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Avd. Complutense s/n, 28040 Madrid, Spain

SUMMARY

Grids offer a dramatic increase in the number of available processing and storing resources that can be
delivered to applications. However, efficient job submission and management continue being far from
accessible to ordinary scientists and engineers due to their dynamic and complex nature. This paper
describes a new Globus based framework that allows an easier and more efficient execution of jobs in a
‘submit and forget’ fashion. The framework automatically performs the steps involved in job submission
and also watches over its efficient execution. In order to obtain a reasonable degree of performance, job
execution is adapted to dynamic resource conditions and application demands. Adaptation is achieved
by supporting automatic application migration following performance degradation, ‘better’ resource
discovery, requirement change, owner decision or remote resource failure. The framework is currently
functional on any Grid testbed based on Globus because it does not require new system software to be
installed in the resources. The paper also includes practical experiences of the behavior of our framework
on the TRGP and UCM-CAB testbeds. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Several research centers share their computing resources in Grids, which offer a dramatic increase in the
number of available processing and storing resources that can be delivered to applications. Their goal is
to provide the end user with a performance higher than that achievable on any single center. These Grids
provide a way to access the resources needed for executing the compute and data intensive applications
required in several research and engineering fields.
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In spite of the great research effort made in Grid computing, application development and execution
in the Grid continue requiring a high level of expertise due to its complex nature. In a Grid scenario, a
sequential or parallel job is commonly submitted to a given resource by taking the following path [1].

• Resource discovery and selection. Based on a set of job requirements, like operating system or
platform architecture, a list of appropriate resources is obtained by accessing an information
service mechanism. Then a single resource is selected among the candidate resources in the list.

• Remote system preparation. The selected host is prepared for job execution. This step usually
requires staging of executable and input files.

• Job submission and migration. The job is submitted to the selected resource. However, the user
may decide to restart its job on a different resource, if a performance slowdown is detected or a
‘better’ resource is discovered.

• Job Monitoring. The job evolution is monitored over time.
• Termination. When the job is finished, its owner is notified and some completion tasks, such as

output file staging and cleanup, are performed.

The Globus toolkit [2] has become a de facto standard in Grid computing. Globus is a core Grid
middleware that provides the following components, which can be used separately or together, to
support Grid applications: GRAM (Grid Resource Access and Management), GASS (Global Access
to Secondary Storage), GSI (Grid Security Infrastructure), MDS (Monitoring and Discovery Service),
and Data Grid (GridFTP, Replica Catalog, and Replica Management). These services allow secure and
transparent access to resources across multiple administrative domains, and serve as building blocks
to implement the stages of Grid scheduling mentioned before. However, the user is responsible for
manually performing all the submission steps in order to achieve any functionality [1,3]. Moreover,
the Globus toolkit does not provide any native support for job migration and therefore for adaptive
execution.

The aim of this paper is to describe a framework that automatically performs all the submission
steps and also provides the runtime mechanisms needed for dynamically adapting the application
execution. This framework has been developed in the context of the GridWay project, whose aim is
to develop user-level tools to reduce the gap between Grid middleware and application developers.
We concentrate on the practical issues of its design, implementation and evaluation. Firstly we present
a new application model proposed for adaptation to dynamic Grid conditions. Then we describe
the architecture of a framework able to support the execution of these Grid-aware applications.
The following sections describe how the submission stages are incorporated into the framework.
The circumstances under which a migration could be initiated are also discussed. The framework is next
compared with other similar approaches. Finally, we demonstrate the capabilities of our framework
when managing the execution of a computational fluid dynamics (CFD) code on the TRGP (Tidewater
Research Grid Partnership) and UCM-CAB testbeds.

A GRID-AWARE APPLICATION MODEL

Probably, one of the most challenging problems that the Grid computing community has to deal with
is the fact that Grids are highly dynamic environments. An application should be able to adapt itself to
rapidly changing resource conditions, as follows.
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• High fault rate. In a Grid, resource or network failures are the rule rather than the exception.
• Dynamic resource availability. Grid resources belong to different administrative domains so

that, once a job is submitted, it can be freely cancelled by the resource owner. Furthermore, the
resources shared within a virtual organization can be added or removed continuously.

• Dynamic resource load. Grid users access resources that are being exploited by other Grid users,
as well as by internal users. Where local jobmanagers do not guarantee exclusive access to
compute resources, this may result in initially idle hosts becoming saturated, and vice versa.
Alternatively, in dedicated batch systems, the saturation of the resource may increase the queue
wait time to an unacceptable value.

• Dynamic resource cost: In an economy driven grid [4], resource prices can vary depending on
the time of the day (working/non-working time) or the resource load (peak/off-peak).

Therefore, in order to obtain a reasonable degree of both application performance and fault
tolerance, a job must be able to adapt itself according to the availability of the resources and the
current performance provided by them. The emerging Grid technology has led to a new generation
of applications that relies on its ability to adapt its execution to dynamic Grid conditions [5].
These new applications must be able to seek out computational resources that fit their needs as their
execution evolves. For instance, adaptive-mesh refinement numerical methods systematically refine the
computational mesh in those areas where a higher resolution is needed. In this sense, the amount of
RAM memory needed to store the computational mesh is not known beforehand. The application must
adapt itself to its new requirements, migrating to a resource that provides an adequate amount of RAM
memory.

The fundamental aspect of adaptive execution is the recognition of changing conditions of both Grid
resources and application demands. Consequently, the classical application model must be modified in
order to equip it with such functionality.

• In order to adapt the execution of a job to its dynamic demands, an application must be able
to specify its requirements, for example through a requirement expression that contains the
attributes that must be met by the target resources. The application could define its initial
requirements and dynamically change them when more, or even less, resources (memory, disk,
etc.) and different resources (software or license availability) are required.

• Additionally, a procedure to prioritize the resources that fulfill the job requirements must be
supplied, for example through a rank expression to dynamically assign a rank to each resource
according to the specific needs of each application. The rank expression of a compute-intensive
job will assign a higher rank to those hosts with faster CPUs, while a data-intensive application
could benefit those hosts near to the input data.

• The performance offered by a given resource may drastically change during the job life. In order
to detect performance slowdown, the application is required to keep a log of its performance
activity in terms of application intrinsic metrics. For example, a performance profile could
maintain the time consumed by the code in the execution of a set of given fragments, in each
cycle of an iterative method or in a set of given input/output operations.

• Restart files are highly advisable if dynamic scheduling is performed. User-level checkpointing
managed by the programmer must be implemented because system-level checkpointing is not
possible among heterogeneous resources. Migration is commonly implemented by restarting the
job on the new candidate host. Therefore, the job should generate restart files at regular intervals
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Figure 1. Grid-aware application model.

in order to restart execution from a given point. However, for some application domains the cost
of generating and transferring restart files could be greater than the saving in compute time due
to checkpointing. Hence, if the checkpointing files are not provided the job should be restarted
from the beginning. In order not to reduce the number of candidate hosts where a job can migrate,
the restart files should be architecture independent.

The Grid-aware application model that we consider is depicted in Figure 1.

ARCHITECTURE OF THE FRAMEWORK

We have developed a framework that provides the support needed to execute Grid-aware applications
in dynamic Grids. The core of the framework is a personal submission agent that performs all
submission stages and watches over the efficient execution of the job. Adaptation to changing
conditions is achieved by dynamic scheduling. Once the job is initially allocated, it is rescheduled
when performance slowdown or remote failure are detected, and periodically at each discovering
interval. Application performance is evaluated periodically at each monitoring interval by executing
a performance degradation evaluator program and by evaluating its accumulated suspension time.
A resource selector program acts as a personal resource broker to build a prioritized list of candidate
resources. Since both programs have access to files dynamically generated by the running job, the
application has the ability to take decisions about resource selection and to provide its own performance
profile. The submission agent (Figure 2) consists of the following components:

• request manager,
• dispatch manager,
• submission manager,
• performance monitor.
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The flexibility of the framework is guaranteed by a well-defined API (Application Program Interface)
for each submission agent component. Moreover, the framework has been designed to be modular,
through scripting, to allow extensibility and improvement of its capabilities. The following modules
can be set on a per job basis:

• resource selector,
• performance degradation evaluator,
• prolog,
• wrapper,
• epilog.

The following actions are performed by the submission agent.

• The client application uses a Client API to communicate with the request manager in order to
submit the job along with its configuration file, or job template, which contains all the
necessary parameters for its execution. Once submitted, the client may also request control
operations to the request manager, such as job stop/resume, kill or reschedule.

• The dispatch manager periodically wakes up at each scheduling interval, and tries to submit
pending and rescheduled jobs to Grid resources. It invokes the execution of the resource selector
corresponding to each job, which returns a prioritized list of candidate hosts. The dispatch
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manager submits pending jobs by invoking a submission manager, and also decides if the
migration of rescheduled jobs is worthwhile or not. If this is the case, the dispatch manager
triggers a migration event along with the new selected resource to the job submission manager,
which manages the job migration.

• The submission manager is responsible for the execution of the job during its lifetime, i.e. until
it is done or stopped. It is initially invoked by the dispatch manager along with the first selected
host, and is also responsible for performing job migration to a new resource. The Globus
management components and protocols are used to support all these actions. The submission
manager performs the following tasks.

— Prologing: preparing the RSL and submitting the prolog executable. The Prolog sets up a
remote system, transfers executable and input files, and, in the case of restart execution,
also transfers restart files.

— Submitting: preparing the RSL, submitting the wrapper executable, monitoring its correct
execution (as explained in subsequent sections), updating the submission states via Globus
callbacks and waiting for migration, stop or kill events from the dispatch manager.
The wrapper wraps the actual job in order to capture its exit code.

— Canceling: canceling the submitted job if a migration, stop or kill event is received by the
submission manager.

— Epiloging: preparing the RSL and submitting the epilog executable. The epilog transfers
back output files on termination or restart files on migration, and cleans up the remote
system.

• The performance monitor periodically wakes up at each monitoring interval. It requests
rescheduling actions to detect ‘better’ resources when performance slowdown is detected and
at each discovering interval.

RESOURCE DISCOVERY AND SELECTION

Due to the heterogeneous and dynamic nature of the Grid, the end-user must establish the requirements
that one to be met by the target resources (discovery process) and criteria to rank the matched resources
(selection process). The attributes needed for resource discovery and selection must be collected from
the information services in the Grid testbed, typically the MDS. Usually, resource discovery is only
based on static attributes (operating system, architecture, memory size, etc.) collected from the Grid
Information Index Service (GIIS), while resource selection is based on dynamic attributes (disk space,
processor load, free memory, etc.) that can be obtained from the Grid Resource Information Service
(GRIS) or by accessing the Network Weather Service (NWS) [6].

The resource selector executable

The resource selector is executed by the dispatch manager in order to get a ranked list of candidate
hosts when the job is pending to be submitted or a rescheduling action has been requested. The resource
selector is a script or a binary executable specified in the job template. Its standard output must
show a candidate resource per line in a specific fixed format that includes: staging GRAM Job Manager,
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Figure 3. The brokering process scheme of the GridWay framework.

execution GRAM Job Manager, rank, number of slots, and architecture. The job is always submitted
to the default queue. However, the resource selector should verify that the resource keeps a candidate
queue according to the job limits.

This modular approach guarantees the extensibility of the resource selection. Different strategies
for application level scheduling can be implemented, from the simplest one based on a pre-defined
list of hosts to more advanced strategies based on requirement filters, authorization filters and
rank expressions in terms of performance models [7,8]. The job template may include input
parameters needed for resource discovery and selection, such as host requirement and rank
expression files. This mechanism allows the application to be aware of the Grid environment and
take dynamically decisions about its own resource selection, since the host requirements and
rank expression files could be dynamically generated by the running job.

The brokering process of the GridWay framework used in the following experiments is shown in
Figure 3. Initially, available compute resources are discovered by accessing the GIIS server and those
resources that do not meet the user-provided host requirements are filtered out. At this step, an
authorization test (via GRAM ping request) is also performed on each discovered host to guarantee
user access to the remote resource. Then, the dynamic attributes of each host and the available GRAM
jobmanagers, are gathered from its local GRIS server. This information is used by a user-provided
rank expression to assign a rank to each candidate resource. Finally, the resultant prioritized list
of candidate resources is used to dispatch the job.

The resource selection overhead is determined by the cost of retrieving the dynamic and static
resource information, and the scheduling process itself. In the present case the cost of scheduling
jobs, i.e. rank calculation, can be neglected compared with the cost of accessing the MDS, which
can be extremely high [9]. In order to reduce the information retrieval overhead, the GIIS and GRIS
information are locally cached at the client host.
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Scheduling policy

The goal of the resource selector is to find a host that minimizes total response time (file transfer
and job execution). Consequently, our application level scheduler promotes the performance of
each individual application [10] without considering the rest of pending, rescheduled or submitted
applications. This greedy approach is similar to the one provided by most of the local distributed
resource management tools [11] and Grid projects [7,8,12]. The remote resources are ‘flooded’ with
requests and subsequent monitoring of performance degradation allows a better balance by migration.

It is well known that this is not the best approach to improve the productivity of the Grid in
terms of the number of jobs executed per time unit because it does not balance the interests of
different applications [13]. Efficient application performance and efficient system performance are not
necessarily the same. For example, when competing applications are executing, the scheduler should
give priority to short or new jobs by temporally stopping longer jobs.

Although currently not provided, the dispatch manager could make decisions taking into account all
pending, rescheduled and submitted jobs with the aim of making an intelligent collective scheduling
of them, that is, a user level scheduling approach. Collective scheduling becomes highly important
when dealing with parametric jobs. The resource selector could also communicate with higher-level
schedulers or metaschedulers to take into account system level considerations [13].

REMOTE SYSTEM PREPARATION

Dynamic files are those that are generated or modified on the remote host by the running job and
so have to be accessible to the local host. Examples of these files are host requirement,
rank expression or performance profile files which could be needed to support dynamic
resource selection and performance monitoring. By contrast, the files which do not have to be
accessible to the local host (submission client) during job execution on a remote host are referred
to here as static files. Examples of these files are input, output, and restart files.

Static file management

Data transfer of static files is performed in two steps.

• Prolog. The prolog module is responsible for creating the remote experiment directory and
transferring the executable and all the files needed for remote execution, such as input or restart
files corresponding to the execution architecture. These files can be specified as local files in the
experiment directory or as remote files stored in a file server through a gsiftp URL. Once the
files are transferred to the remote host, they are added to the GASS cache so they can be re-used
if they are shared with other jobs.

• Epilog. The epilog module is responsible for transferring back output or restart files, and cleaning
up the remote experiment directory. At this point, the files are also removed from the GASS
cache.
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These file transfers are performed through a reverse-server model. The file server (GASS or GridFTP)
is started on the local system, and the transfer is initiated on the remote system using Globus transfer
tools (i.e. globus-url-copy command).

The prolog and epilog executables‡ are always submitted to the fork GRAM Job Manager. In this
way, our tool is well suited for closed systems such as clusters, where only the front-end node is
connected to the Internet and the computing nodes are connected to a system area network, so they are
not accessible by the client. Other submission toolkits (Nimrod/G [4] or EDG JSS [14]) only use one
executable, or job wrapper, to set up the remote system, transfer files, run the executable and retrieve
results. A comparison between both alternatives can be found in [15]. We would like to mention that
the new GRAM 1.6 [16] component, introduced in Globus 2.2, provides some support for file staging
with job submission.

Dynamic file management

Dynamic file transferring is not always possible through a reverse-server model. Closed systems
prevent jobs running in ‘private’ computational nodes from updating files in the ‘public’ client host.
This problem has been overcome by using a file proxy (i.e. GASS or GridFTP server) on the front-end
node of the remote system. In this way, the running job updates its dynamic files locally within the
cluster, via for example NFS, and they are accessible to the client host through the remote file proxy
(Figure 4).

‡Some of these scripts are available at http://www.dacya.ucm.es/asds/GridWayPWE.html.
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JOB SUBMISSION

The submission agent uses a wrapper to submit the job on a remote host. The wrapper executes the
submitted job and writes its exit code to standard output, so the submission agent can read it via GASS
and can be used to determine whether the job was successfully executed. It is interesting to note that
Globus toolkit does not provide any mechanism to capture the exit code of a job. Three situations will
be considered, namely

• the exit code is set to a zero value: the job is considered to be done with a success status;
• the exit code is set to a non-zero value: the job is considered to be done with a failed status;
• the exit code is not set: the job has been canceled and, consequently, a job rescheduling action is

requested.

The capture of the remote execution exit code allows users to define complex jobs, where each
depends on the output and exit code from the previous job. They may even involve branching, spawning
and loops, allowing the exploitation of the parallelism on the work flow of certain types of applications.

JOB MIGRATION

A Grid environment presents unpredictable changing conditions, such as dynamic resource load, high
fault rate, or continuous addition and removal of resources. Migration is the key issue for adaptive
execution of jobs on dynamic Grid environments. In our work, we have considered the following
circumstances, related to the situations discussed previously, under which a migration could be
initiated.

1. Grid initiated migration:

• a new ‘better’ resource is discovered (opportunistic migration);
• the remote resource or its network connection fails;
• the submitted job is canceled or suspended by the resource administrator.

2. Application initiated migration:

• the application detects performance degradation or performance contract violation;
• self-migration when the resource requirements of the application change.

3. User initiated migration:

• the user explicitly requests a job migration.

Rescheduling policies

Our framework currently considers the following reasons for rescheduling, i.e. situations under which
a migration event could be triggered.

1. The request manager receives a rescheduling request from the user.
2. The performance monitor requests a rescheduling action at each discovering interval to detect a

‘better’ resource.
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3. The performance monitor requests a re-scheduling action in a given monitoring interval:

(a) if the performance degradation evaluator detects a performance slowdown;
(b) if the suspension time exceeds a given maximum suspension time threshold; the submission

manager takes count of the accumulated suspension time spent by the job on pending and
suspended Globus states.

4. The submission manager detects a failure:

(a) cancellation, detected through the job exit code obtained from the wrapper standard
output; or premature termination, detected when a Globus failed callback is received;

(b) remote host or network crashes, its detection is explained in the next section.

The reason for rescheduling is evaluated to decide if the migration is feasible and worthwhile.
Some reasons, like job cancellation or failure, make the dispatch manager immediately trigger a
migration event to the submission manager with a new selected host, even if the new host presents
lower rank than the current one. Other reasons, like new resource discovery, make the dispatch
manager trigger a migration event only if the new selected host presents a higher enough rank.
Other conditions [17], apart from the reason for rescheduling and the rank of the new selected host,
could also be evaluated: time to finalize [17,18], input and restart file transfer costs [18] etc.

When a migration order is finally granted, the submission manager cancels the job (if it is still
running), invokes the epilog on the current host (if the files are accessible) and the prolog on the new
remote host. The local host always keeps the last checkpoint files in case the connection with the remote
host fails. Due to the size of the checkpoint files, migration may be an expensive operation that is not
suitable for a given class of applications or situations.

JOB MONITORING

Our framework provides two mechanisms to detect performance slowdown.

• A performance degradation evaluator is periodically executed at each monitoring interval by
the performance monitor to evaluate a rescheduling condition. Different strategies could be
implemented, from the simplest one based on querying the Grid information system about
workload parameters to more advanced strategies based on detection of performance contract
violations [19]. The performance degradation evaluator is a script or a binary executable
specified in the job template, which can also include additional parameters needed for the
performance evaluation. A mechanism to deal with application own metrics is provided since the
files processed by the Performance Degradation Evaluator could be dynamically generated by
the running job. The rescheduling condition verified by the performance degradation evaluator
could be based on the performance history using advanced methods like fuzzy logic, or
comparing the performance with the initial performance attained, or a base performance.

• A running job could be temporally suspended by the resource administrator or by the local queue
scheduler on the remote resource. The submission agent takes account of the overall suspension
time of its job and requests a rescheduling action if it exceeds a give threshold. Notice that the
maximum suspension time threshold is only effective on queue-based resource managers.
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In order to detect remote failure, we have followed an approach similar to that provided by
Condor/G [20]. The GRAM Job Manager is probed by the submission agent periodically at each polling
interval. If the GRAM Job Manager does not respond, the GRAM Gatekeeper is probed. If the GRAM
Gatekeeper responds, a new GRAM Job Manager is started to resume watching over the job. If the
GRAM Gatekeeper fails to respond, a rescheduling action is immediately requested.

RELATED WORK

The management of jobs within the same department is addressed by many research and commercial
systems [11]: Condor, Load Sharing Facility, Sun Grid Engine, Portable Batch System, LoadLeveler
etc. Some of these tools, such as Sun Grid Engine Enterprise Edition [21], also allow the
interconnection of multiple departments within the same administrative domain, which is called
enterprise interconnection, as long as they run the same distributed resource management software.
Other tools, such as Condor Flocking [22], even allow the interconnection of multiple domains,
which is called worldwide interconnection. However, they are unsuitable in computational Grids where
resources are scattered across several administrative domains, each with its own security policies and
distributed resource management systems.

The Globus middleware [2] provides the services needed to enable secure multiple domain operation
with different resource management systems and access policies. There are projects underway, like
Condor/G [20], EveryWare [23], AppLeS [24], Nimrod/G [25], or ILab [26], which are developing
user-oriented submission tools over the Globus middleware to simplify the efficient exploitation
of a computational Grid. All the aforementioned application schedulers share many features, with
differences in the way they are implemented [27,28]. We believe that there are no better tools, each
focuses on a specific issue and contributing significant improvements in the field.

Adaptive schedulers have been widely investigated in the literature, for example the AppLeS
project, when targeting long-running applications, supporting schedule adaptation to tolerate changes
in resource availabilities and in the dynamic performance exhibited by many Grid resources [29,30].
The Nimrod/G resource broker incorporates schedule adaptation in order to meet several user QoS
(quality of service) requirements, like deadline or budget, and also to adapt to resource availability and
performance.

Adaptive execution is also being explored in the context of the Grid Application Development
Software (GrADS) project [31]. The aim of the GrADS projects is to simplify distributed
heterogeneous computing in the same way that the World Wide Web simplified information sharing
over the Internet. GrADS provides new external services to be accessed by Grid users and, mainly, by
application developers to develop Grid-aware applications. Its execution framework [32] is based on
three components: the Configurable Object Program, which contains application code and strategies
for application mapping; the Resource Selection Model, which provides estimation of the application
performance on specific resources; and the Contract Monitor, which performs job interrupting and
remapping when performance degradation is detected. GrADS is an ambitious project that involves
several outstanding research groups in Grid technology.

The need for a nomadic migration approach for job execution on a Grid environment has been
previously discussed in [33]. The prototype of a migration framework, called the ‘Worm’, was
executed on the Egrid testbed [34]. The ‘Worm’ was implemented within the Cactus programming
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environment. Cactus is an open source problem-solving environment for the construction of parallel
solvers for partial differential equations that enables collaborative code development between different
groups [35]. The extension of the ‘Worm’ migration framework to make use of Grid services
is described in [33]. Cactus incorporates, through Grid-aware infrastructure thorns [36], adaptive
resource selection mechanisms (Resource Locator Service) that allow automatic application migration
to ‘better’ resources (Migrator Service) to deal with changing resource characteristics and adaptive
resource selection mechanisms [37]. The adaptation to dynamic Grid environments has been studied
by job migration to ‘faster/cheaper’ systems, considered when better systems are discovered, when
requirements change or when job characteristics change.

In the context of the GrADS project, the usefulness of a Grid to solve large numerical problems has
been demonstrated by integrating numerical libraries like ScaLAPACK into the GrADS system [38].
The Resource Selector component accesses MDS and NWS to provide the information needed by the
Performance Modeler to apply an application-specific execution model and so obtain a list of final
candidate hosts. The list is passed to the Contract Developer which approves the contract for the
Application Launcher. The submitted application is monitored by the Contract Monitor through the
Autopilot manager [39] that can detect contract violations by contacting the sensors and determining if
the application behaves as predicted by the model. A migration framework that takes into account both
the system load and application characteristics is described in [13].

The aim of the GridWay project is similar to that of the GrADS project: to simplify distributed
heterogeneous computing. However, its scope is different. Our framework provides a submission
agent that incorporates the runtime mechanisms needed for transparently executing jobs in a Grid.
In fact, our framework could be used as a building block for much more complex service-oriented
Grid scenarios like GrADS. Other projects have also addressed resource selection, data management,
and execution adaptation. We do not claim innovation in these areas, but note the advantages of our
modular architecture for job adaptation to a dynamic environment.

• It is not bounded to a specific class of application generated by a given programming
environment, which extends its application range.

• It does not require new services, which considerably simplify its deployment.
• It does not necessarily require code changes, which allows reusing of existing software.
• It is extensible, which allows its communication with the Grid services available in a given

testbed.

We would like to mention that the experimental framework does not require new system software to
be installed in the Grid resources. The framework is currently functional on any Grid testbed based on
Globus. We believe that this is an important advantage because of socio-political issues; cooperation
between different research centers, administrators and users is always difficult.

EXPERIENCES

We next demonstrate the capabilities of the previously described experimental framework. First, we
analyze its job adaptation functionality in the execution of a single job. Then, we study the scheduling
of a parameter sweep application, where the simulation comprises a moderate to high number of jobs
that are to be executed on the Grid.

Copyright c© 2004 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2004; 34:631–651



644 E. HUEDO, R. S. MONTERO AND I. M. LLORENTE

MAX_DISCOVERY_TIME=60
RANK_FUNCTION_FILE = rank.sh
HOST_REQUIREMENTS_FILE=host_req.ldif

MAX_ITERATION_TIME=40
PERFORMANCE_EVALUATOR=pde.sh
PROFILE_DFILE = perf_profile

STDERR_FILE=ns3d.err.{GW_JOB_ID}
STDOUT_FILE=ns3d.out.${GW_JOB_ID}
STDIN_FILE=/dev/null

RESTART_FILES = checkpoint.ascii
OUTPUT_FILES="profile.${GW_JOB_ID}"
INPUT_FILES="input grid32.${GW_ARCH}"

EXECUTABLE_ARGUMENTS=input
EXECUTABLE_FILE=NS3D.${GW_ARCH}

# Job Template, CFD simulation
#

#

# Executable Parameters

# Experiment Files

# Standard I/O

# Performance Evaluation Parameters

# Resource Selection Parameters

Figure 5. Job template for the target application.

In both situations, the target application solves the 3D incompressible Navier–Stokes equations in
the simulation of a boundary layer over a flat plate. The numerical core consists of an iterative robust
multigrid algorithm characterized by a compute-intensive execution profile [40,41]. The application
generates checkpoint files at each multigrid iteration.

Description of the experiments

A fragment of the job template used in the following experiments is shown in Figure 5.
The experiment files consist of the executable (2 MB), and the computational mesh (0.5 MB), provided
for all the resource architectures in the testbed. The final file names are obtained by resolving the
variable ${GW ARCH} at runtime for the selected host. The checkpoint file (5 MB) needed to restart job
execution in case of job migration is also specified; this file is architecture independent. Once the
job finishes, the standard output (8 KB) and the velocity profile (5 KB) at the middle of the flat
plate are transferred back to the client. Similarly, the final file names are obtained by resolving the
${GW JOB ID} variable with the job id assigned by the framework.

The resource selection consists of a shell script that queries MDS for potential execution hosts,
attending the following criteria.

• Host requirements are specified in a host requirement file (host req.ldif), which
can be dynamically generated by the running job. The host requirement setting is a LDAP
filter, which is used by the resource selector to query MDS and so obtain a preliminary list of
potential hosts. In the experiments below, we will impose a minimum main memory of 512 MB,
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enough to accommodate the CFD simulation. The host requirement file will be of the
form:

(Mds-Memory-Ram-freeMB>=512)

• A rank (rank.sh) is assigned to each potential host based on MDS attributes. Since our target
application is a computing-intensive simulation, the rank expression benefits those hosts with
less workload and so better performance. The following expression was considered:

rank =
{

FLOPS if CPU15 ≥ 1

FLOPS · CPU15 if CPU15 < 1
(1)

where FLOPS is the peak performance achievable by the host CPU, and CPU15 is the total free
CPU time in the last 15 min. It is interesting to note that in the case of heterogeneous clusters
FLOPS is the average performance of all computing nodes. However, other alternatives have
been proposed in the literature. For example, in the NorduGrid project [42] a more conservative
approach is taken, equaling FLOPS in the performance of the slowest node.

The performance of the target application is based on the time spent in each multigrid iteration.
The time consumed in each iteration is appended by the running job to a performance profile
file (perf profile) specified as dynamic in the job template. The performance degradation
evaluator verifies at each monitoring interval if the time consumed in each iteration is higher than
a given threshold (MAX ITERATION TIME). This performance contract (iteration threshold) and
contract monitor (performance degradation evaluator) are similar to those used in [37].

Job adaptation to dynamic Grid conditions

We now consider some situations where job execution can take advantage of the migration capabilities
of the GridWay framework. The scenarios described below were artificially created. However, they
try to resemble real situations that may happen in a Grid. The experiments were conducted on the
Tidewater Research Grid Partnership (TRGP) [43] testbed.

The TRGP was started in summer 2001 to foster the development and use of Grid computing for
a variety of applications in the computational sciences. TRGP members at the end of August 2002,
when the experimental results were taken, included ICASE and the College of William and Mary.
The TRGP Grid is highly heterogeneous, see Table I for a summary of the characteristics of each
resource. The interconnection between both sites is performed by a ‘public’ non-dedicated network.
The ICASE workstations and servers are interconnected by a Fast Ethernet switched network.

Periodic rescheduling to detect new resources

In this case, the discovering interval has been deliberately set to a small value (60 s) in order to quickly
re-evaluate the performance of the resources. The execution profile of the application is presented
in Figure 6. Initially, only ICASE hosts are available for job submission, since sciclone has been
shutdown for maintenance. The resource selector chooses urchin to execute the job, and the files are
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Table I. Summary of the TRGP resource characteristics.

Resource CPU Peak
name VO architecture performance Nodes OS Memory GRAM

sciclone W&M Sun UltraSPARC 115 Gflops 160 Solaris 8 54 GB PBS
coral ICASE Intel Pentium 89 Gflops 68 Linux 2.4 56 GB PBS
whale ICASE Sun UltraSPARC 1.8 Gflops 2 Solaris 7 4 GB fork
urchin ICASE Sun UltraSPARC 672 Mflops 2 Solaris 7 1 GB fork
carp ICASE Sun UltraSPARC 900 Mflops 1 Solaris 7 256 MB fork
tetra ICASE Sun UltraSPARC 800 Mflops 1 Solaris 7 256 MB fork

bonito ICASE Sun UltraSPARC 720 Mflops 1 Solaris 7 256 MB fork
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Figure 6. Execution profile of the CFD code when a new ‘better’ resource is detected.

transferred (prolog and submission in time steps 0–34 s). The job starts executing at time step 34 s.
A discovering period expires at time step 120 s and the resource selector finds sciclone to present
higher rank than the original host (time steps 120–142 s). The migration process is then initiated
(cancellation, epilog, prolog and submission in time steps 142–236 s). Finally the job completes its
execution on sciclone. Figure 6 shows how the overall execution time is 42% lower when the job is
migrated. Note that migration time, 95 s, is about 20% of the overall execution time.

Performance degradation detected using a performance profile dynamic file

The resource selector finds whale to be the best resource, and the job is submitted (prolog and
submission in time steps 0–34 s). However, whale is overloaded with a compute-intensive workload at
time step 34 s. As a result, a performance degradation is detected when the iteration time exceeds the
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Figure 7. Execution profile of the application when an artificial workload is executed.

iteration time threshold (40 s) at time step 209 s. The job is then migrated to sciclone (cancellation,
epilog, prolog and submission in time steps 209–304 s), where it continues executing from the last
checkpoint context. The execution profile for this situation is presented in Figure 7. In this case the
overall execution time is 35% lower when the job is migrated. The cost of migration, 95 s, is about
21% of the execution time. The speed-up obtained through job migration strongly depends on the
amount of the computational work already performed by the application, and the overhead induced by
job migration [17,18].

Adaptive scheduling of a parameter sweep application

Let us now consider a parameter sweep application consisting of 200 independent tasks. Each task
calculates the flow over a flat plate for a different Reynolds number, ranging from 102 to 104. In this
experiment we have used the UCM-CAB testbed, whose main characteristics are summarized in
Table II.

The overall execution time for parameter sweep application was 8778 s, with an average job
turnaround time of 43 s. Figure 8(a) presents the average job turnaround time on each host of the
UCM-CAB grid; error bars represent the standard deviation of the turnaround time. These times include
the overhead induced by the Globus middleware. In addition, the average execution time on babieca
includes the queue wait time on the PBS batch system. Compared with the single host execution on the
fastest machine in the testbed (pegasus, 62 s per job), these results represent a 30% reduction in the
overall execution time.

We will next evaluate the schedule performed by the GridWay framework compared with the
optimum static schedule. This comparison can only be seen as a reference, the main goals of which
are to establish an upper performance bound, and, to highlight the relevance of adaptive scheduling in
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Table II. Summary of the UCM-CAB grid resource characteristics.

Resource
name VO Model Speed Nodes OS Memory GRAM

ursa UCM Sun Blade 100 500 MHz 1 Solaris 8 256 MB fork
draco UCM Sun Ultra 1 167 MHz 1 Solaris 8 128 MB fork

pegasus UCM Intel Pentium 4 2.4 GHz 1 Linux 2.4 1 GB fork
solea UCM Sun Enterprise 250 296 MHz 2 Solaris 8 256 MB fork

babieca CAB Compaq Alpha DS10 466 MHz 4 Linux 2.4 1 GB (total) PBS

0

100

200

300

400

500

600

700

800

T
ur

na
ro

un
d 

tim
e 

(s
ec

on
ds

) File transfer time

Execution time

ba
bi

ec
a

pe
ga

su
s

ur
sa

so
le

a

dr
ac

o 0

10

20

30

40

50

60

70

80

90
N

um
be

r 
of

 jo
bs

ba
bi

ec
a

pe
ga

su
s

so
le

a

ur
sa

dr
ac

o

Optimum schedule

GridWay schedule

(a) (b)

Figure 8. Average and standard deviation in turnaround time for the parameter sweep application on each host of
the testbed (a). Number of jobs scheduled on each host by the optimum and GridWay schedules (b).

a Grid environment. The optimum grid schedule will minimize the makespan of the application [44]:

max{NiT i}i = {pegasus, draco, solea, ursa, babieca} (2)

where Ni is the number of jobs executed on host i, and T i is the average job turnaround time on host i.
Figure 8(b) shows the number of jobs scheduled on each host by the GridWay framework, and the
solution to the optimization problem 2. The overall execution time for the optimum schedule is 7285 s,
with an average job turnaround time of 36 s, 17% better than the schedule made by the GridWay
framework.

The main difference between both schedules is the greater number of jobs allocated to babieca by
the optimum schedule. Fourteen percent of the jobs submitted to babieca failed, and so they had to
be dynamically rescheduled to other available hosts in the testbed. Figure 9 shows the dynamic job
turnaround time during the execution of the parameter sweep application. As could be expected the
failure experimented on babieca increases the average and dynamic job turnaround times, as well as
the overall execution time.
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Figure 9. Dynamic job turnaround time in the execution of the parameter sweep application.

CONCLUSIONS

The exploitation in an aggregated form of geographically distributed resources is far from being
straightforward. In fact, the Grid will be for many years a challenging area due to its dynamic and
complex nature. We believe that the submission framework presented in this paper is a step forward
in insulating the application developer from the complexity of the Grid submission. The framework
provides the runtime mechanisms needed for dynamically adapting an application to a changing
Grid environments. The core of the framework is a personal submission agent that transparently
performs all submission stages and watches over the efficient execution of the job. Adaptation to the
dynamic nature of the Grid is achieved by implementing automatic application migration following
performance degradation, ‘better’ resource discovery, requirement change, owner decision or remote
resource failure. The application has the ability to take decisions about resource selection and to self-
migrate to a new resource.

The experimental results are promising because they show how application adaptation achieves
enhanced performance. Both the fault tolerance and the response time are improved when the
application is submitted through the framework. Simultaneous submission of several applications in
order to harness the highly distributed computing resources provided by a Grid is also demonstrated
for a parameter sweep application. Our framework is able to efficiently manage applications suitable
to be executed on dynamic conditions.

The framework design and implementation are based on a modular architecture to allow extensibility
of its capabilities. An experimental user can incorporate different resource selection and performance
degradation strategies to perform job adaptation. In fact, the framework could be used as a testbed
to evaluate different dynamic scheduling, file transferring, monitoring and adaptation strategies.
The Grid-aware application description and the way in which the submission stages are performed
could also serve as practical models for future work in the field.
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