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Abstract

Since the late 1990s, we have witnessed an extraordinary development of Grid tech-
nologies. Nowadays, different Grid infrastructures are being deployed within the
context of growing national and transnational research projects. However, the co-
existence of those different infrastructures opens an interesting debate about the
coordinated harnessing of their resources, from the end-user perspective, and the si-
multaneous sharing of resources, from the resource owner perspective. In this paper
we demonstrate the efficient and simultaneous use of different Grid infrastructures
through a decentralized and “end-to-end” scheduling and execution system. In par-
ticular, we evaluate the coordinated use of the EGEE and IRISGrid testbeds in the
execution of a Bioinformatics application. Results show the feasibility of building
loosely-coupled Grid environments only based on Globus services, while obtaining
non trivial levels of quality of service, in terms of performance and reliability. Such
approach allows a straightforward resource sharing since the resources are accessed
by using de facto standard protocols and interfaces.
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research grants TIC 2003-01321 and 2002-12422-E, and by Instituto Nacional de
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1 Introduction

Different Grid infrastructures are being deployed within growing national and
transnational research projects. The final goal of these projects is to provide
the end user with much higher performance than that achievable on any single
site. However, from our point of view, it is debatable whether some of these
projects embrace the Grid philosophy, and to what extent. This philosophy,
proposed by Foster [1], claims that a Grid is a system (i) not subject to a
centralized control, and (ii) based on standard, open and general-purpose in-
terfaces and protocols, while (iii) providing some level of quality of service
(QoS), in terms of security, throughput, response time or the coordinated use
of different resource types. There is a tendency to ignore the first two require-
ments in order to get higher levels of quality of service, mainly performance
and reliability, for a given application scope. However, those requirements are
even more important because they are the key to the success of the Grid.

The computational environments created by following the previous Grid phi-
losophy, which we call loosely-coupled Grids, resemble the architecture of the
Internet. This architecture is based on the “end-to-end” principle, which has
fostered the spectacular development and diffusion of the Internet and, in
particular, Web technologies in the past decade [2]:

“The basic argument is that, as a first principle, certain required end-to-end

functions can only be performed correctly by the end-systems themselves.”

These loosely-coupled computational environments present the following main
characteristics [3]: autonomy (of the multiple administration domains), het-
erogeneity, scalability and dynamism. These properties completely determine
the way that scheduling and execution on Grids have to be done. For example,
scalability and autonomy prevent the deployment of centralized resource bro-
kers, with total control over client requests and resource status. On the other
hand, the dynamic resource characteristics in terms of availability, capacity
and cost, make essential the ability to adapt job scheduling and execution to
these conditions. Finally, the management of resource heterogeneity implies a
higher degree of complexity.

Practically, the majority of the Grid infrastructures are being built on proto-
cols and services provided by the Globus Toolkit 1 , becoming a de facto stan-
dard in Grid computing. Globus architecture follows an hourglass approach,
which is indeed an “end-to-end” principle. Therefore, instead of succumbing
to the temptation of tailoring the core Grid middleware to our needs (since in
such case the resulting infrastructure would be application specific), or homog-
enizing the underlying resources (since in such case the resulting infrastructure

1 http://www.globus.org

2



would be a highly distributed cluster), we propose to strictly follow the “end-
to-end” principle. Clients should have access to a wide range of resources
provided through a limited and standardized set of protocols and interfaces.
In the Grid these are provided by the core Grid middleware: Globus. Just as,
in the Internet, they are provided through the TCP/IP set of protocols.

The coexistence of several projects, each with its own middleware develop-
ments, adaptations or extensions, give rise to the idea of coordinated harness-
ing of resources, or contributing the same resource to more than one project.
One approach could be the development of gateways between different mid-
dleware implementations [4]. Another approach, more in line with the Grid
philosophy, is the development of client tools that can adapt to different mid-
dleware implementations. If we consider that nearly all current projects use
Globus as the basic Grid middleware, it could be possible a shift of func-
tionality from resources to brokers or clients. This will allow the resources to
be accessed in a standard way, making the task of sharing resources between
organizations and projects easier.

In this work we demonstrate the “end-to-end” principle in a Grid infrastruc-
ture, and so the feasibility of building loosely-coupled Grids environments only
based on Globus services and user-level middleware, while obtaining non triv-
ial levels of quality of service. This approximation also enables the coordi-
nated harnessing and integration of existing Grid infrastructures. To this end,
we consider a testbed built up from resources inside IRISGrid 2 , the Span-
ish National Grid Initiative, and resources inside EGEE (Enabling Grids for
E-sciencE) 3 , the European production-level Grid infrastructure. We analyze
the coordinated use of this testbed with the execution of a Bioinformatics ap-
plication, since this is one of the most resource-demanding fields. Due to the
distributed nature of the Grid, it is very important to quantify the overheads
induced by all its components, and to analyze their influence in the global
performance. In this way, it is possible to estimate the performance impact of
using different information services, schedulers, resource managers. . .

The structure of the paper is as follows. In Section 2, we will discuss some
aspects about Grid infrastructure and middleware. Section 3 reviews a non-
exhaustive list of current middleware and infrastructure projects and their
relation with the Grid philosophy. The resulting experimental testbed and
the target application are described in Sections 4 and 5, respectively, while
Section 6 presents the obtained results and evaluates the overall performance
of the infrastructure. Finally, Section 7 ends up with some conclusions.

2 http://irisgrid.rediris.es
3 http://www.eu-egee.org
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2 Grid Infrastructure and Middleware

A Grid infrastructure is usually decomposed in the following layers [3]:

(1) Grid applications and portals.
(2) User-level Grid middleware.
(3) Core Grid middleware.
(4) Grid fabric.

The two internal layers are called “the middleware”, since they connect appli-
cations with resources, or Grid fabric. In a loosely-coupled Grid, it is important
to remain these layers separated and independent with a limited and well de-
fined set of interfaces and protocols between them.

The Globus toolkit [5] has become a de facto standard in Grid Computing as
core Grid middleware. Globus services allow secure and transparent access to
resources across multiple administrative domains, and serve as building blocks
to implement the stages of Grid scheduling [6]. However, the user is responsi-
ble for manually performing all the submission steps in order to achieve any
functionality.

The application of the “end-to-end” principle to Grid computing requires user-
level middleware in the client side to make it easier and more efficient the
execution of applications. Such client middleware should provide the end user
with portable programming paradigms and common interfaces [7].

At the other end, resource management software is advisable in Grid fabric to
provide system administrators with tools to determine the amount of resources
they are willing to devote to the Grid, avoiding their saturation by Grid jobs.
Such kind of software [8] will aid in the expansion of the Grid, leading re-
source owners to embrace Grid technologies and share their resources with
more confidence, because the performance for local users will always be as-
sured. Moreover, the “end-to-end” principle reduces the firewall configuration
to a minimum, which is also a welcome advance for security administrators.
The more confident resource owners are, the more nodes they will add to the
Grid, overcoming the typical scenario where administrators share only a small
fraction of their hosts due to their mistrust of the Grid.

We should consider that the Grid not only involves the technical challenge
of constructing and deploying this vast infrastructure, it also brings up other
issues related to resource sharing and security policies. Undoubtedly, an ap-
proach that allows administrators to have full control of their resources could
help to overcome these socio-political difficulties [9].
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Fig. 1. LCG-2 available services at CERN (each service usually corresponds with a
separate server node) [10].

3 The Grid Philosophy in Some Existing Projects

The EGEE (Enabling Grids for E-sciencE) project is creating the larger production-
level Grid infrastructure, which provides a level of performance and reliability
never achieved before. A very restrictive set of requirements has been estab-
lished for organizations that wish to take part in it. EGEE defines the user-
level Grid middleware, the core Grid middleware and the Grid fabric, as being
tightly related. EGEE uses the LCG (LHC Computing Grid) 4 middleware,
LCG-2 (see Figure 1). This presents some limitations in terms of heterogeneity,
as it has a fixed configuration for clusters. The scalability of its deployment
is also limited, as the middleware should be installed on the compute nodes,
and they should have network connectivity. LCG’s focus is mainly on particle
physics applications that depend on a single organization, CERN (the Euro-
pean Organization for Nuclear Research). Nevertheless, it is expected that the
new EGEE middleware, gLite 5 , will overcome to some extent, some of these
limitations.

On the other hand, the main objective of the IRISGrid initiative is the cre-
ation of a stable national Grid infrastructure. IRISGrid‘s first mission is to

4 http://lcg.web.cern.ch
5 http://www.glite.org
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give the necessary protocols, procedures and guidelines for creating a research
Grid within Spain. This initiative seeks to link geographically distant resources
so that all the interested groups have access to a research testbed. IRISGrid
only defines the core Grid middleware within the Grid fabric, requiring dif-
ferent user-level Grid middleware. The first version of the IRISGrid testbed
is based only on Globus, and it has been widely used through the GridW ay
framework 6 .

In the middle, there are highly interesting projects like Nordugrid 7 , whose ar-
chitectural requirements are very close to that of IRISGrid. Nevertheless, the
requirement of being based only on Globus basic services is not considered.
NorduGrid defines the user-level and the core Grid middleware, while leaving
some flexibility in the Grid fabric [11]. Nevertheless, it presents some interest-
ing benefits like : scalability and no single point of failure; and resources not
necessarily dedicated to Grid jobs, but are under the control of their owners
and have few site requirements.

In NorduGrid there should be a shared file system (e.g. NFS), the RSL used is
an extended one, and there is a Grid Manager (GM) acting as a smart front-
end for job submission to a cluster. The GM uses a GridFTP interface for job
submission, instead of GRAM, and provides a virtual directory tree, access
control based on the user certificate’s DN and access to meta-data catalogs.
There are some ongoing efforts to provide interoperability between LCG and
NorduGrid middlewares.

Finally, GridW ay [12] is a user-level Grid middleware, which uses Globus
as core Grid middleware over any Grid fabric. Therefore, GridW ay could
be used in any Grid infrastructure that uses Globus, without modifications,
as core Grid middleware. In this paper, we will show its utilization in a joint
IRISGrid/EGEE testbed, both based on Globus. In the case of EGEE, Globus
behaviour is slightly modified, but it doesn’t loose its main protocols and
interfaces, so it can be used in a standard way. That would be impossible
in the case of NorduGrid, since the interface for job management has been
radically changed, using a GridFTP interface instead of the standard GRAM
interface.

A key aspect in these three alternatives (EGEE, NorduGrid and GridW ay)
is how job execution is performed. In EGEE, file transfers are initiated by a
job wrapper running in the compute nodes. In NorduGrid, file transfers are
initiated by the Grid Manager running in the front-end node, making use of
the extended RSL. In GridW ay, job execution is performed in three steps:

(1) prolog : It prepares the remote system by creating a experiment directory

6 http://www.gridway.org
7 http://www.nordugrid.org
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and transferring the input files from the client.
(2) wrapper: It executes the actual job and obtains its exit status code.
(3) epilog : It finalizes the remote system by transferring the output files back

to the client and cleaning up the experiment directory.

This way, GridW ay doesn’t rely on the underlying middleware to perform
preparation and finalization tasks. Moreover, since both prolog and epilog are
submitted to the front-end node of a cluster and wrapper is submitted to
a compute node, GridW ay doesn’t require any middleware installation nor
network connectivity in the compute nodes.

As some other projects [13–17], GridW ay addresses adaptive scheduling, adap-
tive execution and fault tolerance. However, in the context of this paper, we
would like to remark the advantages of its modular, decentralized and “end-
to-end” architecture for job adaptation to a dynamic Grid environment.

4 Experimental Testbed

This work has been possible thanks to the collaboration of those research cen-
ters and universities that temporarily shared some of their resources in order
to set up a geographically distributed testbed. The testbed results in a very
heterogeneous infrastructure, since it presents several middlewares, architec-
tures, processor speeds, resource managers (RM), network links. . .

Some centers are inside IRISGrid, the Spanish Grid Initiative and Research
Testbed, which is composed by around 40 groups from different spanish insti-
tutions. In the experiment, 7 of them participated donating a total number
of 195 CPUs. The IRISGrid resources are shown in Table 1. Other centers
participate in the EGEE project, which is composed by more than 100 con-
tracting and non-contracting partners. In the experiment, 7 spanish centers
participated, donating a total number of 333 CPUs. The EGEE resources are
shown in Table 2.

Together, the testbed is composed by 13 sites (note that LCASAT-CAB is both
in IRISGrid and EGEE) and 528 CPUs. In the experiments below, we limited
to four the number of jobs simultaneously submitted to the same resource,
with the aim of not saturating the whole testbed, so only 64 CPUs were used
at the same time. All sites are connected by RedIRIS, the Spanish Research
and Academic Network. The geographical location and interconnection links
of the different nodes are shown in Figure 2. Table 3 summarizes the core Grid
middleware components used in the experiments.

Next, we describe the modifications performed in both the infrastructure and
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Table 1
IRISGrid resources contributed to the experiment.

Name Site Network Processor Speed Nodes RM

heraclito RedIRIS Central Intel Celeron 700MHz 1 Fork

platon RedIRIS Central 2×Intel PIII 1.4GHz 1 Fork

descartes RedIRIS Central Intel P4 2.6GHz 1 Fork

socrates RedIRIS Central Intel P4 2.6GHz 1 Fork

aquila DACYA-UCM Madrid Intel PIII 700MHz 1 Fork

cepheus DACYA-UCM Madrid Intel PIII 600MHz 1 Fork

cygnus DACYA-UCM Madrid Intel P4 2.5GHz 1 Fork

hydrus DACYA-UCM Madrid Intel P4 2.5GHz 1 Fork

babieca LCASAT-CAB Madrid Alpha EV67 450MHz 30 PBS

bw CESGA Galicia Intel P4 3.2GHz 80 PBS

llucalcari IMEDEA Baleares AMD Athlon 800MHz 14 PBS

augusto DIF-UM Murcia 4×Intel Xeon ∗ 2.4GHz 1 Fork

caligula DIF-UM Murcia 4×Intel Xeon ∗ 2.4GHz 1 Fork

claudio DIF-UM Murcia 4×Intel Xeon ∗ 2.4GHz 1 Fork

lxsrv1 BIFI-UNIZAR Aragón Intel P4 3.2GHz 50 SGE

∗ These resources actually present two physical CPUs but they appear as four logical
CPUs due to hyper-threading.

Table 2
EGEE resources contributed to the experiment.

Name Site Network Processor Speed Nodes RM

ce00 LCASAT-CAB Madrid Intel P4 2.8GHz 8 PBS

mallarme CNB Madrid 2×Intel Xeon 2.0GHz 8 PBS

lcg02 CIEMAT Madrid Intel P4 2.8GHz 6 PBS

grid003 FT-UAM Madrid Intel P4 2.6GHz 49 PBS

gtbcg12 IFCA Cantabria 2×Intel PIII 1.3GHz 34 PBS

lcg2ce IFIC Valencia AMD Athlon 1.2GHz 117 PBS

lcgce02 PIC Cataluña Intel P4 2.8GHz 69 PBS

GridW ay. We had to introduce some changes in the security infrastructure in
order to perform the experiments. For authentication, we used a user certificate
issued by DATAGRID-ES CA, so we had to give trust to this CA on IRISGrid
resources. Regarding authorization, we had to add an entry for the user in the
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Fig. 2. Topology and bandwidths of RedIRIS-2.

Table 3
Core Grid middleware.

Globus
Component

IRISGrid EGEE

Security
Infrastructure

IRISGrid CA and manually
generated grid-mapfile

DATAGRID-ES CA and
automatically generated
grid-mapfile

Resource
Management

GRAM with shared home
directory in clusters

GRAM without shared home
directory in clusters

Information
Services

IRISGrid GIIS and local
GRIS, using the MDS schema

CERN BDII and local GRIS,
using the GLUE schema

Data
Management

GASS and GridFTP GASS and GridFTP

grid-mapfile in both IRISGrid and EGEE resources.

Another possibility would be to use two different user certificates, each one
to access each testbed. Moreover, in large projects there are VO management
systems, like VOMS, so it could be possible to create gateways between them,
so we can have a VO in EGEE consisting of all the IRISGrid users and vicev-
ersa [4].

We also had to introduce some changes in some GridW ay modules. For exam-
ple, our resource selector module only understood the Globus MDS schema,
so we had to develop another one understanding the GLUE schema used in
EGEE. We also developed a super resource selector to merge results from the
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other two. The access to GIIS (Grid Information Index Service) and BDII
(Berkeley Database Information Service) servers is homogeneous, since they
both use an LDAP interface for access. The main difference between BDII and
GIIS is that the information in BDII is stored in a persistent database, which
is periodically updated. We have experienced that BDII can be much more
reliable and efficient than GIIS.

The wrapper module was also modified to perform an explicit file staging
between the front-end and the compute nodes in EGEE clusters, so it has to
detect if a shared file system between compute and worker nodes exists or not.

It is interesting to remark the advantages of a modular architecture in the
design of GridW ay, since we didn’t have to directly modify the source code of
the submission agent. Instead, we had to only modify two modules that were
implemented as scripts, so the modifications were straightforward.

5 The Bioinformatics Application

Bioinformatics, which has to do with the management and analysis of huge
amounts of biological data, could enormously benefit from the suitability of
the Grid to execute high-throughput applications. It is foreseeable that the
Grid will be inevitably adopted, given that biological data is growing very
fast, due to the proliferation of automated high-throughput experimental tech-
niques and organizations dedicated to Biotechnology. Therefore, the resources
required to manage and analyze this data will be soon only available from the
Grid [18].

One of the main challenges in Computational Biology concerns the analysis of
the huge amount of protein sequences provided by genomic projects at an ever
increasing pace. The structure and function of a protein is coded in its amino
acid sequence, but deciphering it has turned out to be a very difficult problem,
which is still waiting for a complete solution. Nevertheless, in several cases,
particularly when homologous proteins are known, computational methods
can be quite reliable.

In the following experiment, we will consider a Bioinformatics application
aimed at predicting the structure and thermodynamic properties of a target
protein from its amino acid sequence. The algorithm, tested in the 5th round of
Critical Assessment of techniques for protein Structure Prediction (CASP5) 8 ,
aligns with gaps the target sequence with all the 6150 non-redundant struc-

8 http://PredictionCenter.llnl.gov/casp5/
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tures in the Protein Data Bank (PDB) 9 , and evaluates the match between
sequence and structure based on a simplified free energy function plus a gap
penalty item. The lowest scoring alignment found is regarded as the prediction
if it satisfies some quality requirements. In such cases, the algorithm can be
used to estimate thermodynamic parameters of the target sequence, such as
the folding free energy and the normalized energy gap [19].

To speed up the analysis and reduce the data needed, the PDB files are prepro-
cessed to extract the contact matrices, which provide a reduced representation
of protein structures. The algorithm is then applied twice, the first time as
a fast search, in order to select the 200 best candidate structures, and the
second time with parameters allowing a more accurate search of the optimal
alignment.

We have applied the algorithm to the prediction of thermodynamic properties
of families of orthologous proteins, i.e. proteins performing the same function
in different organisms. If a representative structure of this set is known, the
algorithm predicts it as the correct structure. The biological results of the
comparative study of several families of orthologous proteins are presented
elsewhere [20].

The experiment files consist of: the executable (0.5MB) provided for all the
resource architectures in the testbed, the PDB files shared and compressed
(12.2MB) to reduce the transfer time, the parameter files (1KB), and the file
with the sequence to be analyzed (1KB). The final name of the executable
and the file with the sequence to be analyzed is obtained at runtime for each
task and each host, respectively.

6 Experiences and Results

The experiments presented here consist in the analysis of a family of 80 or-
thologous proteins of the Triose Phosphate Isomerase enzyme (an enzyme is
a special case of protein). Five experiments were conducted on different days
during the same week, as shown in Table 4. The average turnaround time for
the five experiments was 43.37 minutes.

Tables 5 and 6 reflect the transfer and execution times employed by each host
to solve one task of the problem. Same is Table 7 but for each site. These
metrics are useful to evaluate the impact of data movement strategies (file
re-usage, replica selection and dissemination. . . ), individual resource perfor-
mance or the influence of the interconnection network. Given the dynamic

9 http://www.pdb.org
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Table 4
Experiments performed.

Date Start time End time Turnaround time Throughput

(dd/mm/yy) (h:mm:ss) (h:mm:ss) (min) (jobs/min)

22/10/2004 20:44:45 21:26:45 42.00 1.90

23/10/2004 23:58:32 0:32:22 33.82 2.37

24/10/2004 1:38:32 2:24:35 46.05 1.74

26/10/2004 13:44:03 14:34:25 50.37 1.59

26/10/2004 19:07:16 19:51:50 44.57 1.80

nature of Grid environments it is important to quantify the fluctuations on
these measurements. Thus, the standard deviation of the average of the trans-
fer and execution times can be used as an indicator of the dynamism (if calcu-
lated on the same resource over time) and heterogeneity (if calculated at the
same time over different resources) of the environment. In Tables 5 and 6, the
standard deviation is an indicator of the dynamism, since we calculate it in a
aggregated way for the whole five experiments. In Table 7, it indicates both
the dynamism and the heterogeneity of the resources inside each site.

As can be seen in Tables 5 and 6, resources with fast processors present a lower
mean execution time (µlxsrv1 = 687, µbw = 697, µgrid003 = 739 and µlcgce02 =
777). Some resources also present a higher deviation in the execution time due
to the queue system overhead and a slow front-end node (σlcg02 = 342, σce00 =
267 and σlcg2ce = 226). The use of SMP nodes also causes a higher variability
in the execution time when all the CPUs are simultaneously used (σplaton =
275, σaugusto = 233, σcaligula = 233 and σclaudio = 184) due to the contended
use of shared resources, like memory and system buses. In the case of DIF-
UM, all its three resources present two physical CPUs, but they report four
logical CPUs due to hyper-threading. Therefore, four jobs were simultaneously
scheduled to these resources, resulting in a great performance loss (µaugusto =
1200, µcaligula = 1242, µclaudio = 1228).

As can be seen in Table 7, sites with high heterogeneity present a higher devi-
ation in the execution time (σDACyA−UCM = 630 and σRedIRIS = 393). Regard-
ing transfer times, sites well connected with the client machine at DACyA-
UCM present a lower mean (µDACyA = 63, µRedIRIS = 62 and µFT−UAM =
90) unless they have a slow front-end (µLCASAT−CAB = 216, µIFIC = 208, and
µCIEMAT = 158). Sites with worse connection to the client present a higher
mean transfer time (µIFCA = 261, µIMEDEA = 169, µBIFI−UNIZAR = 152 and
µDIF−UM = 142) and variability (σIFCA = 105, σIMEDEA = 92, σBIFI−UNIZAR

= 92, and σDIF−UM = 108).

During the whole time employed for each experiment, some of the executions
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Table 5
Execution and transfer times (in seconds) per job on each IRISGrid resource.

Execution Time Transfer Time

Host Mean Dev. Mean Dev.

heraclito 2146 57 151 107

platon 919 275 67 50

descartes 611 33 48 30

socrates 647 103 51 27

aquila 1895 235 143 93

cepheus 2022 112 64 24

cygnus 755 74 33 20

babieca 1798 28 131 131

bw 697 176 123 54

llucalcari 1567 168 169 92

augusto 1200 233 89 61

caligula 1242 233 153 109

claudio 1228 184 187 131

lxsrv1 687 190 152 92

Table 6
Execution and transfer times (in seconds) per job on each EGEE resource.

Execution Time Transfer Time

Host Mean Dev. Mean Dev.

ce00 929 267 220 80

mallarme 945 191 123 68

lcg02 932 342 158 115

grid003 739 63 90 67

gtbcg12 1002 52 261 105

lcg2ce 889 226 208 113

lcgce02 777 179 98 68

failed or were suspended for a long time. GridW ay migrated these failed or
suspended jobs to other resources. Figure 3 shows the distribution of total
executions and failures over sites.

It is of crucial interest to analyze the potential gain in performance that a site
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Table 7
Execution and transfer times (in seconds) per job on each site.

Execution Time Transfer Time

Site Mean Dev. Mean Dev.

RedIRIS 830 393 62 47

DACyA-UCM 1271 630 63 61

LCASAT-CAB 970 321 216 83

CESGA 697 176 123 54

IMEDEA 1567 168 169 92

DIF-UM 1223 218 142 108

BIFI-UNIZAR 687 190 152 92

CNB 945 191 123 68

CIEMAT 932 342 158 115

FT-UAM 739 63 90 67

IFCA 1002 52 261 105

IFIC 889 226 208 113

PIC 777 179 98 68

could obtain by joining the Grid. To this end, let us define Grid speedup as:

SSite =
TSite

TGrid

, (1)

where TGrid is the turnaround time using all the Grid, and TSite is the turnaround
time using only the resources available in a given site. We have estimated the
value of TSite being the maximum theoretical turnaround time for the site:

TSite = N ·

∑

i∈Site

T
exe

i

CPUi

, (2)

where N is the number of jobs of the experiment, in this case 80, T
exe

i is the
average execution time per job in resource i, as shown in Tables 5 and 6, and
CPUi is the number of CPUs in resource i, as shown in Tables 1 and 2, with
a maximum of four CPUs.

Figure 4 shows each site speedup (the bars) and turnaround time (the val-
ues on top of bars). Notice that, since we have limited to four the number
of jobs simultaneously submitted to the same resource, these metrics don’t
show the actual performance gain that could be obtained when using all the
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Fig. 3. Aggregated scheduling performed by GridW ay during the five experiments.

resources available on each organization. For example, only four jobs were
simultaneously submitted to lcgce02 at PIC, while twelve jobs were simulta-
neously submitted to augusto, caligula and claudio at DIF-UM (i.e. four jobs
to each resource, since they report four CPUs due to hyper-threading).

Figure 5 shows the dynamic throughput achieved during the five experiments
alongside the theoretical throughput of the most powerful site, where the
problem could be solved in the lowest time, in this case DIF-UM (taking into
account the above limitation in the number of simultaneously running jobs in
a resource). The throughput achieved on each experiment varies considerably.
This is due to the dynamic availability and load of the testbed. For example,
resource ce00 at LCASAT-CAB was not available during the execution of
the first experiment. Moreover, fluctuations in the load of network links and
computational resources induced by non-Grid users affected to a lesser extent
in the second experiment, as it was performed at midnight.

7 Conclusions

Loosely-coupled Grids allow a straightforward resource sharing since resources
are accessed and exploited through de facto standard protocols and interfaces,
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similar to the early stages of the Internet. This way, the loosely-coupled model
allows an easier, scalable and compatible deployment.

We have shown that the “end-to-end” principle works at the client side (i.e.
the user-level Grid middleware) of a Grid infrastructure. Our proposed user-
level Grid middleware, GridW ay, is able to work with a standard core Grid
middleware over any Grid fabric in a loosely-coupled way. Moreover, since
similar experiments have been previously performed at the resource side (i.e.
the Grid fabric), we can conclude that the “end-to-end” principle could work
on the two sides.

The straightforward process of integration of these so different testbeds, al-
though both are based on Globus, demonstrates that the GridW ay approach
(i.e. the Grid way), based on a modular, decentralized and “end-to-end” archi-
tecture, is appropriate for the Grid. Moreover, the evaluation of the resulting
infrastructure shows that reasonable levels of performance and reliability are
achieved.
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