
Experiences on Adaptive Grid Scheduling of Parameter Sweep Applications �

Eduardo Huedo� Rubén S. Montero� Ignacio M. Llorente���

�Lab. Computación Avanzada
Centro de Astrobiologı́a (CSIC-INTA)

28850 Torrejón de Ardoz (Spain)
�huedoce, martinli�@inta.es

�Dpto. Arquitectura de Computadores y Automática
Facultad de Informática, Universidad Complutense

28040 Madrid (Spain)
�rubensm, llorente�@dacya.ucm.es

Abstract

Grids offer a dramatic increase in the number of avail-
able compute and storage resources that can be delivered
to applications. This new computational infrastructure pro-
vides a promising platform to execute loosely coupled, high-
throughput parameter sweep applications. This kind of ap-
plications arises naturally in many scientific and engineer-
ing fields like Bioinformatics, Computational Fluid Dynam-
ics (CFD), Particle Physics, etc. The efficient execution and
scheduling of parameter sweep applications is challenging
because of the dynamic and heterogeneous nature of Grids.
In this paper we present a scheduling algorithm built on
top of the GridWay framework that combines: (i) adap-
tive scheduling to reflect the dynamic Grid characteristics;
(ii) adaptive execution to migrate running jobs to better re-
sources and provide fault tolerance; (iii) re-use of common
files between tasks to reduce the file transfer overhead. The
efficiency of the approach presented in this work is demon-
strated in the execution of a CFD application on a highly
heterogeneous research testbed.

1. Introduction

Grid computing constitutes an appropriate plat-
form to execute parameter sweep applications (PSAs),
which arise naturally in many scientific and engineer-
ing fields like Bioinformatics, Computational Fluid Dy-
namics (CFD), Particle Physics, etc. This kind of applica-
tions comprises the execution of a high number of tasks,
each of which performs a given calculation over a sub-
set of parameter values. In the present work, we will
consider a PSA as a set of independent task, that poten-
tially share common files (e.g. the executable, or some in-

� This research was supported by Ministerio de Ciencia y Tecnologı́a
through the research grant TIC 2002-00334 and Instituto Nacional de
Técnica Aeroespacial (INTA).

put files). In spite of the relatively simple structure of the
PSAs, its efficient execution on computational Grids in-
volves challenging issues, mainly due to the nature of the
Grid itself.

Probably, one of the most challenging problems that
the Grid computing community has to deal with, to effi-
ciently execute applications as the one described above, is
the fact that Grids present unpredictable changing condi-
tions, namely: high fault rate and dynamic resource avail-
ability, load and cost.

Adaptive Grid scheduling has been widely studied in the
literature [2, 3, 1, 14] and is generally accepted as the cure
to the dynamicity of the Grid. Previous works have clearly
demonstrated the critical factor of the dynamic information
gathered from the Grid to generate reliable schedules.

In this paper, we modify several components of the
GridWay framework, which is briefly described in Sec-
tion 2, to efficiently schedule PSAs. In order to achieve the
adaptive functionality, we present in Section 3, a resource
broker that reflects application preferences and the dynamic
characteristics of Grid resources, in terms of load, availabil-
ity and proximity.

In addition, the ability to migrate running jobs to more
suitable resources based on events dynamically generated
by both the Grid and the running applications (adaptive ex-
ecution), can also improve the performance and fault tol-
erance obtained by applications on a Grid [9]. The support
for adaptive execution of the GridWay framework is dis-
cussed in Section 4; and then, in Section 5, we describe the
GridWay facilities to provide job execution with fault tol-
erance. Moreover, efficient execution of PSAs can only be
achieved by re-using shared files between tasks [4]. This
is specially important not only to reduce the file transfer
overhead, but also to prevent saturation of the file server
where these files are stored, which can occur with large-
scale PSAs.

This three aspects, namely: adaptive scheduling, adap-
tive execution and re-use of shared files, are combined in
Section 6 to devise a Grid scheduling policy for PSAs. Fi-

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

nally, in Section 7 we will show the benefits of the above
components in the execution of CFD parameter sweep ap-
plication. The schedule performed by the GridWay frame-
work is also compared to the optimum schedule, using
a standard performance metric: the application makespan.
The paper ends with some conclusions.

2. The GridWay Framework

GridWay is a Globus-based experimental framework that
allows an easier and more efficient execution of jobs on a
dynamic Grid environment in a “submit and forget” fashion.
The core of the GridWay framework is a personal submis-
sion agent that automatically performs the steps involved in
job submission [13]: resource discovery and selection; and
job preparation, submission, monitoring, migration and ter-
mination. Adaptation to changing conditions is achieved by
supporting automatic job migration. Once the job is initially
allocated, it is dynamically rescheduled when one of the fol-
lowing rescheduling events occurs:

1. Grid-generated rescheduling events:

� A new “better” resource is discovered (oppor-
tunistic migration [11]).

� The remote resource or its network connection
fails (failover migration).

� The submitted job is canceled or suspended by
the local resource administrator or management
system.

2. Application-generated rescheduling events:

� Performance degradation or performance con-
tract violation is detected in terms of application
intrinsic metrics.

� The resource requirements or preferences of the
application change (self-migration).

The architecture of the submission agent is depicted in
figure 1. The user interacts with the framework through
a request manager, which handles client requests (submit,
kill, stop, resume...) and forwards them to the dispatch
manager. The dispatch manager periodically wakes up at
each scheduling interval, and tries to submit pending and
rescheduled jobs to Grid resources. Once a job is allocated
to a resource, a submission manager and a performance
monitor are started to watch over its correct and efficient
execution (see [8] for a detailed description of these com-
ponents).

The framework has been designed to be modular, thus
allowing extensibility and improvement of its capabilities.
The following modules can be set on a per job basis:

Remote Host
Performance

Profile

Requirements
Host

Expression
Rank

+

+

Server
GRAM

(File Proxy)
GridFTP

File Transfer
& Submission

Job

GridWay Framework

Dynamic File
Access

Server
Gass

Grid
Information

Service
Resource SelectorDispatch Manager

Job/Array Structure

User & Application Programming Interface

Submission
Manager

Performance
Monitor

Figure 1. The GridWay architecture.

� The resource selector module, which is used by the
dispatch manager to build a prioritized list of candi-
date resources following the preferences and require-
ments provided by the user (see Section 3).

� The performance evaluator module, which is used by
the performance monitor to periodically evaluate the
application performance.

3. Resource Selection

In order to adapt the execution of a job to its dynamic de-
mands, the application must specify its host requirements
through a requirement expression. The applica-
tion could define an initial set of requirements and dynam-
ically change them when more, or even less, resources are
required. Also, in order to prioritize the resources that fulfil
the requirements according to its runtime needs, the applica-
tion must specify its hosts preferences through a ranking
expression. A compute-intensive application would as-
sign a higher rank to those hosts with faster CPUs and lower
load, while a data-intensive application could benefit those
hosts closer to the input data.

In the experiments described in the Section 7, the appli-
cation does not impose any requirement to the resources.
The ranking expression uses a performance model
to estimate the job turnaround time as the sum of execution
and transfer time, derived from the performance and prox-

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

imity of the candidate resources [7]. The application doesn’t
dynamically change its resource demands.

The requirement expression and rank-
ing expression files are used by the resource selector
to build a list of potential execution hosts. Figure 2 shows
the resource selection process. Initially, available com-
pute resources are discovered by accessing the GIIS server
and those resources that do not meet the user-provided re-
quirements are filtered out. At this step, an authorization
test is performed to guarantee user access. Then, the re-
source is monitored by accessing its local GRIS server. The
information gathered is used to assing a rank to each can-
didate resource based on the user-provided preferences. Fi-
nally, the resultant prioritized list of candidate resources is
used to dispatch the jobs.

Globus MDS

RESOURCE INFORMATION

Filtered LDAP search
DISCOVERY

Candidate resource attributes

Candidate resource list

Job template

Multiple LDAP searchs

LDAP Registrations

RANKING

MONITORING

Ranked candidate list

GRIS

GRIS

GIIS

GRIS

Figure 2. Resource selection process.

In order to reduce the information retrieval overhead, the
GIIS and GRIS information is locally cached at the client
host and updated independently in order to separately de-
termine how often the testbed is searched for new resources
and the frequency of resource monitoring. In the following
experiments we set the GIIS cache timeout to 5 minutes and
the GRIS cache timeout to 1 minute.

4. Job Execution

Job execution is performed in three steps by the follow-
ing modules:

� The prolog module, which is responsible for creating
the remote experiment directory and transferring the
executable and all the files needed for remote execu-
tion, such as input or restart files corresponding to the
execution architecture. These files can be specified as
local files in the experiment directory or as remote files

stored in a file server through a GridFTP URL. For the
files declared as shared, a reference is added to the
remote GASS cache, so they can be re-used by other
jobs.

� The wrapper module, which is responsible for execut-
ing the actual job and obtaining its exit code. The cap-
ture of the remote execution exit code allow users to
define complex jobs, where each depends on the output
and exit code from the previous job. They may even in-
volve branching, looping and spawning of subtasks, al-
lowing the exploitation of the parallelism on the work
flow of certain type of applications.

� The epilog module, which is responsible for transfer-
ring back output files, and cleaning up the remote ex-
periment directory. At this point, references to shared
files in the GASS cache are also removed.

Due to the high fault rate and the dynamic reschedul-
ing, the application must generate restart files in
order to restart the execution from a given point. If these
files are not provided, the job is restarted from the be-
ginning. User-level checkpointing managed by the pro-
grammer must be implemented because system-level check-
pointing is not currently possible among heterogeneous re-
sources. The PSA used in Section 7 has been modify to pe-
riodically generate an architecture-independent restart file.

Migration is performed by conveniently combining the
above stages. The wrapper is canceled (if it is still running),
then the prolog is submitted to the new candidate resource,
preparing it and transferring all the needed files to it, in-
cluding the restart files from the old resource. Af-
ter that, the epilog is submitted to the old resource (if it is
still available), but no output file staging is performed, it
only cleans up the remote system. And finally, the wrap-
per is submitted to the new candidate resource.

5. Fault Tolerance Support

The submission agent provides the application with the
fault detection capabilities needed in such a faulty environ-
ment:

� The GRAM job manager notifies submission failures
as GRAM callbacks. This kind of failures includes
connection, authentication, authorization, RSL pars-
ing, executable or input staging, credential expiration
and other failures.

� The GRAM job manager is probed periodically at each
polling interval. If the job manager does not respond,
the GRAM gatekeeper is probed. If the gatekeeper re-
sponds, a new job manager is started to resume watch-
ing over the job. If the gatekeeper fails to respond, a re-
source or network occurred. This is the approach fol-
lowed in Condor/G [6].

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

� The standard output of prolog, wrapper and epilog is
parsed in order to detect failures. In the case of the
wrapper, this is useful to capture the job exit code,
which is used to determine whether the job was suc-
cessfully executed or not. If the job exit code is not set,
the job was prematurely terminated, so it failed or was
intentionally canceled.

When an unrecoverable failure is detected, the submission
agent retries the submission of prolog, wrapper or epilog a
number of times specified by the user and, when no more re-
tries are left, it performs an action chosen by the user among
two possibilities: stop the job for manually resuming it later,
or automatically generate a rescheduling event.

6. Grid Scheduling Policy

Grid scheduling or superscheduling [5], has been defined
in the literature as the process of scheduling resources over
multiple administrative domains based upon a defined pol-
icy in terms of job requirements, system throughput, appli-
cation performance, budget constraints, deadlines, etc. In
particular previous works have demonstrated the relevance
of the following factors:

1. Adaptive Scheduling: Reliable schedules can only be
issued considering the dynamic characteristics of the
available Grid resources [2, 3, 4, 1]. In general, adap-
tive scheduling can consider, among others, factors
such as availability, performance, load, proximity (in
terms of bandwidth and latency of the interconnection
links), etc, properly scaled according to the applica-
tion needs. Adaptive scheduling is implemented in the
GridWay framework by the dispatch manager. The dis-
patch manager periodically gathers information from
the Grid to adaptively schedule pending tasks accord-
ing to the application preferences (rank expres-
sion) and Grid resource status, as explained in Sec-
tion 3.

2. Adaptive Execution: In order to obtain a reasonable de-
gree of both application performance and fault toler-
ance, a job must be able to migrate among the Grid re-
sources adapting itself to events dynamically generated
by both the Grid and the running application [10, 9, 14]
(see Section 2). GridWay evaluates each rescheduling
event to decide if the migration is feasible and worth-
while. Some reasons, like job cancellation or failure,
make the dispatch manager immediately trigger a mi-
gration event to the submission manager. Other rea-
sons, like new resource discovery, make the dispatch
manager trigger a migration event only if the new se-
lected host presents a higher enough rank. In this case,
the time to finalize [14, 10], input and restart file trans-
fer costs [7] are also considered.

Resource Model Speed Mem. Nodes
(MHz) (MB)

ursa Sun Blade 100 500 256 1
draco Sun Ultra 1 167 128 1
pegasus Intel Pentium 4 2400 1024 1
solea Sun Enterp. 250 296 256 2
babieca Alpha DS10 466 1024 4

Table 1. Summary of the UCM-CAB grid re-
source hardware characteristics.

Probably one of the most relevant factors when schedul-
ing parameter sweep applications is the impact of file trans-
fer times. In order to efficiently execute this kind of appli-
cations, the schedule should promote the re-use of shared
files between tasks. Several heuristics to schedule parameter
sweep applications considering file I/O requirements have
been proposed in the literature [4]. The GridWay framework
take advantage of file sharing by using the Globus GASS
cache, and by overlapping the prolog and epilog phases (see
Section 4) of two different tasks on the same resource.

Figure 3 shows the general structure of the schedule al-
gorithm employed by the GridWay framework. This algo-
rithm merge the previous considerations to efficiently exe-
cute parameter sweep applications on computational Grids.

execution
Adaptive

scheduling
Adaptive

}
 }
 migrate next rescheduled task to next available slot
 if (migration granted) {
 evaluate migration
while (there are rescheduled tasks and there are available slots) {
}
 submit next pending task to next available slot
while (there are pending tasks and there are available slots) {
resource selection

Figure 3. Scheduling algorithm.

7. Experiences

Let us now consider a parameter sweep application con-
sisting of 50 independent tasks. Each task calculates the
flow over a flat plate [12] for a different Reynolds num-
ber, ranging from ��

� to ��
�. In this experiment we have

used the UCM-CAB testbed, whose main characteristics are
summarized in tables 1 and 2.

The experiment files consists of the executable (0.5MB)
and the computational mesh (0.5MB) provided for all the
resource architectures in the testbed, and some parameter

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Resource OS GRAM VO

ursa Solaris 8 fork UCM
draco Solaris 8 fork UCM
pegasus Linux 2.4 fork UCM
solea Solaris 8 fork UCM
babieca Linux 2.4 PBS CAB

Table 2. Summary of the UCM-CAB grid re-
source software characteristics.

files (1K) describing the numerical simulation. The final
file name of the executable and the computational mesh
are obtained by resolving the framework variable GW ARCH
at runtime for the selected host. Equivalently, the final file
name of the parameter file is resolved with the variable
GW TASK ID for each task. In the following experiments
the computational mesh and the executable are declared as
shared files and stored in the GASS cache, so they can be
re-used by different task submitted to the same resource.

Figure 4 presents the average job turnaround, execution
and file transfer times on each host of the UCM-CAB Grid;
error bars represent the standard deviation of these measure-
ments. These times include the overhead induced by the
Globus middleware. The standard deviation is greater for
the measurements performed on babieca and solea. This
fact clearly reflects the dynamicity of the Grid, outlined
in Section 1. The execution times on babieca includes the
queue wait time on the PBS batch system, which causes
variable execution times. Also, file transfer times between
the client (UCM) and babieca (CAB) exhibit a high stan-
dard deviation, due to the dynamic bandwidth of the in-
terconnection link between these two VOs. In the case of
solea, the high standard deviation is due to a non-exclusive
access to the system, mainly used as web and mail server.

The overall execution time for parameter sweep appli-
cation, when all the machines in the testbed are available,
is 2310 seconds with an average job turnaround time of
46.2 seconds. Compared to the single host execution on
the fastest machine in the testbed (pegasus, 62 seconds per
job), these results represents 25% reduction in the over-
all execution time. This experiment is repeated introduc-
ing an artificial workload on pegasus at the middle of
the execution. As could be expected, the workload on pe-
gasus increases the dynamic and average (52.4 seconds)
job turnaround times, as well as the overall execution time
(2622 seconds). Figure 5 shows the dynamic job turnaround
time during the execution of the parameter sweep applica-
tion in the above situations.

We will next evaluate the schedule performed by the
GridWay framework in the above experiments compared to
the optimum static schedule. This comparison can only be

Turnaround Time

Transfer Time

Execution Time

0

200

400

600

800

1000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Pegasus Babieca Solea Ursa Draco

Figure 4. Average and standard deviation in
turnaround time, file transfer time and execu-
tion time for the parameter sweep application
on each host of the testbed.

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

Jo
b

T
ur

na
ro

un
d

T
im

e
(s

ec
on

ds
)

Number of Completed Jobs

Testbed available
Pegasus saturation

Pegasus unavailable

Figure 5. Dynamic job turnaround time in the
execution of the parameter sweep application
when the testbed is fully available and when
pegasus is saturated.

seen as a reference, whose main goals are to establish an
upper performance bound and, to highlight the relevance of
adaptive scheduling in a Grid environment. The optimum
Grid schedule will minimize the makespan of the applica-
tion [4]:

��������

������� �� �� � ��

�����	

��

����

�� � �� � ��

� � �� � �� �� � ��� (1)

where �� is the number of jobs executed on
host �, � � is the average job turnaround time on
host �, and �� is the set of all Grid resources
(�� � ����	
�
� �
	���
���	� �

	� �	����	�).

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

Figure 6 shows the number of jobs scheduled on each
host by the GridWay framework, and the solution to the op-
timization problem 1. The overall execution time for the
optimum schedule is 2105 seconds, with an average job
turnaround time of 42.1 seconds. The optimum schedule is
9% better than the schedule made by the GridWay frame-
work when the testbed is fully available.

The main difference between the schedules made by the
GridWay framework when the testbed is fully available and
when pegasus is saturated, is the greater number of jobs al-
located to pegasus. Since the GridWay framework detects
the saturation of pegasus and dynamically schedules pend-
ing jobs to other hosts. In this case, the adaptive schedule
made by the GridWay framework only increments the exe-
cution time 13%, although pegasus was unavailable for 970
seconds, 37% of the experiment.

Pegasus saturation

Testbed available

Optimum Schedule

0

5

10

15

20

25

30

Sc
he

du
le

d
jo

bs

Pegasus Babieca Solea Ursa Draco

Figure 6. Number of jobs scheduled on each
resource by the optimum schedule and by the
GridWay framework when the testbed is fully
available and when pegasus is saturated.

8. Conclusions

In this paper we have extended the capabilities of the
GridWay framework to enhanced the performance of PSAs.
The GridWay framework achieves the robust and efficient
execution of PSAs by combining: adaptive scheduling to
reflect the dynamic Grid characteristics, adaptive execution
to migrate running jobs to better resources and provide fault
tolerance, and re-use of common files between tasks to re-
duce the file transfer overhead. The experimental results are
promising because they show how generic PSAs can effi-
ciently harness the highly distributed computing resources
provided by a Grid. Currently, the ideas and middleware de-
veloped in this work are being used in the execution of an
existing bioinformatics application to study large numbers
of protein structures.

References

[1] G. Allen et al. The Cactus Worm: Experiments with Dy-
namic Resource Discovery and Allocation in a Grid Envi-
ronment. Intl. J. of High-Performance Computing Applica-
tions, 15(4), 2001.

[2] F. Berman et al. Adaptive Computing on the Grid Using Ap-
pLeS. IEEE Transactions on Parallel and Distributed Sys-
tems, 14(5):369–382, 2003.

[3] R. Buyya et al. Nimrod/G: An Architecture for a Resource
Management and Scheduling System in a Global Computa-
tion Grid. In Proc. of the 4th Intl. Conf. on High Performance
Computing in Asia-Pacific Region (HPC Asia), 2000.

[4] H. Casanova et al. Heuristics for Scheduling Parameter
Sweep Applications in Grid Environments. In Proc. of the
9th Heterogeneous Computing Workshop, 2000.

[5] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Morgan-Kaufman, 1999.

[6] J. Frey et al. Condor/G: A Computation Management Agent
for Multi-Institutional Grids. In Proc. of the 10th Symp. on
High Performance Distributed Computing (HPDC10), 2001.

[7] E. Huedo, R. S. Montero, and I. M. Llorente. Experiences
on Grid Resource Selection Considering Resource Proxim-
ity. In Proc. of 1st European Across Grids Conf., 2003.

[8] E. Huedo, R. S. Montero, and I. M. Llorente. A Framework
for Adaptive Execution on Grids. Intl. J. of Software – Prac-
tice and Experience, 2003. To appear.

[9] G. Lanfermann et al. Nomadic Migration: A New Tool for
Dynamic Grid Computing. In Proc. of the 10th Symp. on
High Performance Distributed Computing (HPDC10), 2001.

[10] R. S. Montero, E. Huedo, and I. M. Llorente. Experiences
about Job Migration on a Dynamic Grid Environment. In
Proc. of Intl. Conf. on Parallel Computing (ParCo 2003),
Advances on Parallel Computing. Elsevier Science, Septem-
ber 2003. To appear.

[11] R. S. Montero, E. Huedo, and I. M. Llorente. Grid Re-
source Selection for Opportunistic Job Migration. In Proc. of
Intl. Conf. on Parallel and Distributed Computing (Euro-Par
2003), LNCS. Springer-Verlag, August 2003.

[12] R. S. Montero, I. M. Llorente, and M. D. Salas. Robust
Multigrid Algorithms for the Navier-Stokes Equations. Jour-
nal of Computational Physics, 173:412–432, 2001.

[13] J. M. Schopf. Ten Actions when Superscheduling. Technical
Report WD8.5, The Global Grid Forum, Scheduling Work-
ing Group, 2001.

[14] S. Vadhiyar and J. Dongarra. A Performance Oriented Mi-
gration Framework for the Grid. In Proc. of the 3rd Intl.
Symp. on Cluster Computing and the Grid (CCGrid), 2003.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

