has been proved helpful for investigating the performance properties of a
given system, predicting its performance in the execution of a category of applications, and for comparing dif-
ferent systems.

The critical difference between a Grid and traditional HPC systems is that in the later a single software layer
provides a centralized and single vision of all the resources. On the other hand, the capabilities of a Compu-
tational Grid, made up of heterogeneous components with dynamic performance, are usually provided by
three layers: Grid fabric (e.g. worker nodes, operating systems or local resource managers) interconnected
by a heterogeneous network, basic Grid services (e.g. job submission, data management or information ser-
vices) and high level tools and Grid services (e.g. resource brokers, meta-schedulers or portals).

Grid benchmarks can be also grouped in the two aforementioned categories: low level probes that provide
information of specific aspects of system’s performance; and benchmarks that are representative of a class of
applications. In this first category, the Network Weather Service [4] provides accurate forecast of dynamically
changing performance characteristics from a distributed set of computing resources. Also Chun et al. [5] have
proposed a set of benchmark probes for Grid assessment. These probes exercise basic Grid operations with the
goal of measuring the performance and the performance variability of basic Grid operations, as well as the
failure rates of these operations. Finally, the GridBench tool [6] developed in the CrossGrid project, is a
benchmark suite for characterizing individual Grid nodes and collections of Grid resources. GridBench
includes micro-benchmarks and application kernels to measure computational power, inter-process commu-
nication bandwidth, and I/O performance.

On the other hand, the NAS Grid benchmarks (NGB) have been recently proposed [7] based on the well-
known NAS Parallel Benchmarks. This benchmark suite has been previously considered by Peng et al. [8] to
evaluate the performance of a cluster Grid with Sun Grid Engine and Globus, and by its designers, Van der
Wijngaart and Frumkin [9], to measure and improve the performance of NASA’s Information Power Grid.

In this work, we propose a benchmarking methodology and a set of Grid-specific metrics to analyze the
performance of computational Grid infrastructures in the execution of High Throughput Computing
(HTC) applications. We will use the embarrassingly distributed benchmark of the NGB suite to represent
the execution profile of these applications. The benchmarking process proposed here provides a way to inves-
tigate performance properties of Grid environments, to predict the performance of this category of applica-
tions, and to compare different platforms by inserting performance models in the benchmarking process.

The rest of this paper is organized as follows: In Section 2, we present the evaluation metrics used in this
work, and the main characteristics of the NGB suite. The Grid environment used in this research is then intro-
duced in Section 3, along with the GridWay framework used to execute the benchmarks, and the implemen-
tation of the NGB. In Section 4, we discuss how NGB can be a valuable tool to evaluate the performance of a
Grid infrastructure. Finally, Section 5 presents a discussion of our results.

2. Grid benchmarking

In general, we can identify three aspects that should be assessed when evaluating a Grid environment,
namely: functionality, reliability and performance. The use of a Grid requires a high level of expertise and
a good understanding of all its components and their interaction. In this way, an user must manually perform
to some extent, all the submission stages involved in the execution of an application (e.g. resource selection,
resource preparation or job monitoring). Therefore, Grid benchmarks should verify a basic functionality of
the environment. On the other hand, Grids are difficult to efficiently harness due to their heterogeneous nature
and the unpredictable changing conditions they present. A suitable methodology for Grid benchmarking
should help to identify and quantify failure situations, the capability to recover from them, and so to deter-
mine the reliability of a Grid.

In this work we concentrate on the development of a benchmarking methodology to assess the performance
offered by a Grid environment in the execution of HTC applications. In this section we will first characterize
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the execution of this kind of applications on a Grid, and then we propose a set of application-level perfor-
mance metrics to analyze and predict their performance.

2.1. Workload characterization

Let us consider a High Throughput Computing (HTC) application that comprises the execution of a set of
independent tasks, each of which performs the same calculation over a subset of parameter values. Note that
given the heterogeneous nature of a Grid, the execution time of each task can differ greatly. So the following
analysis is valid for general HTC applications, where each task may require distinct instruction streams.

In the execution of this kind of applications, a Grid can be considered, from the computational point of
view, as an array of heterogeneous processors. Therefore, the number of tasks completed as a function of time
is given by
Fig. 1.
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where Ni is the number of processors in the Grid (G) that can compute a task in Ti seconds, including file
transfer and middleware overheads. The characterization of a Grid by the above equation is not obvious, since
it is a discontinuous function that can potentially involve a high number of terms.

The best characterization of the Grid can be obtained if we take the line that represents the average behav-
ior of the system, see Fig. 1. This approach has been previously proposed by Hockney and Jesshope [10] to
characterize the performance of homogeneous array architectures on vector computations. So, a first-order
description of a Grid can be made by
nðtÞ ¼ mt þ b. ð2Þ

Using the r1 and n1/2 parameters defined by Hockney and Jesshope, this formula can be rewritten as:
nðtÞ ¼ r1t � n1=2 with m ¼ r1 and b ¼ �n1=2. ð3Þ
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These parameters are called [10]:

• Asymptotic performance (r1): the maximum rate of performance in tasks executed per second. In the case
of an homogeneous array of N processors with an execution time per task T, we have r1 = N/T.

• Half-performance length (n1/2): the number of task required to obtain the half of the asymptotic
performance. This parameter is also a measure of the amount of parallelism in the system as seen by the
application. In the homogeneous case, for an embarrassingly distributed application we obtain n1/2 = N/2.

The approximation (3) can be interpreted as an idealized representation of a Grid, equivalent to an homoge-
neous array of 2n1/2 processors with an execution time per task 2n1/2/r1.

We have considered so far the maximum performance (r1) of a Grid in the execution of a set of indepen-
dent tasks. The linear relation (3) can be used to define the performance of the system (tasks completed per
second) on actual applications with a finite number of tasks [10]:
rðnÞ ¼ nðtÞ=t ¼ r1
1þ n1=2=n

. ð4Þ
The half-performance length (n1/2), on the other hand, provides a quantitative measure of the heterogeneity in
a Grid. This result can be understood as follows, faster processors contribute in a higher degree to the perfor-
mance obtained by the system. Therefore the apparent number of processors (2n1/2), from the application’s
point of view, will be in general lower than the total processors in the Grid (N). We can define the degree
of heterogeneity (m) as
m ¼ 2n1=2

N
. ð5Þ
This parameter varies form m = 1 in the homogeneous case, to m � 0 when the actual number of processors in
the Grid is much greater than the apparent number of processors (highly heterogeneous).

The n1/2 is an useful characterization parameter for Grid infrastructures in the execution of HTC applica-
tions. For example, let us consider two different Grids with a similar asymptotic performance. In this case, by
analogy with the homogeneous array, a lower n1/2 parameter reflects a better performance (in terms of wall
time) per Grid resource, since the same performance (in terms of throughput) is delivered by a smaller
‘‘number of processors’’.

In this work, we will use the Embarrassingly Distributed (ED) benchmark of the NAS Grid Benchmarks

[7,11] (NGB) suite to represent the execution profile of the applications described above. The NGBs have been
presented as data flow graphs, encapsulating an instance of a NAS Parallel Benchmarks (NPB) [12] code in
each graph node, which communicates with other nodes by sending/receiving initialization data. Like NPB,
NGB specifies several different classes or problem sizes, in terms of number of tasks, mesh size and number
of iterations (see [7] for a detailed description).

The ED benchmark represents the important class of Parameter Sweep Applications (PSA), which arise nat-
urally in many scientific and engineering fields like Bio-informatics, Computational Fluid Dynamics (CFD),
Particle Physics, etc. Grid infrastructures constitute a promising platform to execute these loosely-coupled
high-throughput PSAs. However, in spite of its relatively simple structure, the efficient execution of PSAs
involves challenging issues. In general, the efficient execution of this kind of applications will combine the fol-
lowing elements: adaptive scheduling and execution; and re-use of common files between tasks to reduce the
file transfer overhead [13].

2.2. Performance metrics

A Grid is a system not subject to a centralized control, and based on standard, open and general-purpose
interfaces and protocols, while providing some level of quality of service (QoS), in terms of security, through-
put, response time or the coordinated use of different resource types [14]. The functionality of a Grid is usually
provided by three layers: Grid fabric, basic Grid services and high level tools. In this sense, we will hereafter
refer to a Grid (or testbed) as the set of hardware and software elements that conform it, including all the
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elements in the previous layers. Therefore, we intend to measure the performance of the whole infrastructure
rather than each component’s performance, individually.

In the previous section we have characterized the performance of a Grid in the execution of HTC applica-
tions by the r1 and n1/2 parameters. These parameters can be determined for a Grid in two ways:

• Intrusive benchmarking. The system parameters are obtained by linear fitting to the experimental results
obtained in the execution of large-scale HTC applications. In order to empirically determine r1 and n1/2

the benchmarking process should be intrusive to exercise all the resources in the testbed (n� N). Therefore,
this methodology is not intended to be applied over long periods of time, but at carefully controlled and
scheduled occasions.

• Non-intrusive benchmarking. In general, it may not be feasible to run such an intrusive high throughput
benchmark for large Grid environments. In this situation, the r1 and n1/2 parameters can be computed
using Eq. (1) and raw performance data (average wall time per task, Ti) of each resource, which can be
obtained in a systematic non-intrusive way.

The wall time of each task can be split into
T i ¼ T xfr
i þ T exe

i þ T sch; ð6Þ

where T xfr

i and T exe
i are the average file transfer and execution times on host i, including middleware overheads

and local queue times; and Tsch is the scheduling time which represents the resource selection overhead. In the
following experiments we assume Tsch = 60 s (see discussion in Section 3.2). Combining Eqs. (1) and (6), we get
nðtÞ ¼
X
i2G

Ni
t

T xfr
i þ T exe
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� �
. ð7Þ
This equation can be use to obtain the non-intrusive r1 and n1/2 parameters by fitting the best straight line. We
can also estimate the influence of the resource selection overhead by comparing the non-intrusive r1 and n1/2,
with those obtained by making (Tsch = 0) in Eq. (7).

Besides comparing different Grid environments by their performance, and the r1 and n1/2 parameters, it is
of crucial interest to analyze the potential gain in performance that a site could obtain by joining the Grid. In
other words, a suitable way to estimate the difference in performance obtained by the application running on
the resources available to the user, and that obtained by porting it to the Grid. To this end we propose the
following application-level performance metrics:

• Grid speed-up (Ssite). A site or institution is defined as the set of hardware and software resources within the
same administration domain. The speed-up that an user can expect when she executes a given class of appli-
cations on the Grid can be defined, by analogy to parallel computers, as
Ssite ¼
T site

T Grid

; ð8Þ
where TGrid is the application turnaround time using all the Grid, and Tsite is the optimum execution time using
only the resources available in a given site. For HTC applications TGrid can be easily calculated with Eq. (3).

• Critical problem size (nsite). In the case of HTC applications, it is defined as the number of jobs from which
it is more efficient to use the Grid rather than only the site resources. This parameter should be calculated
for each site, and gives an estimation of the suitability of the Grid to execute a range of applications. It is
interesting to note that in the case of an strictly homogeneous environment nsite is the number of nodes in
the site.
3. The Grid environment

In this section we describe the Grid environment whose performance will subsequently be evaluated. This
description includes both, the hardware and network configuration, and the Grid scheduler used to execute the
benchmarks. Also, some details about the implementation of the ED benchmark are discussed.
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3.1. Grid fabric and basic middleware

This work has been possible thanks to the collaboration of several research centers and universities that
temporarily shared some of their resources in order to set up a heterogeneous and geographically distributed
testbed. The testbed is build up from five sites, all of them connected by the Spanish National Research and

Education Network (NREN), RedIRIS. The geographical distribution and interconnection network of the
sites are shown on Fig. 2. This organization results in a highly heterogeneous testbed, since it presents several
architectures, processor speeds, DRMS and network links.

NGB does not attempt to measure the performance of the underlying Grid hardware, but the functionality,
reliability and performance of the Grid environment. However, a clear understanding of the hardware config-
uration of the Grid resources will aid the analysis of the subsequent experiments. Table 1 shows the charac-
teristics of the machines in the research testbed, based on the Globus Toolkit 2.X [15].

3.2. High level tools: GridWay

The Globus Toolkit has become a de facto standard in Grid computing [15]. Globus services allow secure
and transparent access to resources across multiple administrative domains, and serve as building blocks to
Fig. 2. Geographical distribution of the sites in Spain (left-hand graph) and topology of RedIRIS, the Spanish National Research and
Education Network (NREN) (right-hand graph).

Table 1
Characteristics of the machines in the research testbed

Name Site Nodes CPU Speed Memory per node DRMS

hydrus DACYA-UCM 1 Intel P4 2.5 GHz 512 MB Fork
cygnus DACYA-UCM 1 Intel P4 2.5 GHz 512 MB Fork
cepheus DACYA-UCM 1 Intel PIII 600 MHz 256 MB Fork
aquila DACYA-UCM 1 Intel PIII 700 MHz 128 MB Fork
babieca LCASAT-CAB 5 Alpha EV67 450 MHz 256 MB PBS
platon RedIRIS 1 2 · Intel PIII 1.4 GHz 1 GB Fork
heraclito RedIRIS 1 Intel Celeron 700 MHz 256 MB Fork
ramses DSIC-UPV 3 2 · Intel PIII 900 MHz 512 MB PBS
khafre CEPBA-UPC 1 4 · Intel PIII 700 MHz 2 GB Fork

In this table only the computational resources devoted to the testbed are shown.
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implement the stages of Grid scheduling [16]. However, the user is responsible for manually performing all the
submission steps in order to achieve any functionality.

To overcome these limitations, we have developed a light-weight meta-scheduler that allows an easier and
more efficient execution of jobs on a dynamic Grid environment in a ‘‘submit & forget’’ fashion. The core of
the GridWay framework [17] is a personal submission agent that performs all scheduling stages and watches
over the correct and efficient execution of jobs on Globus-based Grids.

The brokering process of the GridWay framework starts discovering available compute resources by access-
ing the Grid Index Information Service (GIIS) and, those resources that do not meet the user-provided
requirements are filtered out. At this step, an authorization test is also performed on each discovered host
to guarantee user access to the remote resource. Then, the dynamic attributes of each host are gathered from
its local Grid Resource Information Service (GRIS). This information is used by an user-provided rank
expression to assign a rank to each candidate resource. Finally, the resultant prioritized list of candidate
resources is used to dispatch the job.

The resource selection overhead is determined by the cost of retrieving the static and dynamic resource
information, the detection of the resource availability, and the scheduling process itself. In the present case,
the cost of scheduling jobs, i.e. rank calculation, can be neglected compared to the cost of accessing the Grid
Information Services (Globus MDS), which can be extremely high [18].

In order to reduce the information retrieval overhead, the GIIS information is locally cached at the client
host and updated every 5 min, this update frequency determines how often the testbed is searched for new
resources. The GRIS contents are also cached locally but updated every 30 s, since the CPU availability infor-
mation is generated every 30 s by the GRIS provider.

The availability of a resource is measured in terms of the CPU load in the case of a fork job manager, or the
number of free slots in the case of a DRMS like PBS. Therefore, GridWay waits to submit the next job until
the CPU load published in the GRIS decreases to a given threshold or the number of free slots is greater than
zero. We have experimentally determined that the mean scheduling time per task (Tsch) in the testbed is 60 s.

3.3. Benchmark implementation

The Distributed Resource Management Application API (DRMAA) Working Group [19], within the
Global Grid Forum (GGF) [20], has developed an API specification that allows a high-level interaction with
Distributed Resource Management Systems (DRMS). The DRMAA standard constitutes a homogeneous
interface to different DRMS to handle job submission, monitoring and control, and retrieval of finished
job status.

Although DRMAA could interface with DRMS at different levels, for example at the intranet level with
SGE or Condor, in the present context we will only consider its application at Grid level. In this way, the
DRMS (GridWay in our case) will interact with the local job managers (e.g. Condor, PBS or SGE) through
drmaa_init();

drmaa_finalize();

.C

Task B

Task C

Task A

Computational
Problem

Grid–Aware
Executable

Distributed
Resource

Management

PBS SGE

Results

Globus
Grid Middleware
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Fig. 3. Development and execution cycle using the DRMAA interface.
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the Grid middleware (Globus). This development and execution scheme with DRMAA, GridWay and Globus
is depicted in Fig. 3.

DRMAA represents a suitable and portable API to express distributed communicating jobs, like the NGB.
In this sense, the use of standard interfaces allows the comparison between different Grid implementations,
since neither NGB nor DRMAA are tied to any specific Grid infrastructure, middleware or tool.

The ED benchmark, as described in Section 2.1, comprises the execution of several independent tasks. Each
one consists in the execution of the SP flow solver [12] with a different initialization parameter for the flow
field. In the present work we have used the FORTRAN serial version of the SP flow solver code. These kind
of HTC applications can be directly expressed with the DRMAA interface as bulk jobs [21]. The DRMAA
code for this benchmark is shown in Fig. 4.

4. Results

In this section, we analyze the performance offered by the testbed presented in Section 3 using the Embar-
rassingly Distributed (ED) NAS Grid benchmark. In order to stress the computing capabilities of the testbed
we will consider the ED family class D (72 tasks width). However, we preserve the problem size of the class A
to retain the computational requirements of the benchmark. It is interesting to note that growing the problem
size as stated in the NGB specification would limit the number of available machines in the testbed and would
not reflect the computational profile of interest in this work.

Class A tasks are executed on those resources with at least 256 MB of main memory to prevent memory
swapping. This is implemented by imposing such requirement in the resource discovery stage of the resource
selection process. In the following experiments, cepheus is used as client and so it stores the executable and
input files, and receives the output files.

4.1. Performance study

We begin the analysis presenting the intrusive and non-intrusive measurements made on the testbed of the
parameters r1 and n1/2. The ED benchmark class D allows us to evaluate the behavior of the testbed in sat-
uration, i.e. subject to a workload that exceeds its processing capacity. The benchmarking measurements have
been performed six times during April 2004 at different times of the day, to capture in the subsequent analysis
the variability on the bandwidth, and response times of the local resource managers.

Fig. 5 shows the experimental performance obtained in two executions of the ED benchmark, along with
that predicted by Eq. (4). The r1 and n1/2 have been calculated by linear fitting to: (i) experimental results
obtained in the execution of the benchmark; (ii) Eq. (7) using the average file transfer and execution times
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of each host; and also (iii) Eq. (7) with Tsch = 0. As can be observed from these plots the first-order description
made by Eq. (4) provides a good characterization of the Grid.

The resource selection process reduces the asymptotic performance of the Grid, because of a delay between
tasks consecutively submitted to the same host. This delay is mainly due to the Globus MDS update frequency
and the GridWay resource broker. However, it does not affect to the n1/2 parameter (see also Table 2), since
the brokering overhead increases the execution time (Ti) by the same amount in all the resources.

Table 2 shows the values of the r1 and n1/2 coefficients, for the sake of completeness we also include the
turnaround time (TGrid) of each execution of the benchmark. Based on the intrusive results, the testbed is char-
acterized by an average asymptotic performance of 0.016 tasks per second. In order to achieve the half of this
asymptotic performance it is necessary to execute, on average, three tasks. And so, the apparent number of
Table 2
Turnaround time TGrid (min), r1 (tasks per seconds), n1/2 (tasks), and degree of heterogeneity coefficient m for each experiment

Intrusive Non-intrusive Tsch = 0 m TGrid

r1 n1/2 r1 n1/2 r1 n1/2

0.0146 2.21 0.0159 2.99 0.0200 2.95 0.25 85.2
0.0161 3.54 0.0164 3.03 0.0212 3.06 0.39 86
0.0138 3.23 0.0141 3.02 0.0192 3.09 0.36 104.8
0.0162 3.63 0.0167 3.03 0.0192 3.09 0.4 83.1
0.0163 3.21 0.0168 3.02 0.0215 3.01 0.36 81.6
0.0183 4.3 0.0181 3.08 0.0223 2.98 0.48 73.2
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resources to the application is approximately 6, with an execution time of 375 s per task. This could be
expected since this time is roughly equal to the average performance of the six hosts (see wall time in Table
3, note that this time must be scaled for multi-processors).

Fig. 6 summarizes the Grid performance during the six executions of the ED.D benchmark, along with the
performance model calculated using the previous parameters:
Table
Execut

Host

hydrus

babiec

ramses

cygnus

khafre

platon
rðnÞ ¼ 0:016

1þ 3=n
. ð9Þ
In general, because of the dynamic availability and performance of Grid resources, the r1 and n1/2 will not be
constant for a Grid (see Table 2).

Let us now consider a testbed obtained by removing the resources from LCASAT and RedIRIS. The mea-
surement of r1 = 0.0125 and n1/2 = 2.1 are shown in Fig. 7. The subtraction of this seven processors reduces
the asymptotic performance of this new testbed in 20%. Note also that the apparent number of processors to
the application in this case is 4, as could be expected from the previous discussion.

In order to analyze the difference in performance that a user could expect, let us consider the Grid speed-up
(Ssite), as defined in Eq. (8). In this case we will estimate the optimum execution, time (Tsite), by calculating the
optimum application makespan [13,22]. Fig. 8 shows the achieved speed-up by each site in the execution of the
ED.D benchmark.

A similar study can be performed by means of the critical problem size (nsite) and the performance model of
the global Grid. In this way, we can estimate, for a given site, the number of jobs from which it is more advan-
tageous to use the entire Grid rather than its own resources. Fig. 9 shows the Grid performance model along
with the peak performance of each organization (Tsite). The critical problem size is determined by the inter-
section of the performance line of each organization with the testbed model.
3
ion and transfer time (s) statistics over all executions

Execution time Transfer time Wall time

Mean Standard deviation Mean Standard deviation Mean Standard deviation

263.28 36 27.25 14.08 290.52 39.81
a 705.55 166.29 427.25 294.75 1119.38 349.95

1043.19 173.84 28.34 47.43 1071.54 178.02
249.81 10.02 27.37 14.52 277.18 17.05

1602.97 210.4 68.68 3.65 1671.65 210.68
834.12 22.74 26.54 3.68 860.66 23.7
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Fig. 6. Throughput (jobs per second) for six different executions of the ED benchmark, and testbed performance model.
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As shown in Fig. 9, for some sites (RedIRIS, UPC) the modest computational resources contributed to the
Grid makes the use of the testbed advantageous from the first job. As a consequence these sites present a
higher Grid speed-up (see Fig. 8). Nevertheless, for other organizations, the number of jobs from which an
application can benefit from using the Grid ranges between 2 and 4 jobs, and so obtain a lower Grid
speed-up.

4.2. Diagnostic study

The above metrics provide high level information of interest for the user. However, and due to the distrib-
uted nature of the Grid, it is very important to quantify the overheads induced by all its components, and to
analyze their influence in the global performance.

Apart from allowing the performance characterization of the testbed, the ED benchmark enables the study
of the Grid components’ behavior. This study is of special interest for diagnostic and tuning purposes, inter-
esting for application and middleware developers, and system administrators and architects [5].
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As can be observed from Table 3, resources with fork local job managers present a lower standard deviation
(hydrus, cygnus and platon). This fact is mainly due to a lack of additional scheduling in these job managers,
and the absence of any workload when the benchmarking measurements were performed. However, clusters
and SMP systems in the testbed are characterized by a greater standard deviation (babieca, ramses and khafre)
given by the dynamism of the PBS resource manager and by the shared access to system resources (memory
and I/O), respectively.

On the other hand, due to the network topology, those hosts directly connected to RedIRIS through a
1 Gbps non-dedicated link presents a low variability and average transfer time of 27 s, with the exception
of khafre. This is because of the 30 s polling period used by the GRAM (Globus Resource Allocation Man-
ager) job manager in the Globus version installed on this resource (GT2.2), whereas the job manager in the
version installed on the rest of resources (GT2.4) uses a polling period of 10 s. Lastly, babieca presents a very
high mean and standard deviation due to a problem with the job manager, which remains unsolved.

5. Conclusions

In this paper we have presented a methodology to analyze the performance of computational Grids in the
execution of high throughput computing applications. The benchmarking process is based on the execution of
the embarrassingly distributed benchmark of the NGB suite, with an appropriate scaling, to stress the com-
putational capabilities of the testbed. We have also used a performance model for the Grid in saturation,
whose suitability has been empirically proved in a research testbed. This performance model enables the
comparison of different platforms in terms of their asymptotic performance (r1) and half-performance length
(n1/2) parameters.

Moreover, we have proposed a non-intrusive way to compute these parameters, based on the experimental
average performance of each resource. The average resource performance could be obtained with specific
light-weight non-intrusive probes which provide continual information on the health of the Grid environment.
In this way, the r1 and n1/2 parameters also provides an overview of the dynamic capacity of the Grid, which
could eventually be used to generate global meta-scheduler strategies.

The execution of ED benchmark together with the site speedup and critical problem size, has been used to
analyze the potential gain in performance that a Grid site could obtain by joining the Grid. And so, the
speedup that can be expected when executing HTC applications on the Grid.

The benchmarking process used in this work also serve as an useful diagnostic tool. As could be expected
PBS job managers and SMP systems present a greater variability on the execution times. However, in our test-
bed, this is not the case for the file transfer times because of the quality of the interconnection links between
sites. This analysis also helped to identify incorrectly configured GRAM modules, a jobmanager problem in
one of the resources, and the influence of the GRIS update frequency.
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