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Centro de Astrobioloǵıa (CSIC-INTA), Associated to NASA Astrobiology Institute,

28850 Torrejón de Ardoz, Spain.
2 Departamento de Arquitectura de Computadores y Automática, Facultad de
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Abstract. Grids constitute a promising platform to execute loosely cou-
pled applications, which arise naturally in many scientific and enginee-
ring fields like bionformatics, computational fluid dynamics, particle phy-
sics, etc. In this paper, we describe our experiences in porting three scien-
tific production codes to the Grid. Those codes follow typical computa-
tional models, namely: embarrassingly distributed and master-worker.
In spite of their relatively simple computational structure, consisting of
many “independent” tasks, their reliable and efficient execution on com-
putational Grids involves several issues, due to both the dynamic nature
of the Grid itself and the execution and programming requirements of
the applications. The applications have been developed by using the
DRMAA (Distributed Resource Management Application API) inter-
face. DRMAA routines are supported by the functionality offered by the
GridW ay framework, that provides the runtime mechanisms needed for
transparently executing jobs on a dynamic Grid environment. The ex-
periments have been performed on Globus-based research testbeds that
span heterogeneous resources in different institutions.

1 Introduction

It is becoming evident that the traditional concept of computing based on a ho-
mogeneous, and centrally managed environment is being displaced by a new mo-
del based on the exchange of information and the sharing of distributed resources
by applications [1]. However, such applications often involve large amounts of
data and/or computing elements and are not easily handled by today’s Inter-
net and web infrastructures. Grid technologies attempt to provide the support
needed for such an infrastructure, enabling applications to use remote resources
managed by widespread “virtual organizations”.

The Globus project [2] has constructed an open-source toolkit to build com-
putational grids, implementing a set of non-proprietary protocols for securely
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identifying, allocating and releasing resources from the Grid. Due to its open-
source nature and its increasing popularity, the Globus toolkit has become a
de facto standard in Grid computing. Globus is a core Grid middleware that
provides the following components, which can be used separately or altogether,
to support Grid applications: GRAM (Globus Resource Allocation Manager),
GASS (Global Access to Secondary Storage), GSI (Grid Security Infrastruc-
ture), MDS (Monitoring and Discovery Service), and GridFTP. These services
allow secure and transparent access to resources across multiple administrative
domains, and serve as building blocks to implement the stages of Grid schedu-
ling [3].

Probably, one of the most challenging problems that the Grid computing
community has to deal with is the fact that Grids are highly dynamic and faulty
environments. Adaptive scheduling has been widely studied in the literature [4–
6], and it has been demonstrated that periodic re-evaluation of the schedule
can result in significant improvements in both performance and fault tolerance.
On the other hand, Adaptive execution can improve application performance
by adapting it to the dynamic availability, capacity and cost of Grid resources.
Moreover, an application should be able to migrate to a new resource to satisfy
its new requirements or preferences (self-adaption).

In a previous work [7], we have presented a new Globus experimental fra-
mework that allows an easier and more efficient execution of jobs on a dynamic
Grid environment in a “submit and forget” fashion. The GridW ay framework
provides resource selection, job scheduling, reliable job execution, and automa-
tic job migration to allow a robust and efficient execution of jobs in dynamic
and heterogeneous Grid environments based on the Globus toolkit [2]. Moreover,
GridW ay provides support for the Distributed Resource Management Applica-
tion API (DRMAA)[8].

The aim of this paper is to present our experiences on using the Grid to exe-
cute three real applications belonging to the Bioinformatics, Planetary Geology
and Optimization research areas. These applications follow typical loosely cou-
pled models: embarrassingly distributed and master-worker. We also will show
that DRMAA is a suitable and portable framework to express those distributed
communicating paradigms. The tasks that made up the above computing models
could require different complexity or instruction streams. Therefore, adaptive
scheduling is again required to deal with their asynchronous temporal structure.

The main features of the GridW ay framework and its code porting support
are described in Section 2 and 3 respectively. The synchronous and asynchro-
nous embarrassingly distributed models in the context of a Bioinformatics and a
Planetary Geology applications are analyzed in Section 4 and 5. Section 6 deals
with the master-worker paradigm using a grid-oriented genetic algorithm as case
of study. At last, the main conclusions and acknowledgments of this research are
summarized in Section 7.



2 Main Features of the GridW ay Framework

GridW ay [7] is a Globus-based submission loosely-coupled framework that achie-
ves an efficient execution of applications by combining:

– Adaptive scheduling : Reliable schedules can only be issued considering the
dynamic characteristics of the available Grid resources [5]. In general, adap-
tive scheduling can consider factors such as availability, performance, load
or proximity, which must be properly scaled according to the application
needs and preferences. GridW ay periodically gathers information from the
Grid and from the running or completed jobs to adaptively schedule pending
tasks according to the application demands and Grid resource status.

– Adaptive execution: In order to obtain a reasonable degree of both applica-
tion performance and fault tolerance, a job must be able to migrate among
the Grid resources adapting itself to events dynamically generated by both
the Grid and the running application [9]. GridW ay evaluates each reschedu-
ling event to decide if a migration is feasible and worthwhile.

– Reuse of common files: Efficient execution of some applications profiles like
parameters sweep can only be achieved by re-using shared files between
tasks [10]. This is specially important not only to reduce the file transfer
overhead, but also to prevent the saturation of the file server where these files
are stored. Reuse of common files between tasks simultaneously submitted
to the same resource is achieved by storing some files declared as shared in
the GASS cache [11].

– Fault tolerance: The failures that may occur in a Grid can fall in a wide
range of categories such as execution faults, network errors, hardware faults,
configuration problems, etc (see for example [12]). Fault detection and re-
covery depends on the nature of the failure, and it may involve retrying,
migrating or restarting the execution of an application.

3 GridW ay Code Porting Support

The Distributed Resource Management Application API (DRMAA) Working
Group1, within the Global Grid Forum (GGF)2, has developed an API speci-
fication that allows a high-level interaction with Distributed Resource Mana-
gement Systems (DRMS). The DRMAA standard constitutes a homogeneous
interface to different DRMS to handle job submission, monitoring and control,
and retrieval of finished job status.

DRMAA allows scientists and engineers to express their computational pro-
blems in a Grid environment. The capture of the job exit code allow users to
define complex jobs, where each depends on the output and exit code from the
previous job. They may even involve branching, looping and spawning of sub-
tasks, allowing the exploitation of the parallelism on the work flow of certain
type of applications.
1 http://www.drmaa.org (2004)
2 http://www.gridforum.org (2004)



The target application source code does not have to be modified. However,
due to the high fault rate and the dynamic rescheduling, the application should
generate restart files in order to restart the execution from a given point.
If these files are not provided, the job is restarted from the beginning. User-
level checkpointing managed by the programmer must be implemented because
system-level checkpointing is not currently possible among heterogeneous resour-
ces. In order to adapt the execution of a job to its dynamic demands, the appli-
cation can specify its host requirements through a requirement expression.
Also, in order to prioritize the resources that fulfill the requirements according
to its runtime needs, the application must specify its hosts preferences through
a ranking expression. The ranking expression uses a performance model
to estimate the job turnaround time as the sum of execution and transfer time,
derived from the performance and proximity of the candidate resources [13].

In this work we will analize the following loosely coupled paradigm:

– Embarrassingly distributed: Applications that can be obviously divided into
a number of independent tasks. The application is asynchronous when re-
quire distinct instruction streams and so different execution times. A sample
of this schema with its DRMAA implementation is showed in the figure 1.

Pre−processing Job

Post−processing Job

Job 0 Job i Job n

rc =  �drmaa_init �(contact, err); �
// Execute initial job and wait for it �
rc =  �drmaa_run_job �(job_id, jt, err);  �
rc =  �drmaa_wait �(job_id, &stat, timeout, rusage, err); �
// Execute n jobs simultaneously and wait �
rc =  �drmaa_run_bulk_jobs �(job_ids,jt,1, JOB_NUM,1,err); �
rc =  �drmaa_synchronize �(job_ids, timeout, 1, err); �
// Execute final job and wait for it �
rc =  �drmaa_run_job �(job_id, jt, err);  �
rc =  �drmaa_wait �(job_id,&stat, timeout, rusage, err); �
rc =  �drmaa_exit �(err_diag); �

Fig. 1. Embarrassingly distributed paradigm and its codification using the DRMAA
standard.

– Master-worker: A Master task assigns a description (input files) of the task
to be performed by each Worker. Once all the Workers are completed, the
Master task performs some computations in order to evaluate a stop criterion
or to assign new tasks to more workers. Again, it could be synchronous or
asynchronous. Figure 2 shows a example of Master-worker optimization loop
and a DRMAA implementation sample.

4 Synchronous Embarrassingly Distributed Paradigm

4.1 A Protein Structure Prediction Application

Bioinformatics, which has to do with the management and analysis of huge
amounts of biological data, could enormously benefit from the suitability of



Post−processing Job (POST)

Initialization Job (INI)

Master Job (M)

W0 Wi Wn

rc = �drmaa_init�(contact, err_diag);�
// Execute initial job and wait for it�
rc = �drmaa_run_job�(job_id, jt, err_diag);�
rc = �drmaa_wait�(job_id, &stat, timeout, rusage, err_diag);�

while (exitstatus != 0) {�
// Execute n Workers concurrently and wait�
rc = �drmaa_run_bulk_jobs�(job_ids, jt, 1, JOB_NUM, 1, �

err_diag);�
rc = �drmaa_synchronize�(job_ids, timeout, 1, err_diag);�
// Execute the Master, wait and get exit code�
rc = �drmaa_run_job�(job_id, jt, err_diag);�
rc = �drmaa_wait�(job_id, &stat, timeout, rusage, err_diag);�
rc = �drmaa_wexitstatus�(&exitstatus, stat, err_diag);�

}�
rc = �drmaa_exit�(err_diag);�

Fig. 2. Master-Worker paradigm and its codification using the DRMAA standard.

the Grid to execute high-throughput applications. In the context of this paper,
we consider a Bioinformatics application aimed at predicting the structure and
thermodynamic properties of a target protein from its amino acid sequences.
The algorithm, tested in the 5th round of Critical Assessment of techniques
for protein Structure Prediction (CASP5), aligns with gaps the target sequence
with all the 6150 non-redundant structures in the Protein Data Bank (PDB), and
evaluates the match between sequence and structure based on a simplified free
energy function plus a gap penalty term. The lowest scoring alignment found is
regarded as the prediction if it satisfies some quality requirements. In such cases,
the algorithm can be used to estimate thermodynamic parameters of the target
sequence, such as the folding free energy and the normalized energy gap [14].

To speed up the analysis and reduce the data needed, the PDB files are
preprocessed to extract the contact matrices, which provide a reduced repre-
sentation of protein structures. The algorithm is then applied twice, the first
time as a fast search, in order to select the 100 best candidate structures, the
second time with parameters allowing a more accurate search of the optimal
alignment.We have applied the algorithm to the prediction of thermodynamic
properties of families of orthologous proteins, i.e. proteins performing the same
function in different organisms. If a representative structure of this set is known,
the algorithm predicts it as the correct structure.

4.2 Results

The experiments presented in this section were conducted on a research test-
bed based on the Globus Toolkit described in table 1. This testbed is highly
heterogeneous and it is made up of resources belonging to two different sites
interconnected by a “public” non-dedicated network.

The following set of experiments shows how adaptive scheduling improves
the performance and adaptive execution provides fault tolerance by restarting
the execution from the beginning.
Let us consider an experiment consisting in 88 tasks, each of them applies the



Table 1. Research testbed for the Protein Structure Prediction Application.

Name Site Architecture Speed Mem. OS DRMS

ursa DACYA-UCM 1×UltraSPARC-IIe 500MHz 256MB Solaris fork
draco DACYA-UCM 1×UltraSPARC-I 167MHz 128MB Solaris fork
pegasus DACYA-UCM 1×Pentium 4 2.4GHz 1GB Linux 2.4 fork
solea DACYA-UCM 2×UltraSPARC-II 296MHz 256MB Solaris fork
babieca LCASAT-CAP 5×Alpha Ev67 450MHz 256MB Linux 2.2 PBS

structure prediction algorithm to a different sequence of the Triosephosfate Iso-
merase enzyme which is present in different organisms. The overall execution
time for the Bioinformatics application, when all the machines in the testbed
are available, is 7.15 hours with an average throughput of 12 jobs per hour. This
experiment was reproduced in two new situations. In the first case, babieca is
shut down for maintenance in the middle of the experiment during one hour.
As a consequence, the framework stops scheduling jobs in this host and the ave-
rage job turnaround is reduced to 10 jobs per hour. Once babieca is restarted,
GridW ay schedules jobs on it again and the throughput increases to nearly 12
jobs per hour.
The second experiment starts with pegasus unavailable, and it is plugged in to the
Grid 3.5 hours after the experiment started. As could be expected, the absence
of pegasus decreases the average throughput (9 jobs per hour), and increases the
overall execution time to 9.8 hours. Figure 3 shows the dynamic job turnaround
time during the execution of the application in the above situations.
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Fig. 3. Dynamic throughput in the execution of the application when the testbed is
fully available, when pegasus is discovered and when babieca is down.



5 Asynchronous Embarrassingly Distributed Paradigm

5.1 A Mars Impact Cratering Application

Our target application analyzes the threshold diameter for cratering the seafloor
of an hypothetical martian sea during the first steps of an impact. Results of this
analysis can be used to develop a search criteria for future investigations, inclu-
ding techniques that will be used in future Mars exploration missions to detect
buried geological structures using ground penetrating radar surveys, as the ones
included in the ESA Mars Express and planned for NASA 2005 missions.The
discovery of marine-target impact craters on Mars would also help to address
the ongoing debate of whether large water bodies occupied the northern plains
of Mars and help to constrain future paleoclimatic reconstructions [15]. In any
case, this kind of studies requires an huge amount of computing power, which is
not usually available within a single organization.

We deal in this study with vertical impacts, as they reduce to 2D problems
using the radial symmetry. All simulations were conduced with spherical pro-
jectiles. The non-uniform computational mesh of the coarse simulations consists
of 151 nodes in horizontal direction and 231 nodes in vertical direction and the
total nodes describes half of the crater domain because of axial symmetry. The
mesh size progressively increases outwards from the center with a 1.05 coefficient
to have a larger spatial domain. The central cell region around the impact point
where damage is greater, more extended than the crater area, is a regular mesh
80 nodes resolution in both x and y direction, and also describes half of the
damaged zone. We use a resolution of 10 nodes to describe the radial projectile.

For a fixed water depth, we used 8 cases of projectile diameter in the range of
60 m to 1 Km, and 3 cases of impactor velocity: 10, 20 and 30 Km/s. Calculations
were performed for 3 cases of water depth: 100, 200 and 400 m. Once fixed the
projectile velocity and the water depth of the hypothetical ocean, we search to
determine the range for the critical diameter of the projectile which can crater the
seafloor [16]. Therefore, in this study we have to compute 72 cases. Its execution
on a Grid environment allows to obtain the diameter range of interest within
the research cycle time.

5.2 Results

Table 2 shows the characteristics of the machines in the research testbed, based
on the Globus toolkit 2.4. The testbed joins resources from five sites, all of
them connected by the Spanish Research and Education Network, RedIRIS.
This organization results in a highly heterogeneous testbed, since it presents
several architectures, processor speeds, DRMS and network links.

The execution time for each task is different and, what is more important,
unknown beforehand, since the convergence of the iterative algorithm strongly
depends on input parameters. Moreover, there is an additional difference gene-
rated by the changing resource load, availability and characteristics. Therefore,
adaptive scheduling is crucial for this application. Figure 4 shows the dynamic



Table 2. Research testbed for the Mars Impact Cratering Application.

Name Site Architecture Speed Mem. OS DRMS

hydrus DACYA-UCM 1×Intel P4 2.5GHz 512MB Linux 2.4 fork
cygnus DACYA-UCM 1×Intel P4 2.5GHz 512MB Linux 2.4 fork
cepheus DACYA-UCM 1×Intel PIII 600MHz 256MB Linux 2.4 fork
aquila DACYA-UCM 1×Intel PIII 700MHz 128MB Linux 2.4 fork
babieca LCASAT-CAB 5×Alpha Ev67 450MHz 256MB Linux 2.2 PBS
platon REDIRIS 2×Intel PIII 1.4GHz 512MB Linux 2.4 fork
heraclito REDIRIS 1×Intel Cel. 700MHz 256MB Linux 2.4 fork
ramses DSIC-UPV 5×Intel PIII 900MHz 512MB Linux 2.4 PBS
khafre CEPBA-UPC 4×Intel PIII 700MHz 512MB Linux 2.4 fork

turnaround time during the execution of this experiment. Total experiment time
was 4.64 hours (4 hours, 38 minutes and 33 seconds), so the achieved throughput
was 3.87 minutes (3 minutes and 52 seconds) per job, or likewise, 15.5 jobs per
hour.

0�

2�

4�

6�

8�

10�

12�

14�

16�

0� 1� 2� 3� 4� 5�

Time (hours)�

T
hr

ou
gh

pu
t (

Jo
bs

 p
er

 h
ou

r)
�

Fig. 4. Dynamic throughput, in terms of average turnaround time per job.

6 Master-Worker Paradigm

6.1 A Grid Oriented Genetic Algorithm

Genetics Algorithms (GA) are search algorithms inspired in natural selection
and genetic mechanisms. GAs use historic information to find new search points
and reach an optimal problem solution. In order to increase the speed and the



efficiency of sequential GAs, several Parallel Genetic Algorithm (PGA) alter-
natives have been developed. PGAs have been successfully applied in previous
works, (see for example [17]), and in most cases, they succeed to reduce the time
required to find acceptable solutions.

In order to develop efficient Grid-oriented genetic algorithms [18], the dyna-
mism and heterogeneity of a Grid environment must be considered. In this way,
traditional load-balancing techniques could lead to a performance slow-down,
since, in general the performance of each computing element can not be guaran-
teed during the execution. Moreover, some failure recovery mechanisms should
be included in such a faulty environment. Taking into account the above con-
siderations we will use a fully connected multi-deme genetic algorithm. In spite
of this approach represents the most intense communication pattern (all demes
exchange individuals every generation), it does not imply any overhead since the
population of each deme is used as checkpoint files, and therefore transferred to
the client in each iteration.

The initial population is uniformity distributed among the available number
of nodes, and then a sequential GA is locally executed over each subpopulation.
The resultant subpopulations are transferred back to the client, and worst in-
dividuals of each subpopulation are exchanged with the best ones of the rest.
Finally, a new population is generated to perform the next iteration [19]. The
scheme of this algorithm is depicted in figure 5.

Population�

SubPopulation� SubPopulation� SubPopulation�

Deme 1� Deme 2� Deme 3�

SubPopulation� SubPopulation� SubPopulation�n Best� n Best�

nBest�

Next�
Population�

Fig. 5. Schema of fully-connected multi-deme genetic algorithm, with three computing
nodes

The previous algorithm may incur in performance looses when the relative
computing power of the nodes involved in the solution process greatly defers,
since the iteration time is determined by the slowest machine. In order to pre-
vent these situations we allow an asynchronous communication pattern between



demes. In this way, information exchange only occurs between a fixed number
of demes, instead of synchronizing the execution of all subpopulations. The mi-
nimum number of demes that should communicate in each iteration depends
strongly on the numerical characteristics of the problem. We refer to this cha-
racteristic as dynamic connectivity, since the demes that exchange individuals
differs each iteration.

6.2 Results

We evaluate the functionality and efficiency of the Grid-oriented Genetic Algo-
rithm described above in the solution of the One-Max problem [20]. The One-
Max is a classical benchmark problem for genetic algorithm computations, and
it tries to evolve an initial matrix of zeros in a matrix of ones. In our case we
consider an initial population of 1000 individuals, each one a 20x100 zero matrix.
The sequential GA executed on each node performs a fixed number of iterations
(50), with a mutation and crossover probabilities of 0,1% and 60%, respectively.
The exchange probability of best individuals between demes is 10%.

The following experiments were conducted on a research testbed made up of
three different sites, and based on the Globus Toolkit 2.4. See table 3 for a brief
description of the resources in the testbed.

Table 3. Research testbed for the Grid Oriented Genetic Algorithm.

Name Site Architecture Speed Memory OS DRMS

hydrus DACYA-UCM 1×Intel P4 2.5GHz 512MB Linux 2.4 fork
cygnus DACYA-UCM 1×Intel P4 2.5GHz 512MB Linux 2.4 fork
aquila DACYA-UCM 1×Intel PIII 700MHz 128MB Linux 2.4 fork
babieca LCASAT-CAB 5×Alpha Ev67 450MHz 256MB Linux 2.2 PBS

Besides the need for both adaptive scheduler and execution we would like to
remark the advantages of the DRMAA API to aid the rapid development and
distribution across the grid of typical computational models. Figure 6 shows the
execution profile of 4 generations of the GOGA, with a 5-way dynamic connecti-
vity. Each subpopulation has been traced, and labelled with a different number
(Pdeme). As can be shown, individuals are exchanged between subpopulations
P1, P2, P3, P4, P5 in the first generation; while in the third one the subpopu-
lations used are P1, P2, P4, P7, P8. In this way the dynamic connectivity, in-
troduces another degree of randomness since the demes that communicate differ
each iteration and depend on the dynamism of the Grid.



Fig. 6. Execution profile of four generations of the 11, each subpopulation has been
labelled with Pdeme

7 Conclusions and Acknowledgments

We have shown how an adaptive approach for job scheduling and execution is
required due to both the changing conditions of the Grid resources and the
asynchronous nature of some applications. The functionality, robustness and ef-
ficiency of a Grid environment consisting of GridW ay and Globus have been
demonstrated through the execution of typical scientific applications. We have
demonstrated that DRMAA is a suitable and portable framework to express the
applications studied in this work: a protein structure prediction application, a
Mars impact cratering application and a Grid oriented genetic algorithm.
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Thematic Network on Grid Middleware.
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