Supporting Several Real-time Applications on the Java Platform-

M. Teresa Higuera-Toledano
Facultad Informdtica, Universidad Complutense de Madrid, 28040 Madrid Spain

Email: mthiguer@dacya.ucm.es

Abstract

In this paper, we adapt the Java memory management
to an embedded system, e. g., wireless PDA executing
multimedia applications. We consider the concurrent
execution of several applications within a single JVM.
Since a multimedia application is supported by several
tasks, some of them being response time limited, while
others being high performance oriented, we must
consider the real-time characteristics of the Garbage
Collector (GC). In order to have a different GC per
application, we introduce and define application-
specific ~memory, building upon the Real-Time
Specification pr Java (RTSJ) from the Real-Time Java
Expert Group. An existing hardware support allows us to
improve the performance of our solution.

1 Introduction

This paper focuses on a memory management solution in
order to divide/share the heap among different weal-time
applications accounting for relevant Java specifications:
(i) the Real-time Specification for Java (RTSJ) [3], (ii) the
application isolation API [7], currently under revision as
JSR-001 and JSR-121 respectively, (iii) the KVM [9]
targeting limitedresource and network connected devices,
and (iv) the picoJava-1Il [8] microprocessor. When
executing concurrently multiple applications, if an
application consumes all the available memory, the other
applications get starved. One way to avoid this problem is
to divide the memory among running applications in the
system, giving to each application a separate garbage
collectable area. Hence, the partition of the heap in
separate sub-heaps allows: invoking several collectors
concurrently; having a collector per sub-heap that is
customized according to the behaviour of the embedding
application, minimizing the latency time to preempt a local
collector from the CPU when a high priority task from
another application arrives, and distributing the collector

overhead among activities. The paper is organized as
follows. Section 2 presents the general guidelines of our
solution design to execute concurrently several
applications. Section 3 improves the performance of the
proposed solution by using an existing hardware support.
Section 4 sketches an overview of related work. Finally,
Section 5 offers some conclusions.

2 Supporting Several Applications

In this section, the memory management model of RTSJ is
extended to offer a multi-process execution. In the
proposed solution, some memory objects are accessible
by all the applications in the system, which allows inter-
process communication by using both the communication
model of Java based on shared variables and monitors,
and the classes that the RTSJ specification provides to
communicate real-time tasks and non-real-time threads.

2.1 The Application Isolation API

Running multiple applications within a single instance of
the same JVM has the potential for improving the
performance and scalability of the system by sharing code
and data structures. The communication among two
applications running within the same JVM can be lighter
than communication by using the RMI. The application
isolation API [7] guarantees strict isolation between
programs (isolates).

An isolate encapsulates an application or component,
having its own version of a static state of the classes that
it uses. Isolates have disjoint objects graphs, and sharing
objects among two different isolates is forbidden. From
the programmer point of view, starting an isolate is the
same to starting a new JVM. The Isolate class allows us to
create an isolate by specifying a class. The only
requirement is that the specified class must be a Java
application, i.e. must have themain () method.

- Founded by the Ministerio de Ciencia y Tecnologia of Spain (CICYT); Grant Number TiC2003-1321.

0-7803-8735-X/05/$20.00©2005 IEEE

2.2 The RTSJ Memory Model

From a real-time perspective, the Garbage Collector (GC)
introduces unpredictable pauses that are not tolerated by
real-time tasks. Real-time collectors eliminate this problem
but introduce a high overhead. An intermediate approach
is to use Memory Regions (MRs) within which both
allocation and de-allocation are customized and also the
space locality is improved. Application of these two
implicit strategies has been studied in the context of Java,
which are combined in the RTSJ [3].

The MemoryArea abstract class supports the region
paradigm in the RTSJ specification through the three
following kinds of regions: (i) immortal memory,
supported by the ImmortalMemory and the
ImmortalPhysicalMemory classes, that contains
objects whose life ends only when the JVM terminates;
(ii) (nested) scoped memory, supported by the
ScopedMemory abstract class, that enables grouping
objects having well-defined lifetimes; and (iii) the
conventional heap, supported by the HeapMemory
class. Objects allocated within immo rtal regions live until
the end of the application and are never subject to
garbage collection. Objects with limited lifetime can be
allocated into a scoped region or the heap. Garbage
collection within the application heap relies on the (real-
time) collector of the JVM.

2.3 Introducing the Memory Space Hierarchy

In order to obtain multi-process execution, we introduce
the MemorySpace abstract class supporting two
subclasses: the CommonMemory class to support public
memory without application access protection, and
ProtectedMemory to define application-specific
memory with access protection. There is only one object
instance of the CommonMemory class which is created
at initialization system time and is a resource shared
among all applications in the system. In contrast, a new
ProtectedMemory object is created when creating a
new application and is a local resource protected from
accesses of all the other applications in the system.

Creating a protected memory space implies the
creation of both the local heap and the local immortal
memory regions of the corresponding application. An
application can allocate memory within its local heap, its
immortal region, several immortal physical regions, several
scoped regions, and also within the common memory
space.

To facilitate code sharing, classes are stored within
the common space (ie., the
CommonSpace.instance () object). In this way, all

applications in the system access both code and data.
Class variables, declared as static in Java must be
protected from the access of other activities. Thus, we
maintain a copy of the class variables in the local immortal
memory of the application. The same problem arises with
class monitors (i.e., shared code related to
synchronization), these methods are declared in Java as
static synchronized. When a task enters a class
monitor and is suspended by another task, if both tasks
are from the same application, there is no problem. The
problem arises if the two tasks are from different
applications.

To ensure mutual exclusion among tasks from the
same application, while avoiding other activities to be
affected, each application must maintain a separate copy
of the monitor. The solution is then to allocate also in the
immortal memory of the application a copy of the static
code. As in the solution given in [4], we maintain a copy
of both class variables and class monitors for each
application using the class, while maintaining only a single
version of the class code. This solution requires
modifying the class loader.

2.4 Dynamic Detection of Illegal Assignments

An attempt to create a reference to an object into a field of
another object requires a different treatment depending on
the space to which the object belongs:

e Treatment A: the referenced object is within a
protected space. For intra-spaces references, we
must take into account the assignment rules
imposed by RTSJ [3] (i.e., objects within the
heap or an immortal memory cannot reference
objects within a scoped region, and objects
within a scoped region cannot reference objects
within another scoped region that is neither non-
outer nor shared). Whereas for inter-spaces
references, we raise an
illegalAssignment () exception.

e Treatment B: the referenced object is within the
common space. It is allowed and nothing needs
to happen.

In Figure 1, we can see the write barrier pseudo-code that
we must to introduce in the interpretation of the
putfield, aastore, and putstatic
bytecodes. We denote as X the object that makes the
reference, and as Y the referenced object. The spaceT ()
function returns: common or protected depending on
the type of the space to which the object parameter

belongs. The regionT() function returns: heap,
immortal, or scoped depending on the type of the
region to which the object belongs. And the
nested(X,Y) function returns true, when the
region’s scope of the Y object is the same or outer than
the region of the X object [6].

if (spaceT(Y)=protected) and (space(X)<>space(Y))) lllegalAssignment();
if ((regionT(Y)=scoped) and (regionT(X)<>scoped)) lllegalAssignment();
if ((regionT(Y)=scoped) and (not nested(X, Y))) lllegalAssignment();

Figure 1: Write barrier code detecting illegal assignment.

The header of the object must specify both the space and
the region to which the object belongs. Then, when an
object/array is created by executing the new
(new_quick) or newarray (newarray_quick)
bytecode, it is associated with the scope of both the
active space and the active region. Local variables are also
associated with both the active region scope and the
active space scope.

3 Using Hardware Support

In this section, we first present an overview of the write
barrier hardware support that the picoJava-Il
microprocessor [8] provides. Next, we introduce a
hardware-based solution to improve the write barrier
performance of memory regions.

3.1 The picoJava-II write barrier

Upon each instruction execution, the picoJava-II core
checks for conditions that may cause a trap. From the
standpoint of GC, this microprocessor checks for the
occurrence of write barriers, and notifies them using the
gc_notify trap. This trap is triggered under certain
conditions when assigning to an object’s field an object
reference (i.e., when executing bytecodes requiring write
barriers). The conditions that generate the gc_notify
trap are governed by the values of the GC_CONFIG and
the PSR registers. The GC_CONFIG register governs
two types of write-barrier mechanism: page-based and
reference-based. Whereas the reference-based write
barriers are used to implement incremental collectors, the
page-based barrier mechanism was designed specifically
to assist generational collectors based on the train-based
algorithm.

3.2 Supporting Memory Spaces

Our solution uses the picoJava-I1 paged-based mechanism
to detect references across different spaces by mapping
each space in a car. If the GCE bit of thePSR register is
set, then page-based write barriers are enable. The object
reference in picoJava-ll has 4 fields: GC_TAG,

ADDRESS, X, and H. The ADDRESS field (bits <29:2>) of
the reference always points to the location of the object
header. In the GC_CONFIG register, the TRAIN_MASK
field (bits <31:21>) allows us to know whether both

objects in an assignment X and Y belong to the same train,
whereas the CAR_MASK field (bits <20:16>) detects

whether they belong to different cars (see Figure 2). If,
for example, we initialize the REGION_MASK field as
0000000000, and the CAR_MASK field as11111, we have
only a train divided in 32 cars (spaces), each one divided
in pages of 16 Kbytes.

if (PSR.GCE = 1) then
if ((X<29:19>&GC_CONFIG<31:21>)=(Y<29:19>& GC_CONFIG<31:21>))
and
((X<18:14>&GC_CONFIG<20:16>)<>(Y<18:14>&GC_CONFIG<20:16>))
then gc_notify trap

Figure 2: Page-based write barrier mechanism

The page-based mechanism avoids us to execute the write
barrier code when both objects X and Y belongs to the
same space (i.e., for intra-space assignments). Then, write
barriers are executed only for references across spaces
(i.e., for interspace assignments). Note that spatial locality
property means that intra-space assignments are more
frequent than inter-space assignments. An application
makes an inter-space assignment for two proposes: to
communicate to another application by sharing an object
within the common space or to violate the protected space
of another application. Since both communication among
applications and violation spaces are infrequent, the
improvement introduced in the performance of our
solution is important. Figure 3 shows the associated
exception routine to the ge_notify trap, which must be
executed for inter-space assignments.

gc_notify_trap_code
if (space(Y) <> common) lllegalAssignment();
priv_ret_form_trap;

Figure 3: Detecting illegal assignments across spaces.

3.3 Implementation Details

We have limited to 8 the number of memory spaces. We
consider that spaces are paged, and the page size is 64
Kbytes. Also, the maximum number of pages that a space
can hold has been limited to 32. We consider further that a
maximum of 64 tasks can reference objects in the same
scoped region. To limit the worst case for write barriers
execution time, we must to limit the number of scoped
nested levels. Since we must to take into account the
single-parent rule of scoped regions [3], this means that
we must limit the maximum number of scoped regions that
an application can hold.

We have fixed this limit to 30, which allows us to
support the region by using 5 bits, and the region stack of
each task in 10 words. With this implementation, the
overhead introduced in the KVM [9] to evaluate a
condition of the write barrier test is about 17% per
assignment. Instead of using the SPECjvm98 benchmark,
which is not compatible with the KVM,we use an artificial
collector benchmark. This is an adaptation made by Hans
Boehm from the Ellis and Kovac benchmark.

This benchmark executes 262 millions bytecodes and
allocates 408 MBytes. Since the number of bytecodes that
perform a write barrier test is 15 millions, we conclude that
5% of executed bytecodes perform a write barrier test.
Where 92.4% of the references are to object variables (i.e.,
aastore: 6.6%, putfield: 39.6%, and
putfield_fast: 46.2%), and 7.6% to class variables
(i.e., putstatic: 6.6%, and putstatic_fast: 1%).
Note that our solution allocates the object variables within
the heap or a scoped region, and the class variables within
an immortal region.

3.4 Memory footprint

In order to adapt the KVM objects to the picoJava-II
microprocessor, we add a word to the object header of the
KVM. The added word includes the following fields:
REGION_TYPE <31:30> (GC_TAG in picolJava-Il), the
REGION_ID <29:25> and the SPACE_ID <I8:14>
(CAR_ADDRESS in picoJava-II). Where the REGION_ID
and the SPACE_ID fields specify respectively the region
and space to which the object belongs, and the
REGION_TYPE specifies the region type (e.g., 00 for the
heap, 01 for immortal, 10 for scoped non-shared, and 11 for
scoped shared). This increases a word per object the
memory consumption. Alternatively, we can modify the
original header format of KVM objects (i.e., SIZE <31:8>,
TYPE <7:2>, MARK_BIT <I> and STATIC_BIT <0>)to
support the identification of both the space and the region

to which the object belongs, and also the type of the
region (i.e., REGION_TYPE <31:30>, SIZE_H <29:19>,
REGION_ID <I18:14>, SIZE_L <I13:8>, TYPE <7:2>,
MARK_BIT <1>, and STATIC_BIT <0>). Note that the
maximum size of the object has been reduced from 16
Mbytes to 1 Kbytes; given the small average object size
that the specJVM [16] applications present (i.e., about 32
Bytes), we optimize for small objects.

We maintain a region-structure of 2 words for each
MR object in the system with the following format:
REGION_TYPE <31:30>, REGION_ID <29:25>,
OUTER_REGION_ID <24:20>, REFERENCE_COUNTER
<19:14>, SIZE <I13:8>, SPACE_ID <7:5>, and PAGE
<4:0>. Where the REFERENCE_COUNTER, the SIZE,
and the PAGE fields allow us to know respectively: the
number of tasks that can allocate or reference objects in
the region, the size hold by the region in bytes, and the
page which support the region. The region-structure
increases the memory footprint as maximum of 128 Bytes.
Note that these region-structures forms a scope-tree [6]
where the heap is the root and immortal regions are not
included.

5 Related Works

Unlike traditional JVMs, in our proposed solution, the
applications run concurrently within a single JVM
instance. In [5], we study the management of resource
consumption taking into account both realtime
constraints and the available memory budget. To support
the memory model of RTSJ, the JVM must check for the
assignment rules before to execute an assignment
statement. In order to do so, we introduce an extra code in
all bytecodes causing an object assignment.

Another effort to partition the Java memory is
described in [2]. In this model, the creation of a new heap
is optional; the proposed interface allows us to create a
new name-space which shares the system heap rather than
creating a new one. In order to avoid malicious cross-
reference between private heaps, this solution uses both
read and write barriers. As our solution, the
implementation of heap partitioning binds heaps to
objects by adding a field in the object header.

In order to provide strong isolation between services,
both to enforce security and to control resource
consumption, the solution proposed in [10] subdivide a
physical machine into a set of fully isolated protection
domains. As in our solution, each virtual machine is
confined to a private namespace. In a way similar to the
Java Os from Utah [1], in order to provide secure and
controlled accesses, we limit direct sharing among

applications. When two activities want to communicate,
they must share an object residing in the common heap.
We take this solution as a trade-off between a more
general solution such as allow activities to communicate
using the RMI, and forbidding all possible communication.

6 Conclusions

This paper has presented a memory management design
solution for extending the RTSJ specification to execute
several activities concurrently in the same JVM. To
facilitate code sharing, classes are stored in the immortal
common space. The partition of memory allows us to
invoke several collectors concurrently, where the
reclamation rate can be different for each application.
Regarding our software-based solution, we found only
two problems: the high overhead that introduces the
dynamic check of illegal assignment, and that this
overhead must be bounded by limiting the nested scoped
levels.

Our solution, to improve the performance of memory
management, partly addresses the use of hardware aid by
exploiting existing hardware support for Java. This
solution is efficient, but not very flexible, because we must
configure the system to determine the virtual region
memory map, which can be unpractical for RTSJ classes
dealing with 1/0 mapped memory (e.g.,
ImmortalPhysicalMemory). Also requires the size
of the space to be multiple of the car size and the size of
the region to multiple of the page size, which may
introduce internal fragmentation. These problems can be
avoided by using the header of the object in the write
barrier mechanism instead of the object reference.

References

[1T G. Back, P. Tullmann, L. Stoller, W.C. Hsieh, and J.
Lepreau. Java Operating Systems: Design an
Implementation.. Technical report, Department of
Computer Science, University of Utah,
http://www.cs.utah.edu/projects/flux, August 1998.

[2] P. Bernadat, D. Lambright, D., and F. Travostino.
“Towards a resource safe Java for service guarantees in
uncooperative environments”. In Proceedings of the IEEE
Workshop on Programming Languages for Real-Time
Industrial Applications, 1998.

[3] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D.
Hardin, and M. Turnbull. (The Real-Time for Java Expert
Group). "Real-Time Specification for Java". RTJEG 2002.
http://ww w.itj.org

[4] G. Czajkowski. Application Isolation in the Java Virtual
Machine. In Proc. of Conference on Object and Oriented

Programming, Systems Languages and Applications, pages
354-366. OOPSLA, ACM SIGPLAN, October 2000.

[S] M.T. Higuera-Toledano, "Memory Management Design
to the Concurrent Execution of RTSJ". Workshop on Java
Technologies for Real-Time and Embedded Systems
(JTRES), LNCS 2889, november, 2003.

[6] M.T. Higuera-Toledano and M.A. de Miguel. "Dynamic
Detection of Access Errors and Illegal References in RTSJ".
In Proc. Of the 8" IEEE Real-time and Embedded
Technology and Applications Symposium (RTAS). IEEE
2002.

[71 Java Community Process. Application Isolation API
Specification. hitp://jcp.org/jsr/detail/121.isp, 2003.

[8] Sun Microsystems. “picolava-II Programmer’s Reference
Manual". Technical Report. Java Community Process,
May 2000. hitp://java.sun.com

[9] Sun Microsystems. “KVM Technical Specification".
Technical Report. hva Community Process, May 2000.
http://java.sun.com

[10] A. Whitaker, M. Shaw, and S.D. Gribble. Denali: A
Scalable Isolation Kenel. In Proceedings of the Tenth
ACM SIGOPS European Workshop, Saint -Emilion, France,
September 2002.

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

