Experiences about Job Migration on a Dynamic Grid Environment
Ruben S. Montero®*, Eduardo Huedo® and Ignacio M. Llorente?®?

aDepartamento de Arquitectura de Computadores y Automatica,
Universidad Complutense, 28040 Madrid, Spain

PCentro de Astrobiologia, CSIC-INTA, Associated to NASA Astrobiology Institute,
28850 Torrején de Ardoz, Spain

Several research centers share their computing resources in Grids, which offer a dramatic increase
in the number of available processing and storing resources that can be delivered to applications.
However, efficient job submission and management continue being far from accessible due to the
dynamic and complex nature of the Grid. A Grid environment presents unpredictable changing
conditions, such as dynamic resource load, high fault rate, or continuous addition and removal of
resources. We have developed an experimental framework that incorporates the runtime mechanisms
needed for adaptive execution of applications on a changing Grid environment. In this paper we
describe how our submission framework is used to support different migration policies on a research
Grid testbed.

1. Introduction

The management of jobs within the same department is addressed by many research and commercial
systems [2]: Condor, LSF, SGE, PBS, LoadLeveler... However, they are unsuitable in computational
Grids where resources are scattered across several administrative domains, each with its own se-
curity policies and distributed resource management systems. The Globus [4] middleware provides
the services and libraries needed to enable secure multiple domain operation with different resource
management systems and access policies.

However, the user is responsible for manually performing all the submission stages in order to
achieve any functionality: system selection, system preparation, submission, monitoring, migration
and termination [10]. The development of applications for the Grid continues requiring a high level of
expertise due to its complex nature. Moreover, Grid resources are also difficult to efficiently harness
due to their heterogeneous and dynamic characteristics, namely: dynamic resource load and cost,
dynamic resource availability, and high fault rate.

Migration is the key issue for adaptive execution of jobs on dynamic Grid environments. Much
higher efficiency can be achieved if an application is able to migrate among the Grid resources,
adapting itself according to its dynamic requirements, the availability of the resources and the current
performance provided by them.

In this paper we present a new Globus experimental framework that allows an easier and more effi-
cient execution of jobs on a dynamic Grid environment in a “submit and forget” fashion. Adaptation
is achieved by implementing automatic application migration when one of the following circumstances
is detected:

o Grid initiated migration: A new “better” resource is discovered; the remote resource or its
network connection fails; or the submitted job is canceled by the resource administrator.

o Application initiated migration: The application detects performance degradation or perfor-
mance contract violation; or self-migration when the requirements of the application change.

*This research was supported by the National Aeronautics and Space Administration under NASA Contract No.
NAS1-97046 while the first and last authors were in residence at ICASE, NASA Langley Research Center, Hampton,
VA 23681-2199. This research was also supported by the Spanish research grant TIC 2002-00334.

The rest of the paper is as follows. The submission framework is described in Section 2. Then the
Grid and application initiated migration capabilities of the framework, are demonstrated in Section 3,
in the execution of a Computational Fluid Dynamics (CFD) code. Finally, Section 4 highlights related
work, and Section 5 includes the main conclusions.

2. Experimental Framework

The GridWay experimental submission framework provides the runtime mechanisms needed for dy-
namically adapting the application to a changing Grid environment. Once the job is initially allocated,
it is rescheduled when performance slowdown or remote failure are detected, and periodically at each
discovering interval. Application performance is evaluated periodically at each monitoring interval by
executing a Performance Degradation program and by evaluating its accumulated suspension time.
A Resource Selector program acts as a personal resource broker to build a list of candidate resources.
Since both programs have access to files dynamically generated by the running job, the application
has the ability to take decisions about its own scheduling.

GridWay Framework
Grid
Information
User & Application Programming Interface Service
[Dispatch Manager)(,:'> [Resource Selector <: J
Host
GridFTP iy
| e

(Job/Array Structure W Performance
ile

P Submission Performance Remote Host
Sz = sl i

s GRAM
'F\IeTransfer
& 1

Figure 1. Architecture of the Experimental Framework.

The Submission Agent (figure 1) performs all submission stages and watches over the efficient
execution of the job. It consists of the following components (see [5] for a detailed description):

e The client application uses a Client API (Application Program Interface)to communicate with
the Request Manager in order to submit the job along with its job template, which contains
all the necessary parameters for its execution. The client may also request control operations
to the Request Manager, such as job stop/resume, kill or reschedule.

e The Dispatch Manager periodically wakes up at each scheduling interval, and tries to submit
pending and rescheduled jobs to Grid resources. It invokes the execution of the Resource Se-
lector corresponding to each job, which returns its own priorized list of candidate hosts. The
Dispatch Manager submits pending jobs by invoking a Submission Manager, and also decides if
the migration of rescheduled jobs is worthwhile or not.

e The Submission Manager is responsible for the execution of the job during its lifetime, i.e. until
it is done or stopped. It also probes periodically at each polling interval the connection to the
jobmanager and Gatekeeper to detect remote failures. The Submission Manager performs the
following tasks:

— Prologing: Preparing the RSL (Resource Specification Language) and submitting the Prolog
executable. The Prolog sets up remote system, transfers executable and input files, and in
the case of restart execution also transfers the restart files.

— Submitting: Preparing the RSL, submitting the Wrapper executable, monitoring its correct
execution, updating the submission states via Globus callbacks and waiting for migration,
stop or kill events from the Dispatch Manager. The Wrapper wraps the actual job in order
to capture its exit code.

— Epiloging: Preparing the RSL and submitting the Epilog executable. The Epilog transfers
back output files when termination, restart files when migration, and cleans up remote
system.

e The Performance Monitor periodically wakes up at each monitoring interval. It requests reschedul-
ing actions to detect “better” resources when performance slowdown is detected and at each
discovering interval.

The flexibility of the framework is guaranteed by a well-defined API for each Submission Agent
component. The framework has been designed to be modular, to allow extensibility and improvement
of its capabilities. The following modules can be set on a per job basis: Resource Selector, Performance
Degradation Evaluator, Prolog, Wrapper, and Epilog.

2.1. Resource Selector

Due to the heterogeneous and dynamic nature of the Grid, the end-user must establish the require-
ments which must be met by the target resources and an expression to assign a rank to each candidate
host. Both may combine static machine attributes (operating system, architecture,...) and dynamic
status information (disk space, processor load,...). Different strategies for application level scheduling
can be implemented, see for example [1,8,6].

The Resource Selector used in the experiments consists in a shell script that queries MDS for
potential execution hosts, attending the following criteria:

e Host requirements are specified in a host requirement file, which can be dynamically generated
by the running job. The host requirement setting is a LDAP filter, which is used by the Resource
Selector to query Globus MDS and so obtain a preliminary list of potential hosts. In the
experiments below, we will impose two constraints, an SPARC architecture and a minimum
main memory of 512MB, enough to accommodate the CFD simulation.

e A rank expression based on workload parameters is assigned to each potential host. Since our
target application is a computing intensive simulation, the rank expression benefits those hosts
with less workload and so better performance. The following expression was considered:

b= FLOPS if CPUss > 1; (1)
"ME =\ FLOPS-CPUs if CPUjs < 1.
where FLOPS is the peak performance achievable by the host CPU, and C' PU;; is the average
load in the last 15 minutes.

2.2. Prolog and Epilog

File transfers are performed through a reverse-server model. The file server (GASS or GridFTP) is
started on the local system, and the transfer is initiated on the remote system. The executable (one
per each architecture) and input files are assumed to be stored in an experiment directory. In the
experiments, the Prolog and Epilog modules were implemented with a shell script that uses Globus
transfer tools (i.e. globus-url-copy) to move files to/from the remote host.

The files which, being generated on the remote host by the running job, have to be accessible to the
local host during job execution are referred as dynamic files (host requirement, rank expression and
performance profile files). Dynamic file transferring is not possible through a reverse-server model in
closed systems, such as Beowulf clusters. This problem has been overcome by using a file prozy on
the front-end node of the remote system.

2.3. Performance and Job Monitoring
The GridWay framework provides two mechanisms to detect performance slowdown:

e A Performance Degradation Evaluator (PDE) is periodically executed at each monitoring inter-
val by the Performance Monitor to evaluate a rescheduling condition. In our experiments, the
solver of the CFD code is an iterative multigrid method. The time consumed in each iteration
is appended by the running job to a dynamic performance profile file. The PDE verifies at
each monitoring interval if the time consumed in each iteration is higher than a given threshold.
This performance contract and contract monitor are similar to those used in [3].

e A running job could be temporally suspended by the resource administrator or by the local
queue scheduler on the remote resource. The Submission Manager takes count of the overall
suspension time of its job and requests a rescheduling action if it exceeds a given threshold.

3. Experiences

We next demonstrate the migration capabilities of the experimental framework in the execution
of a CFD code. The target application is an iterative robust multigrid algorithm that solves the 3D
incompressible Navier-Stokes equations [9]. Application-level checkpoint files are generated at each
multigrid iteration. In all the experiments, monitoring, polling and scheduling intervals were set to
10 seconds. The following experiments where conducted in the TRGP research testbed, whose main
characteristics are described in table 1.

Table 1

TRGP (Tidewater Research Grid Partnership) resource characteristics

host Model Nodes OS Memory Peak Performance VO
coral Intel Pentium II, I1T, 4 104 Linux 2.4 56GB 89 Gflops ICASE
whale Sun UltraSparc 11 2 Solaris 7 4GB 1.8 Gflops ICASE
urchin Sun UltraSparc I 2 Solaris 7 1GB 672 Mflops ICASE
carp, tetra Sun UltraSparc IIi 1 Solaris 7 256MB 900 Mflops ICASE
sciclone Sun UltraSparc II, ITi 160 Solaris 7 54GB 115 Gflops W&M

3.1. Periodic rescheduling to detect new resources

In this case, the discovering interval has been deliberately set to a small value (60 seconds) in order
to quickly reevaluate the performance of the resources. The execution profile of the application is
presented in figure 2 (left-hand chart). Initially, only ICASE hosts are available for job submission,
since sciclone has been shutdown for maintenance. The Resource Selector chooses urchin to execute
the job, and the files are transferred (Prolog and submission in time steps 0s-34s). The job starts
executing at time step 34s. A discovering period expires at time step 120s and the Resource Selector
finds sciclone to present higher rank than the original host (time steps 120s-142s). The migration
process is then initiated (Cancellation, Epilog, Prolog and submission in time steps 142s-236s). Finally
the job completes its execution on sciclone.

Figure 2 (left-hand chart) shows how the overall execution time is 42% lower when the job is
migrated. This speedup could be even greater for larger execution times. Note that migration time,
95 seconds, is about 20% of the overall execution time.

3.2. The remote resource or its network connection fails

The Resource Selector finds whale to be the best resource, and the files are transferred (Prolog
and submission in time steps 0s-45s). Initially, the job runs normally. At time step 125s, whale is
disconnected. After 50 seconds, a connection failure is detected and the job is migrated to sciclone
(Prolog and submission in time steps 175s-250s). The application is executed again from the beginning
because the local host does not have access to the checkpoint files generated on whale. Finally the job
completes its execution on sciclone. The execution profile of the application is presented in figure 2
(right-hand chart).

static --5--
10" adaptative —— sciclone -7 10 whale sciclone m’i B
-)
ol \/[/]'/ / 8 : / \
1 N Epi Failure Detection |
.- Epilo : p
2 6 urchin o= priog 2 61 ‘ o)
2 1 =i 2 1 o] Epilog
E a4 oy ’ Cancellation| & 41 : o
= Prolog | o) Epilog = ! oo Prolog
: Migration ! “ Miarati
2 ‘ {reion { protag 2t : VGO o prission
Submission | e
(o OB---8 [F---io----- g
1 1 Il Il Il Il 1 1 1 1 1 Il Il Il
0 2 4 6 8 10 12 14 0 1 2 3 4 5 6 7 8 9

Time (Minutes) Time (minutes)

Figure 2. Execution profile of the application when a new “better” resource is detected (left-hand
chart). Execution profile of the application when the remote resource fails (right-hand chart).

3.3. Performance degradation detected by the maximum suspension time

Sciclone is selected to run on initially, and the files are transferred (Prolog and submission in time
steps 0s-51s). The job is explicitly held just after Prologing by executing the ghold PBS command
on the remote system. The job is rescheduled as soon as the maximum suspension time is exceeded
(40 seconds). The Resource Selector selects whale as next resource, and the migration process is then
initiated (Cancellation, Prolog and submission in time steps 102s-165s). Finally the job completes its
execution on whale. The execution profile of the application is presented in figure 3 (left-hand chart).

static --£--

10 I sciclone : whale e 10 |- adaptative —— sciclone, 8
‘ = ‘ ‘ =
8+ Max. ‘ o 8 ; \\f'
Suspension : B \ whale g 27N Bito
2 6r Time : = Epilog| 2 6} - priog
= o =
r i g .
g 4 Prolog /' cancallation | £ * o J Cancellation
2 Pl 2 T igaion (P
— Submission Migration < prolog
i - HR - N S g’ 0B—& Submission
I I I I I I I I I I I I
0 1 2 3 4 5 6 7 0 2 4 6 8 10 12

Time (minutes) Time (minutes)

Figure 3. Execution profile of the application when the maximum suspension time is exceeded (left-
hand chart). Execution profile of the application when a workload is executed (right-hand chart).

3.4. Performance degradation detected by a Performance Profile dynamic file

The Resource Selector finds whale to be the best resource, and job is submitted (Prolog and
submission in time step 0s-34s). However, whale is overloaded with a compute-intensive workload at
time step 34s. As a result, a performance degradation is detected when the iteration time exceeds
the iteration time threshold (40 seconds) at time step 209s. The job is then migrated to sciclone
(Cancellation, Epilog, Prolog and submission in time steps 209s-304s), where it continues executing
from the last checkpoint context. The execution profile for this situation is presented in figure 3
(right-hand chart). In this case the overall execution time is 35% lower when the job is migrated.
The cost of migration, 95 seconds, is about 21% of the execution time.

4. Related Work

The need of a nomadic migration approach for job execution on a Grid environment has been
previously discussed in [7]. Also, the prototype of a migration framework called the “Worm”, was
implemented within the Cactus programming environment [3]. In the context of the GrADS project,
a migration framework that takes into account both the system load and application characteristics
is described in [11].

The aim of the GridWay project is similar to the aim of the GrADS project, simplify distributed
heterogeneous computing. However, its scope is different. Our framework provides a submission agent
that incorporates the runtime mechanisms needed for transparently executing jobs in a Grid; it is not
bounded to a specific class of applications; it does not require new services; and it does not necessarily
require source code changes. In fact, our framework could be used as a building block for much more
complex service-oriented Grid scenarios like GrADS.

5. Conclusions

We have demonstrated the migration capabilities of the GridWay experimental framework for ex-
ecuting jobs on Globus-based Grid environments. The experimental results are promising because
they show how application adaptation achieves enhanced performance. The response time of the
target application is reduced when it is submitted through the experimental framework. Simultane-
ous submission of several applications could be performed in order to harness the highly distributed
computing resources provided by a Grid. Our framework is able to efficiently manage applications
suitable to be executed on dynamic conditions. Mainly, those that can migrate their state efficiently.

Acknowledgments

This work has been performed using computational facilities at The College of William and Mary
which were enabled by grants from Sun Microsystems, the National Science Foundation, and Virginia’s
Commonwealth Technology Research Fund. We would like to thank Thomas Eidson and Tom Crockett
for their help with TRGP.

REFERENCES

[1] H. Dail, H.Casanova, and F.Berman. A Modular Scheduling Approach for Grid Application
Development Environments. Technical Report CS2002-0708, UCSD CSE, 2002.

[2] T. El-Ghazawi, K. Gaj, N. Alexandinis, and B. Schott. Conceptual Comparative Study of Job
Management Systems. Technical report, George Mason University, February 2001.

[3] G. Allen et al. The Cactus Worm: Experiments with Dynamic Resource Discovery and Allocation
in a Grid Environment. Intl. J. of High-Performance Computing Applications, 15(4), 2001.

[4] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Intl. J. of Super-
computer Applications, 11(2):115-128, 1997.

[5] E. Huedo, R. S. Montero, and I. M. Llorente. An Experimental Framework for Executing Appli-
cations in Dynamic Grid Environments. Technical Report 2002-43, ICASE-NASA Langley.

[6] E.Huedo, R. S. Montero, and I. M. Llorente. Experiences on Grid Resource Selection Considering
Resource Proximity. In Proc. of 1st European Across Grids Conf., February 2003.

[7] G. Lanfermann et al. Nomadic Migration: A New Tool for Dynamic Grid Computing. In Proc.
of the 10th Symp. on High Performance Distributed Computing (HPDC10), August 2001.

[8] R. S. Montero, E. Huedo, and I. M. Llorente. Grid Resource Selection for Opportunistic Job
Migration. In Proc. Intl. Conf. on Parallel and Distributed Computing (EuroPar), August 2003.

[9] R.S.Montero, I. M. Llorente, and M. D. Salas. Robust Multigrid Algorithms for the Navier-Stokes
Equations. Journal of Computational Physics, 173:412-432, 2001.

[10]J. M. Schopf. Ten Actions when Superscheduling. Technical Report WD8.5, The Global Grid
Forum, 2001. Scheduling Working Group.

[11]S. Vadhiyar and J. Dongarra. A Performance Oriented Migration Framework for the Grid. In
Proceedings of the 3rd Int’l Symposium on Cluster Computing and the Grid (CCGrid), 2003.

