
A
p

p
li

c
a
ti

o
n

s
 G

ri
d

 W
o

rk
s
h

o
p

 2
0
0
3

Advanced Computing Laboratory
Centro de Astrobiología

Associated to NASA Astrobiology Institute
CSIC – INTA

Adaptive Grid Scheduling of a High-
Throughput Bioinformatics Application

Eduardo Huedo Cuesta (huedoce@inta.es)
Rubén Santiago Montero
Ignacio Martín Llorente

Distributed Systems Architecture and 
Security Group

Dpto. de Arquitectura de Computadores y 
Automática

Universidad Complutense de Madrid



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

Introduction

Bioinformatics relies on the management and analysis of huge 
amounts of biological data.

Bioinformatics could enormously benefit from the suitability of 
the Grid to execute high-throughput applications.

Moreover, collections of biological data are growing very fast, so 
the analysis of this data will only be possible through Grid 
computing.

We will show the benefits of adaptive scheduling in the 
execution of an existing Bioinformatics application to provide 
both:

●fault tolerance and

●performance improvement

using the GridWay tool.



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

Job termination•What does it produce?

Job migration•Could it perform better?

Job monitoring•How is it performing?

Job submission•How does it start?

Job preparation•What does it need?

Resource selection•Where does it execute?

Scheduling steps:

Globus toolkit:

Enables flexible and secure multiple domain operation with different resource 
management systems and access policies (site autonomy)

Globus components:

•Security infrastructure (GSI)

•Resource management (GRAM)

•Information services (MDS)

•Data management (GridFTP & Replica Management)

Grid Scheduling



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

High fault rate
• Resource

• Network

Grid

Dynamic resource cost
• Time of the day (working / 

non working)

• Resource demand

In order to obtain a reasonable degree of both application
performance and fault tolerance, a job must be able to
migrate among the Grid resources, adapting itself to their
characteristics, availability, performance and cost

Dynamic resource load

•Shared resources

•Idle resources become 

saturated, and vice-versa

Dynamic resource 

availability

•Job cancellation

•Resources added and

removed

Dynamic Grid Characteristics



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

Design guidelines:

• Easily adaptable (modular design)

• Easily scalable (decentralized architecture)

• Easily deployable (user, standard services)

• Easily applicable (wide range of applications)

Provides an easier and more efficient execution (submit & forget) on
heterogeneous and dynamic Grids

GridGridWay

The GridWay Framework



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

ApplicationSTD input

STD error

STD ouput

Input
files

Performance
profile

Output files

Requirements
+

Rank

Checkpoint

Characterization of 
application needs

Performance activity 
record

Restart execution, they 
should be architecture 
independent

GridWay: Application Model



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

Request Manager

Job PoolDispatch Manager

Performance Monitor

Submission Manager
Resource

Selector

Performance

Degradation

Evaluator

Resource 

requirements

Rank 

expression

Performance

Profile

Job Files

Executable

I/O files

Checkpoint

MDS

GridFTP

GateKeeper

GASS JobManager

JOB

Resource 

requirements

Rank 

expression

Performance

Profile

GIIS/GRIS Execution Host

Client

GRAM request

GRAM callback

Submission 

Agent

GridWay: Architecture



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

Due to the heterogeneous and dynamic nature of the Grid, users must establish:

• The requirements which must be met by the target resources:

• Characteristics: operating system, architecture, specific software…

• Implicit requirements: authorization and availability.

• The preferences to classify the matching resources:

• Status: load, free memory, free storage…

• They can include performance models, in terms of application-specific metrics

Static and dynamic information gathered from the information services available:

• Predefined list of resources and probe scripts (uptime, pbsnodes…)

• Globus MDS

• Network Weather Service

• Replica Location Service

It is maybe the most important step in Grid scheduling and in turns relies completely 
in the information gathered from the Grid.

GridWay: Resource Discovery and Selection



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

GridWay: Job Execution

Job execution in three steps by the following modules:

• Prolog, which prepares the remote system and stages the input files.

• Wrapper, which executes the actual job and obtains its exit code.

• Epilog, which stages the output files and cleans up the remote system.

Transfer strategies: Use of the fork jobmanager and a reverse server model (file server 
is started on the submission client).

• Direct transfers (files stored in the client or in a remote server) 

• Use of GASS-cache (critical for parameter sweep applications) 

• Data compression 

• Replica management (selection and dissemination) and 3rd party transfers

• Access to data bases (e.g. Protein Data Bank)

Advantages versus transfers and execution at once (Nimrod/G, Condor-G):

• Valid for closed systems

• Better adjustment of RSL parameters (maxtime)

• Possibility to separately schedule transfers and executions

• Easy and efficient way to implement job migration



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

Adaptation to changing conditions is achieved through dynamic rescheduling of jobs:

• Periodically, to discover better resources (opportunistic migration) 

• When a resource or its network connection fail 

• When the job is canceled

• When the job remains suspended (PENDING state) too much time

• When a performance degradation is detected

• When the application demands change (self-migration)

Job rescheduling can lead to its migration to a more suitable resource.

Grid

Application

Migration process:

1) Job cancellation (if it is still running)

2) Prolog submission to the new host

(transferring checkpoint files)

3) Epilog submission to the old host (if it is

still available)

4) Wrapper submission to the new host

New

Old

Client

1

3

2

4

GridWay: Adaptive Job Execution



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

GridWay: Job Monitoring

Correct job execution:

• The jobmanager notifies submission failures as GRAM callbacks.

• The jobmanager is probed periodically (each polling interval). If the jobmanager does not

respond, the gatekeeper is probed. If the gatekeeper responds, a new jobmanager is

started to resume watching the job. If the gatekeeper fails to respond, a resource or

network failure occurred.

• The standard output of prolog, wrapper and epilog is parsed to detect execution failures.

In the case of wrapper, this is useful to capture the job exit code.

Efficient job execution:

• A performance evaluator is periodically executed (each monitoring interval) to detect

performance slowdown based on system state (accessing the Grid information systems)

or application performance (parsing the performance profile).

• The tool keeps count of the overall job suspension time.



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

Testbed description:

Experiment:

• Protein structure prediction algorithm applied to families of orthologous proteins

• Analysis of 88 sequences of the Triose Phosphate Isomerase enzyme present in

different organisms

Host Nodes Speed OS Memory VO
ursa 1 x Sun UltraSPARC IIe 500Mhz Solaris 8 256MB DACYA
draco 1 x Sun UltraSPARC I 167Mhz Solaris 8 128MB DACYA

pegasus 1 x Intel Pentium 4 2.4MHz Linux 2.4 1GB DACYA

solea 2 x Sun UltraSPARC II 296MHz Solaris 8 256MB QUIM

babieca 5 x Alpha EV6 466MHz Linux 2.2 1.25GB CAB

Experimental Testbed: UCM-CAB



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

Results: Maximal Throughput

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10

11

12

13

Completed jobs

J
o
b
s
 p

e
r 

h
o
u
r

12.30 jobs /hour



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

Results: Fault Tolerance

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10

11

12

13

Completed jobs

J
o
b
s
 p

e
r 

h
o
u
r

babieca is down

12.04 jobs /hour

10.61 jobs /hour

12.71 jobs /hour



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

Results: Performance Improvement

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10

11

12

13

Completed jobs

J
o
b
s
 p

e
r 

h
o
u
r

pegasus is discovered

10.17 jobs /hour8.31 jobs /hour



Adaptive Grid Scheduling of a High-Throughput Bioinformatics Application AGW'03

Conclusions and Future Work

We have tested the GridWay tool in our research testbed with a
high-throughput application.

We have seen the benefits of adaptive scheduling and
adaptive execution to provide both fault tolerance and
performance improvement.

This promising application shows the potentiality of the Grid to
the study of large numbers of protein structures, and suggest the
possible application of this methods to the whole set of proteins
in a complete microbial genome.


