
Workflow Management in a Protein Clustering Application∗

J. L. Vázquez-Poletti E. Huedo R. S. Montero I. M. Llorente

Departamento de Arquitectura de Computadores y Automática
Facultad de Informática, Universidad Complutense de Madrid

28040 Madrid, Spain

Abstract

Bioinformatics is demanding more computational
resources day after day. The problems proposed by this
area are growing in such complexity that traditional
computing systems are not able to face them. For solv-
ing complex problems which can be divided in tasks with
dependencies, a workflow management system must be
employed. In this paper, we introduce the use of the
workflow management of the GridWay metascheduler
for running a Bioinformatics application which imple-
ments a complex algorithm performing protein cluster-
ing in order to obtain non-redundant protein databases.
The use of a general purpose meta-scheduling system
will provide the application the fault-tolerance and ad-
vance scheduling capabilities needed to execute on a
highly dynamic, heterogeneous and faulty environment.
The execution results on a production Grid (the EGEE
infrastructure) shows the dramatic impact of remote
queue waiting times on the application performance;
and the critical need of efficient re-scheduling capabili-
ties.

1 Introduction

As Grid Computing is consolidating and extending
its application to many research areas, the complexity

∗This research was supported by Consejeŕıa de Educación of
Comunidad de Madrid, Fondo Europeo de Desarrollo Regional
(FEDER) and Fondo Social Europeo (FSE), through BioGridNet
Research Program S-0505/TIC/000101, and by Ministerio de Ed-
ucación y Ciencia, through research grant TIN2006-02806. Also,
this work makes use of results produced by the Enabling Grids
for E-sciencE project, a project co-funded by the European Com-
mission (under contract number INFSO-RI-031688) through the
Sixth Framework Programme. EGEE brings together 91 part-
ners in 32 countries to provide a seamless Grid infrastructure
available to the European research community 24 hours a day.
Full information is available at http://www.eu-egee.org/.

of tasks needed to be executed in such environments is
growing. The workflow concept appears to satisfy these
needs as a way to automate procedures in data trans-
fer and job execution. Then, a workflow management
system is the one which not only defines, but manages
and executes workflows over a Grid [14].

In a workflow management system, the workflow
should be easily designed as a dependency graph, where
each node represents one or more computational tasks.
Also, it must be capable to provide additional mecha-
nisms for resource information retrieval, data transfer,
task scheduling and execution, and fault tolerance. In
general, the providing of these mechanisms is challeng-
ing because of the nature of the Grid itself, namely:
dynamic resource availability and load, heterogeneity
and a high fault rate.

The objective of this paper is to show the effi-
cient execution of a Bioinformatics workflow by the
GridW ay [3]’s workflow management system, which is
briefly described in Section 2. This workflow pertains
to a toolset called cd-hit [6] which is actively used by
the Spanish National Oncology Research Center (Cen-
tro Nacional de Investigaciones Oncológicas - CNIO) 1.
This toolset is composed by several sub-applications
which take a protein sequence database and then elim-
inate redundant entries. Its algorithm is explained in
Section 3.

The growing database size (increasing everyday)
makes cd-hit infeasible to be executed on a single ma-
chine due to its memory requirements and total ex-
ecution time. Also, the complexity of the algorithm
implemented by its workflow is demanding the use of a
high number of Grid resources for execution and data
transfers. Experimental results of the execution of the
cd-hit toolset in the EGEE testbed are discussed in
Section 4.

Finally, an overview of other workflow management

1http://www.cnio.es/

1

systems is presented in Section 5, and the conclusions
can be found in Section 6.

2 GridWay’s Workflow Management

GridW ay is a grid metascheduler which stands on
top of Globus services and that has been success-
fully used, not only in Bioinformatics [2], but also
in other research areas [12]. In this section, we de-
scribe its workflow management according to the tax-
onomy proposed in [14]. GridW ay natively handles
Directed Acyclic Graph (DAG) based workflows, where
each node is a task where its beginning is subject to
(depends on) other tasks’ finalization. Additionally,
GridW ay allows advanced flow structures like loops
or branches by using its implementation of the Dis-
tributed Resource Management Application API (DR-
MAA), which is an Open Grid Forum 2 standard. Con-
sidering the workflow specification, GridW ay uses an
abstract model because the workflow is specified with-
out referring to specific Grid resources for task exe-
cution. When converting abstract workflows into con-
crete ones, GridW ay implements a dynamic scheme
as it uses both dynamic and static information about
resources. Scheduling decisions are made at run-time
considering the requirements for each task and ranking
expresions (a function to determining the resource as-
signment priority). Inside this scheme, GridW ay em-
ploys just in-time scheduling which only makes deci-
sions at the time of task execution. Moreover, his-
torical information about task execution is considered.
GridW ay’s scheduling architecture, as defined in [14],
is centralized because one central workflow scheduler
makes decisions for all tasks.

On the other hand, decision making is considered
local because only takes each task information into ac-
count when scheduling them, as GridW ay resolves task
dependencies and starts working at task-level. Once
a task (or graph node) is assigned to a resource, the
executable and input files are staged onto the remote
machine and the execution takes place. When the task
finishes, the output files are staged back and GridW ay
checks if this event frees the dependencies of other tasks
so this process starts again [3]. GridW ay offers auto-
matic staging mechanisms. In particular, a centralized
approach is taken as intermediate data is transferred
between resources via a checkpoint server to restart
the workflow in case of failure.

Fault tolerance in GridW ay must be considered at
task-level taking into account possible failures such as
network outage or remote and local machine crash.

2http://drmaa.org/

GridW ay applies the following techniques, following
the notation of [14]: retry (tries the task execution or
file transfer on the same resource in case of failure),
alternate resource (submits a failed task to an alter-
nate resource) and checkpoint/restart (failed tasks are
moved transparently to other resources).

3 The Bioinformatics Application

The Bioinformatics application considered in this
work performs protein clustering in order to eliminate
redundancies in a protein database by comparing its
entries [6]. In UniProt3, which is the world’s most
comprehensive catalog of information on proteins, cd-
hit is used to generate the UniRef reference data sets.
For parallel processing purposes, a set of separate tools
which perform the database division and each singular
operation of the algorithm is provided.

The algorithm is represented in Figure 1. First off,
a tool called cd-hit-div performs the protein database
division. The first division, the representative one, is
passed to the cd-hit application so it’s compared to it-
self (represented as the A task in Figure 1). The out-
put is then compared to the rest of partitions through
the cd-hit-2d tool (represented as the B tasks). The
first partition which results from the last operation is
then the representative one (the A′ task in Figure 1)
and the process starts over until there aren’t any more
partitions. When the last comparison is performed,
all the outputs of the cd-hit tool are merged with the
clstr merge.pl tool.

With the purpose of porting the application to the
Grid, tasks have been divided in two types. In the first
type, the job executes both cd-hit-2d and cd-hit over
the given database division. In the second type, the job
executes just cd-hit-2d. Both the database division and
final merging are performed locally. As can be under-
stood from Figure 1, tasks from a certain level cannot
start until the first type job from the previous level is
not finished, so task dependencies must be managed in
this workflow. In a workflow, the node path translated
into a sequence of tasks, to which the completion time
is subject, is called critical path [8]. In this case, the
critical path is composed by the execution of the first
type tasks (the shaded nodes in Figure 1).

4 Experimental Results

The input protein database is a part of the Ref-
Seq database4 provided by the National Center for

3http://www.pir.uniprot.org/database/DBDescription.shtml
4http://www.ncbi.nlm.nih.gov/RefSeq/

2

. . .

. . .

. . .

cd−hit−div

A

A’

A’’

B B B

B’B’

B’’

clstr_merge.pl

A’’’

Figure 1. The cd-hit algorithm. White tasks
execute cd-hit-2d and shaded tasks execute
both cd-hit-2d and cd-hit.

Biotechnology Information (NCBI). Its size is 435MB
and stores 504.876 proteins. Moreover, the input file
size and the number of the resulting tasks depend on
the number of database divisions. Table 1 shows these
figures for the experiments performed. For the sake of
completeness, the cd-hit and cd-hit-2d executable file
sizes are both 1.1MB.

The experiments where run on resources (see Ta-
ble 2) from the Enabling Grids for E-sciencE (EGEE)
project, as GridW ay can be used in this testbed [11].
The goal of this project is to build the most large
production-level grid with great levels of performance
and reliability. The tasks were launched, one experi-

Table 1. Input file sizes and number of tasks
for each database division.

DB Div. Mean Size Tasks
10 44MB 45
12 36.5MB 66
14 31.5MB 91
16 27.5MB 120
18 24.5MB 153
20 22MB 190
22 20MB 231

Table 2. Testbed resources. All DRMS are
PBS.

Site Processor Nodes Speed
BIFI ES Intel P.IV 56 3.2GHz
CESGA ES Intel P.III 16 500MHz
CGG FR Intel P.III 58 1.2GHz
CIEMAT ES Intel Xeon 226 3.2GHz
GRIF FR Intel P.IV 14 2.8GHz
JINR RU Intel P.D 30 2.8GHz
L.-HEP UK Intel P.IV 374 3GHz
PNPI RU Intel P.IV 60 3GHz
RAL UK Intel P.IV 62 2.8GHz
RALPP UK Intel P.III 1064 1GHz
ScotGRID UK Intel Xeon 6 2.8GHz
SINP RU Intel Xeon 94 2.8GHz

ment per division number, from the Universidad Com-
plutense de Madrid at different times on different days
of the week during July 2006.

Let us first consider the Grid execution of each node
of the cd-hit workflow. As can be expected, the behav-
ior of the algorithm depends on the number of initial
database divisions. Note that, as it increases, the par-
allelism level of the application is favored; although the
computation to file transfer ratio gets worse. This fact
is clearly shown in Figure 2, where the average CPU
(Tcpu), file transfer (Txfr) and queuing (Tque) times are
presented for different number of database divisions.
Moreover, the time a task waits in the remote queu-
ing system is not related to the number of divisions
as it only depends on the remote resource load status,
which is high because the EGEE infrastructure is at
production level. Therefore, the queuing time is the
most significant part of the walltime, not considering
transfer times, of each task in all the experiments.

In order to analyze the impact of the above con-
siderations in the workflow walltime, let us define the
expected walltime (Texp) without considering the task
queuing times and job failures. This time can be es-
timated by taking into account that the completion of
each level of the workflow is subject to the most signif-
icant node’s execution:

Texp = N · (TA
cpu + TA

xfr), (1)

where N is the number of database divisions, and TA
cpu

and TA
xfr are the mean CPU and transfer times of the

shaded tasks in Figure 1. Also, a lower bound estima-
tion of the walltime is: Tmin = N · TA

cpu. Finally, we
can compare them with the sequential execution of the

3

Divisions

T
im

e
(m

in
ut

es
)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 12 14 16 18 20 22

Mean Tcpu
Mean Txfr

Mean Tqueue

Figure 2. Average CPU (Tcpu), file transfer
(Txfr) and queuing (Tque) times for the work-
flow tasks and different number of database
divisions.

T
im

e
(h

ou
rs

)

Divisions

 0

 1

 2

 3

 4

 5

 6

 10 12 14 16 18 20 22

Tseq
Texp

T
Tmin

Figure 3. Workflow execution times for differ-
ent number of database divisions.

workflow (Tseq), that can be easily estimated with:

Tseq = N · TA
cpu + TB

cpu ·
N∑

n=2

(n − 1), (2)

where TB
cpu is the CPU time of the white tasks in

Figure 1. The CPU times in Equation 2 are mea-
sured in the testbed’s fastest machine (Intel Pentium
IV 3.2GHz).

Figure 3 shows the previous times along with the
experimental time (T) obtained in the execution of the
workflow for different number of database divisions. As
can be observed the Grid execution time of the work-
flow is similar to that obtained in a single machine;
and away from that predicted by equation 1. This is
mainly due to the overhead imposed by the remote re-
source management systems, as shown in Figure 2.

The walltime of the workflow depends also on the

Divisions

Jo
b

R
es

ch
ed

ul
es

 0

 20

 40

 60

 80

 100

 120

 10 12 14 16 18 20 22

Suspension Timeouts
Execution Errors

Figure 4. Number of jobs rescheduled in each
experiment.

number of times a job is rescheduled to other resource.
In our case, these reschedules are due to execution er-
rors (i.e. middleware failures) or suspension timeouts
(a job waits in the remote queue more than 5 minutes).
The number of jobs rescheduled in each experiment are
shown in Figure 4. The influence of these two factors
can be clearly observed in Figure 5 for the workflow
execution with 14 database divisions.

It is interesting to analyze the potential speed-up
that could be obtained for this kind of applications,
where the level of parallelism is not constant. Note
that the number of tasks decreases in each level of the
workflow. To this end, we will consider: the speed-up
(S) of the workflow, that obtained without considering
queue wait times or job failures (Sexp), and an upper
bound limit (Smax) computed using Tmin. These three
values are represented in Figure 5. As previously dis-
cussed, the speed-up obtained by the workflow is very
limited. Moreover, the file transfer times also impose
a significant reduction of the expected speed-up, when
compared to the upper bound limit, Smax.

5 Other Workflow Management Sys-
tems

Many workload management systems have been de-
veloped to execute complex jobs in Grid infrastruc-
tures. These projects are generally based on custom
middleware developments which made assumptions on
the underlying infrastructure. The use of a general-
purpose meta-scheduling system have shown its relia-
bility and robustness to execute workflows in a produc-
tion Grid infrastructures (Globus-based). The appli-
cation takes advantage of the fault-tolerance, advance
scheduling and deployment features of the GridWay
meta-scheduler.

4

Divisions

Sp
ee

d−
up

S
Sexp

Smax

 0

 2

 4

 6

 8

 10

 12

 14

 10 12 14 16 18 20 22

Figure 5. Speed-up of the workflow execution
for different number of database divisions.

The Directed Acyclic Graph Manager (DAG-
Man) [10], provided by Condor, allows users to define
jobs with dependencies, being Condor the one who ex-
ecutes each job. DAGMan offers fault tolerance with
rescue DAG generation and a definable number of job
execution retries.

Pegasus [1] is released as a part of the GriPhyN Vir-
tual Data System (VDS) and extends DAGMan. It
generates an executable workflow from the mapping of
an abstract workflow to available Grid resources where
artificial intelligence planning techniques may be used.
In order to find available resources and needed data,
Pegasus accesses various Grid information services such
as the Globus Monitoring and Discovery Service (MDS)
and the Replica Location Service (RLS), as well as
the GriPhyN Transformation Catalog and Metadata
Catalog Service (MCS). Then, the resource selection is
performed both randomly and through a performance
prediction infrastructure. Moreover, pluggable task
scheduling strategies and just in-time scheduling are
supported.

With Triana [9], code can run either locally or dis-
tributedly following a parallel or peer-to-peer policy.
Tasks are dynamically allocated and both information
retrieval and fault tolerance mechanisms are based on
the Grid Application Toolkit (GAT) from GridLab [4].

In ICENI [7], several scheduling algorithms are pro-
vided such as random, best of n random, simulated
annealing and game theory. Moreover, new algorithms
can be plugged. Historical data can be used in schedul-
ing as performance is being monitored for each resource
and the user may specify metrics. Two scheduling
schemes can be found in ICENI: lazy and advanced
reservation using WS-Agreement.

GridAnt [5] extends the Ant deploy tool with new
components and vocabulary. The information retrieval

is performed through Globus MDS and the user de-
fines fault tolerance mechanisms as the architecture of
GridAnt is designed for user extension.

The hierarchical scheduling in Gridbus [13] uses the
tuple-space model [13]. Gridbus workflow accesses the
Grid Market Directory (GMD) in order to retrieve re-
source information including its access cost. On the
other hand, for accounting and billing purposes, the
Grid Bank (GB) service can be accessed as well. Failed
tasks can be rescheduled to alternative resources. Fi-
nally, users can define quality of service constraints
such as deadline and cost budget.

6 Conclusions

Grid computing is a matured technology that allows
users to run embarrassingly distributed applications.
As long as Grid computing reached these first needs,
problems that must be faced are gaining more com-
plexity. In this paper we have analyzed the porting of
a bioinformatics workflow to a production Grid envi-
ronment. This kind of workflow computations can not
be performed for large protein databases in a single
computer due to memory restrictions.

Grid Computing served to process these database
divisions separately. However, the efficiency that could
be expected is dramatically limited by the nature of
the Grid itself: dynamism (queue times), heterogenity
and high fault rate. Among the failures we found in
our experiments, there were authentication errors, and
the loose of callbacks and exit codes. In this study,
the GridWay workflow engine has shown to be robust
and reliable, as the computation of mid-size databases
could be successfully carried out.

Acknowledgements

We would like to end this contribution thanking all
the sites belonging to EGEE, in particular those whose
machines participated in the experiments.

References

[1] E. Deelman, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, S. Patil, M.-H. Su, K. Vahi, and M. Livny.
Pegasus: Mapping Scientific Workflows onto the Grid.
In Proc. Second European AcrossGrids Conference
(AxGrids 2004), volume 3165 of Lecture Notes in
Computer Science, pages 11–20, 2004.

[2] E. Huedo, U. Bastolla, R. Montero, and I. Llorente.
Computational Proteomics on the Grid. New Genera-
tion Computing, special issue on Grid Systems for Life
Sciences, 22:191–192, 2004.

5

[3] E. Huedo, R. S. Montero, and I. M. Llorente. A Frame-
work for Adaptive Execution on Grids. Software –
Practice and Experience (SPE), 34(7):631–651, 2004.

[4] K. Kurowski, B. Ludwiczak, J. Nabrzyski, A. Olek-
siak, and J. Pukacki. Dynamic Grid Scheduling with
Job Migration and Rescheduling in the GridLab Re-
source Management System. Scientific Programming
(AxGrids 2004 Special Issue), 12(4):263–273, 2004.

[5] G. V. Laszewski, K. Amin, M. Hategan, N. Zaluzec,
S. Hampton, and A. Rossi. Gridant: A Client-
Controllable Grid Workflow System. In Proc. 37th
Annual Hawaii International Conference on System
Sciences (HICSS’04), 2004.

[6] W. Li, L. Jaroszewski, and A. Godzik. Clustering of
Highly Homologous Sequences to Reduce the Size of
Large Protein Databases. Bioinformatics, 17:282–283,
2001.

[7] S. McGough, L. Young, A. Afzal, S. Newhouse, and
J. Darlington. Workflow Enactment in ICENI. In
Proc. UK e-Science All Hands Meeting, pages 894–
900, 2004.

[8] M. Pinedo. Scheduling: Theory, Algorithms, and Sys-
tems. Prentice Hall, New Jersey, NJ, second edition,
2002.

[9] I. Taylor, M. Shields, and I. Wang. Resource Man-
agement for the Triana Peer-to-Peer Services. In
J. Nabrzyski, J. M. Schopf, and J. Wȩglarz, editors,
Grid Resource Management, pages 451–462. Kluwer
Academic Publishers, 2004.

[10] D. Thain, T. Tannenbaum, and M. Livny. Grid Com-
puting, chapter Condor and the Grid, pages 299–335.
John Wiley & Sons, Inc., 2003.

[11] J. L. Vázquez-Poletti, E. Huedo, R. S. Montero, and
I. M. Llorente. Coordinated Harnessing of the IRIS-
Grid and EGEE Testbeds with GridWay. Parallel and
Distributed Computing, 66(5):763–771, 2006.

[12] J. L. Vázquez-Poletti, E. Huedo, R. S. Montero, and
I. M. Llorente. Massive Ray Tracing in Fusion Plas-
mas on EGEE. In Proc. EGEE (Enabling Grids for
E-sciencE) User Forum 2006, 2006.

[13] J. Yu and B. Buyya. A Novel Architecture for Real-
izing Grid Workflow using Tuple Spaces. In Proc. 5th
IEEE/ACM International Workshop on Grid Com-
puting (Grid 2004), 2004.

[14] J. Yu and R. Buyya. A Taxonomy of Workflow Man-
agement Systems for Grid Computing. Grid Comput-
ing, 3(3–4):171–200, 2005.

6

