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Abstract 
The memory model used in the Real-Time 

Specz3cation for Java (RTSJ) includes both a heap 
within a traditional garbage collectol: which collects 
the not used objects, and a new memoly management 
feature based on scoped memoly areas. The scoped 
memory areas model allows programmers to ensure 
constant-time reclamation thus to have predictable 
pe$ormance. In order to maintain the pointer safety of 
Java RmJ imposes strict assignment rules to or fiom 
memoty areas preventing the creation of dangling 
pointers, at the cost of an unfamiliar programming 
model. The guide lines given by RTSJ to implement the 
assignment rules also increase the program complexity; 
more over, makes indeteminist the program behavior. 
In order to sobe theseproblem, we propose to redefine 
some RTSJ rules. 

Keywords: Real-tkne Java, Scoped-regions, Single parent 
rule, Illegal assignments, Garbage collection, Write- 
barriers. 

1. Introduction 

The Real-Time Specwcation for Java (RTSJ) 11 11 allows 
us to use the Java environment in the construction of 
real-time systems. The interdependence between 
functional and real-iime semantics of real-time software 
makes its maintenance especially mcult. In addition, 
embedded soRware systems are not portable as they 
depend on the particular underlying operating system 
and hardware architecture. The Java environment 
provides attributes that make it a powerful platform to 
develop embedded reaLtime applications. Since 
embedded systems normally have limited memory, an 
advantage that Java presents is the small size of hoth the 
Java runtime environment and the Java application 

programs. Dynamic l o a m  of classes facilitates the 
dynamic evolution of the applications embedded in the 
system. Additionally, the Java platform provides classes 
for building multithreaded applications and automatic 
garbage collection. However, it does not guarantee 
determinism nor bounded resource usage, which this 
type of systems needs. 

In order to solve the shortcomings of Java regarding 
its use for embedded real-time programming some 
solutions are been proposed. In [ 5 ] ,  we review the 
proposed real-time Java solutions, considering and 
analyzing the following ededded real-time issues: f )  
Solutions to access the underlying hardware. ii) What is 
the most adequate model for real-time thread scheduling, 
i i i )  How to solve the priority inversion problem, iv) How 
to generate and handle asynchronous events, v) How to 
m g e  resources. And vi) how to modify the garbage 
collection in mdet to make it compatible with reaLtime 
tasks execution. From our point of view, RTSJ [ l l ]  
constitutes the most adequate solution for reaktjme 
systems, which use in mission critical system are 
cwrently been evaluated in a number of projects such as 
131. 

RTSJ covers well all aforementioned features, in 
particular, the memory model includes both a heap with a 
traditional garbage collector, and a new memory 
management feature based on scoped memory areas. 
From a real-time perspective, the garbage collector 
introduces unpredictable pauses that are not tolerated 
by real-time tasks. Real-time collectors eliminate this 
problem but introduce a high overhead. The scoped 
memory areas model allows programmers to ensure 
constant-time reclamation thus to have predictable, at 
the cost of its explicit management which affects 
particularly how programs are written. 

Because scoped areas can be reclaimed at any time, 
objects within a memory area with a longer Ifetime are 
not allowed to create a reference to an object within 
another area with a potentially shorter lifetime. An RTSJ 
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implementation must enforce these scope checks before 
executing an assignment. In order to do that, RTSJ 
establishes a parentage relationship hetweenthe scoped 
memory areas; which is called the sinzle-parent rule. To 
enforce the RTSJ imposed rules, a compliant JVM must 
assure both the single parent rule and the assignment 
rules. The suggested RTSI implementation requires 
checking the single parent rule on every attempt to enter 
a scoped memory area, and to explore the scope stack on 
every attempt to create a reference. Since objects 
references occur frequently, it is important to implement 
checks for assignment rules efficiently and predictably. 

In this paper, weavoid the exploration on the scope 
stack, by replacing it by a name-based technique making 
the enforcement of memory references timepredictahle, 
because it does not depend of the nested level of the 
area to which the two objects of the memory reference 
belong. In order to do that, we propose to base the 
parentage relation of memory areas on the way they are 
createdcollected, instead on the way they are 
enteredexited by tasks such as the RTSJ suggests. 
More over, we avoid checks on every attempt to enter a 
scoped memory area. 

1.1 Related uork 

The main contribution of our approach is to introduce a 
name-based solution for illegal assignments, which avoid 
the exploration of the scope stack as suggest the current 
RTSJ. This solution is a direct consequent of the work 
presented in [7], which shows how all the necessary run 
time checks can be performed in constant time by 
simplifying the scoped memory hierarchy. This allows us 
to use a namehased encoding to implement dynamic 
scope checks, and also to avoid the single~arent rule 
checks. In [I21 we present a study of the behaviour of 
the RTSI simple parent rule and a first approach in order 
to change the parentage relation of scoped memory 
areas, avoiding its checks when entering a scoped area. 

The work presented in [I] introduces a display- 
based technique to support RTSJ scoped area and to 
check illegal assignments. An alternative technique to 
subtype test in Java have been presented in [lo], which 
has been extended to perform memory access checks in 
RTSJ. Another solutions tray to maintain statically the 
RTSJ invariants such as [9] and [13]. However, the 
dynamic issues that Java presents, requires some cases 
to check the assignment rules at run-time. However, 
static and dynamic techniques can be combined to 
provide more robustness and predictability of RTSJ 
applications. 

1.2 Paper Organization 

The paper is organized as follows. Section 2 presents an 
in depth description of the semantics of the RTSJ 
memory model, being centred in the scoped memory 
areas and its relations, giving sufficient details about the 
subtleties of this model. Section 3 introduces an 
alternative solution to improve the RTSJ suggested 
memory model implementation, which is based on the 
identifier of memory areas and includes a new point of 
view in the way to understand the RTSJ memory area 
relationships, particularly the single-parent rule. Section 
5, fmally,concludes this paper. 

2 The RTSJ mmory mdel  

Implicit garbage collection has always been recognized 
as a beneficial support from the standpoint of promoting 
the development of robust programs. However, this 
comes along with overhead regarding hoth execution 
time and memory consumption, which makes (implicit) 
garbage collection poorly suited for small-sized 
embedded real-tie systems. This must not lead to 
undertake the unsafe primitive solution that consists in 
letting the application programmer to explicit deal with 
memory reclamation. An alternative approach is to use 
memory regions within which hoth allocation and de- 
allocation are customized, also space locality is 
improved. Such a facility is supported by RTSJ through 
the introduction of thee  kinds ofregions, called memory 
areas. 

2.1 The memory areas model 

The RTSJ introduces memory regions and allows the 
implementation of real-time compliant collectos to be run 
within regions except within those associated with hard 
timing constraints. The MernoryArea abstract class 
provides three kinds of regions having different 
properties in term of both the object lifetimes and the 
object allocatiodde-allocation timing guarantees: 

i) Immortal memory areas contain objects whose life 
ends only when the IVM terminates and are never 
garbage collected. 

ii) Scoped memory areas, supported by the 
ScopedMernory abstract class, enables grouping objects 
having well-defined lifetimes. Scoped areas are collected 
when there is not a thread using the area, and may either 
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offer temporal guarantees or not on the time taken to 
create objects. 

iii) The garbage collector within the heap must scan all 
objects allocated within immortal or scoped memory 
areas for references to any object within the heap in 
order to preserve the integrity of the heap. RTSJ further 
defines the Garbageco l l ec to r  abstract class, which 
can be customized through an incremental collector 
allowing the application to execute while the collector 
has been launched. 

Each memory area is then managed to embed objects that 
are related regarding associated lifetime and reaLtime 
requirements. Particularly, objects allocated within 
immortal memory areas live until the end of the 
application and are never subject to garbage collection. 
Objects with limited lifetime can be allocated into a 
scoped area or the heap. Garbage collection within the 
application heap relies on the (real-time) collector of the 
JVM. 

2.2 The task model 

RTSJ makes distinction between three main kinds of 
tasks: i) low-priori1.y that are tolerant with the garbage 
collector, ii) Iiigh-priori1.v that cannot tolerate 
unbounded preemption latencies, and iii) critical that 
cannot tolerate preemption latencies. Then, RTSJ 
introduces two new kind of thread; both are reaLtime 
threads. Nevertheless, the latter is protected from the 
collector delays, whichcan come about for two reasons: 

The collector is invoked during the exemtion of a 
real-time thread as consequence of memory 
allocation. 
The collector is running and must anive to a point 
where all data structures are in a consistent state to 
be preempted by a high-priority task breemplion 
latency), which can be also cause he  inversion 
priority problem. 

In RTSl critical tasks avoids both problems by running at a 
higher priority than the collector does, also they are not 
allowed to access heap allocated objects (i.e., critical 
tasks do not cause heap allocation and do not require 
heap allocated objects). An application can allocate 
memory into memory areas, as follows: 

i) Low-priority task  or  traditional threads can allocate 
memory only withim the traditional heap. 

ii) High-priority tasks or real-time threads may allocate 
memory within the heap or within a memory area other 
than the heap by making that area the current allocation 
context (e.g., by entering the area). 

iii) Critical tasks or non-heap real-time threads must 
allocate memory from a memory area other than theheap 
by making that area the current allocation context. 

A new allocation context is entered by calling the 
MernoryArea.enter 0 method orby starting a reaLtime 
thread whose constructor was given a reference to a 
memory area. As an example, Figure 1 shows a reaLtime 
thread called rnyTask (lime 13), which allocates an array of 
10 integers within the heap (line 5), and another of 20 
integers in the scoped memory area called rnyRegion. Once 
a memory area is entered (line 15). subsequent uses of 
the new keyword, within the program logic, will allocate 
objects from the memory context associated to the 
entered area (line 6). When the area is exited, subsequent 
uses of the new operation will allocate memory from the 
area associated with the enclosing scope 

1: impon javaxreallime; 
2: 
3: class Aliocator implements Runnable ( 
4 :  public void run0 ( 
5: HeapMemory.instanceO.newAriay(lnleger, 10); 
6: inlll x = new inll201; 
7: 1 
8: ) 
9: 
10: class RegionUseExample ( 
11: public slalic void main (Pringll args) ( 
12: SmpedMemory myRegion -new VTMemory(lO24. 2'1024): 
13: Realtimelhread mylask = new ReaitimeThread(nul1. null. 
14: new MernoryParame1ers(l024.0). 
15: myRegion, null. 
16: rew AllocalorO): 
17: m yTasn.s~anO: 
18: 1 
19: 1 

Figure 1: UsingRTSJ memory regions. 

2.3 Thescoped memory areas 

Scoped regions may m may not be subject to internal 
real-time garbage collection depending on their temporal 
properties. However, since RTSl does not impose the 
collection of objects within scoped regions, we consider 
in this paper that scoped regions are never garbage 
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collected. Since objects within immortal and scoped 
areas are not garbage collected, they may be exploited by 
critical tasks. A scoped region gets collected as a whole 
once it is no longer used. The lifetime of objects 
allocated in scoped areas is governed by the control 
flow. Strict assignment rules placed on assignments to or 
from memory areas prevent the creation of dangling 
pointers (see Table 1). 

Table I: Assignment rules in RTSJ. 
An implementation solution to ensure the checking of 
these rules before each assignment statement consists of 
performing it dynamically, each time a reference is stored 
in the memory (i.e., by using witebamers ). This solution 
adversely affects both the performance and predictability 
of the RTSJ application. 

2.4 The single parent rule 

Scoped areas can be nested and each scope can have 
multiple sub-scopes. Several related threads, possibly 
real-time, can share a memory area, and the area must be 
active until at least the last thread has exited. When no 
active threads within the scoped area, the entire memory 
assigned to the area can be reclaimed along with all 
objects allocated within it. The RTSJ suggested 
implementation associates to each real-time thread a 
scope stack containing all the areas that the thread has 
entered but not exited.The structure of enclosing scopes 
(i.e., the scope stack) is accessible through a set of 
methods on the RealtimeThread class, which allows 
outer scopes to be accessed like an array. h order to 
maintain the scope stack contain all nested scoped areas 
that a thread can hold, RTSJ establishes the single 
parent rule: 

"'If a scoped region is nor in trse, it has no parent. 
For all other scoped objects, the parent is the nearest 
scope oirrside it on the current scoped region stack A 
scoped region has exoctlv zero or one parent." 

The parentage relationship requires that a scoped 
memory area has exactly zero or one parent. Scoped 
areas that are made current by entering them or passing 
them as the initial memory area for a new task must 

satisfy the single parent rule. Therefore, the single 
parent rule guarantees that a parent scope will have a 
Lifetime that is not shorter than of any of its child scopes, 
which makes safe references from objects in a given 
scope to objects in an ancestor scope, and forces each 
scoped area to be almost once in the scope stack 
associated with the task. 

The singleparent rule also enforces every task that 
uses a memory area to have exactly the same scoped area 
parentage. Consider two scoped memory areas, A and B, 
where the A scoped area is parent of the B area. In such 
a case, a reference to the A scoped area can be 
referenced from a field of an object allocated in B. But a 
reference from a field of an object within A to another 
object allocated within B raises the 
Il legalAssignment ( )  exception. 

Since scoped areas are collected when there is not a 
thread using the area, each scoped memory area object 
(i.e., each instance of the class ScopedMemory) must 
maintain a reference count of the number of threads in 
which it is being used. When the reference count for a 
scoped area is decreased from one to zero, all objects 
within the area are considered unreachable and are 
candidates for reclamation. 

3 The name-based solution 

We suppose that the most common RTSJ useof a scope 
area is repeatedly to perform the same computation in a 
periodic task. In the current RTSJ, when a task or an 
event handler tries to enter a scoped area S, we must 
check if the corresponding thread has entered every 
ancestor of the area S in the scoped area tree. Then, 
safety of scoped areas requires checldng both the set of 
rules imposed on their entrance and the aforementioned 
assignment rules. Both tests require algorithms, the cost 
of which is linear or polynomial in the number of memory 
areas that the task can hold. In order to optimize the 
RTSJ memory model, we suggest simplifying data 
structures and algorithms, and propose to change the 
definitionofthe single parent rule. 

3.1 Theindeterminismof single parent rule 

The implementation of the single-parent rule as suggests 
the current RTSJ edition [ l l ]  makes the behavior of the 
application nondeterministic. In the guidelines given to 
implement the algorithms affecting the scope stack (e.g., 
the enter ( I mthod), the single parent rule guarantees 
that once a thread has entered a set of scoped areas in a 
given order, any other thread is enforced to enter the set 
of areas in the same order. Consider three scoped areas: 

659



A, B, and C, andtwo task 21 and22. Where task 21 tries 

to enter the areas as follows: A, B, and C, whereas 22 
tries to enter the areas in the following order: A, C and B. 
Let us suppose that task 21 has entered areas A and B, 

and task 22 has entered areas A and C. Iftask 21 tries to 

enter the area C(see Figure 2.a) or task 22 tries to enter 
the area B (see Figure 2.h), the single parent rule is 
violated and as consequence the 
Scopd.ycleException ( )  throas. ...... 

a. TI violates the singleparent rule. 

m 
b. rZ violates 

Scope SPofrl 

the singleparent 
A 
rule. 

Figure 2: Violating the single parent rule. 

Moreover, iffor example, 72 enters the area C before 71 

tries to enter it, then it is T2 which violates the single 
parent rule and raises the ScopedCycleException ( 1  

exception (see Figure3.a). However, if21 enters the area 

B before 22 tries to enter it, 22 violates the single parent 
rule raising the ScopedCycleExcept ion ( 1  exception 
(see Figule 3.h). Notice that determinism is an important 
requirement for real-time applications. 

a. rl violates the single parent rtrle. 

b. d violates the single parent nrle. 

Figure 3: Example ofnon-deterministic situation. 

3.2 The proposed parentage relation 

In order to solve the indeterminism problem introduced 
by scoped memory in RTSJ, we redefine the single parent 
rule as follows: 

'The parent of a scoped area is the area in which 
the object representing the scopedarea is allocated" 

Then, we propose to base the parentage relationship on 
the way that scoped areas are created, instead of the 
order in which scoped areas have been entered by 
threads such as in RTSJ. In order to do that we suggest 
take into account the following modifications [7]: 

i) The parentage relation of areas implies to maintain 
only a scope Pee structure, which is shared by all real- 
time thread of the application; instead to maintain a 
scope stack for each real-time thread, as the current 
edition of RTSJ sugges t. 

ii) The ScopeaMemory class contains the 
getouterscope0 method, which allows us to know, 
for the current task, the memory area which is prior to 
entering the current area (i.e., its ancestor). This rule was 
in the former edition of RTSJ , hut not in its current 
edition. Note that in the current RTSJ specification, this 
method belongs to the RealTimeThread class (see 
Section 2). 

iii) Each instame of the class ScopedMemory or its 
subclasses must maintain a reference count of the 
number of real-time threads having it as current area 
(task-carinter), and also a reference count ofthe number 
of scoped areas created within the area (children- 
counter). Note that the current RTSJ specification 
maintains only a reference counter for real-time threads 
using the scoped area (i.e., the task-counter). Then, we 
maintain this reference counter and also we add another 
reference counter for the children of the memory area. 
When both task and child reference counters for a 
scoped memory reach zero, the scoped area is a 
candidate for reclamation. 

3.3 The determinism of our proposed solution 

Consider three scoped areas: A, B, and C, which have 
been created in the following way: the A area has been 
created within the heap, the B area has been created 
within the A area and the C area has been created within 
the B area. That means that the heap was the current area 
when creating the A object, A was the current area when 
creating the B object, and B was the current area when 
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creating the C object. In this way, the creation of the A, 
B, and C scoped areas gives the following parentage 
relation: the heap is the parent of A, the area A is the 
parent of B, and B is the parent of C Then, the child- 
counter for A and B has been incremented to one, 
whereas for C it is zero. 

Let us further consider the two tasks TI and d of our 
previous example, where we have supposed that task r l  
has entered areas A and B, which increases by I the 
task-counter for A and B. Moreover, task 52 has entered 
areas A and C, which increases by one the task-counter 
for A and C (see Figure 4.a). In this situation, the task- 
counter for A is two, whereas for B and C is one. Iftask 
rl enters the area C and task 52 the area B, at different 
fromthose that occur in RTSJ [11],the single parent rule 
is not violated. Then, instead of throwing the 
ScopedCycleExceptionO, we have the situation 
shown in Figure 4.6. At this moment, the taskcounter for 
scoped memory areas A, B, and Care hvo. 

references from ohjects allocated within B or C to ohjects 
within A are allowed. Note that it is not possible for task 
rl create a reference from an ohject within B to an ohject 
within C, and vice-versa from an object within B to an 
ohject within C, even if taskrl must exit the area C before 
to exit the area B. Then, if a task 52 enters into scoped 
area C and stays there for a while, task TI leaves C and 
leaves B, the scoped area B can be collected and there 
are not dangling pointers. 

- Scope SP of r2 

a. zl enters B scopedarea and d enters C 

3.3 Checking the assignment rules 

a. TI enters B area. b. TI enters C area. 

Fi811re 5: Two state for the eoped staek of task TI. 

Non-scoped areas (i.e, the heap and immortal areas) are 
not supported in the scoped tree. Moreover, the heap 
and immortal areas are considered as the primordial 
scope, which is considered the root of the scoped tree 
[2]. Notice that, for the heap and immortal memory areas, 
there is no need to maintain the referencezounters 
because these areas exist outside the scope of the 
application. As we can show, our proposed 
implementation of the parentage relation introduces great 
advantages because i) simplifies the semantic of scoped 
memory as the single parent rule becomes trivially true, 
ii) scope cycle exceptions do not occur, and iii) the 
parentage relation does not change during the scoped 
memory life. 

6. TI enters C scopedarea and d enters B. 

Figure 4: The scope stackand the single parent rule. 

Note that the scoped stack associated to t a s k d  includes 
only the A and B scoped areas. Then, even if the task 52 
has entered the scoped memory C before entering B, 
pointers from ohjects allocated in B to ohjects allocated 
in C are dangling pointers, as consequence they are not 
allowed. 

We consider another situation: task ?I enters into 
scoped area A and creates B and C, which increases its 
taskcounter by one and its childcounter by two, 
whereas the taskcounter and the child-counter ofboth B 
and C are zero. Then, task TI enters into scoped areas B 
(Figue 5.a) and C (Figure 5.b), which increases by 1 the 
task-counter of both R and C. In this situation, only 

Since assignment rules cannot he fully enforced by the 
compiler, some dangling pointers must he detected at 
runtime p]. The more basic approach is to take the 
advice given in the current edition of the RTSJ 
specification [Ill. That is to introduce a code to exploll: 
the scope stackassociated to the current task, in order to 
verify that the scoped area from which the reference is 
created was pushed in the stack before than the am to 
which the referenced ohject belongs. This approach 
requires the introduction of write bamers; that is to take 
actions in eachstore operation. Note that the complexity 
of an algorithm, which explores a stack, is O(n), where n 
is the depth of the stack. 

Since real-time applications require putting 
boundaries on the execution time of some piece of code, 
and the depth of the scoped area stack associated with 
the task of an application are only known at runtime; the 
overhead introduced by write harriers is unpredictable. 
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In order to fix a maximum boundary or to estimate the 
average write barrier overhead, we must limit the number 
of nested scoped levels that an application can hold [6]. 

As stated the RTSJ imposed assignment rules, 
references can always be made from objects within a 
scoped memory to objects within the heap or immortal 
memory; the opposite is never allowed. The ancestor 
relation among scoped memory areas is defined by the 
nesting areas themselves. Since in our proposed 
implementation, the parentage relation changes at 
determined moments (i.e., when creating or collecting a 
scoped area) we can usea name-based technique, which 
facilitates constant-time checking for the assignment 
rules. The management of memory areas lames only 
requires to copy the parent name and to include the new 
created area identifier at the end of it when creating a 
scoped area, and to invalidate it when the area is 
collected. Consider three scoped areas: A, B, and C with 
the following parentage relation: the heap is the parent of 
A, the area A is the parent of B, and B is the parent of C. 
Then, the name of the area A is 'A', the name of area B is 
'AR', and the name of the area C is ' A R C  (see Figure 6). 

Our parentage relation is less dynamic than in the 
current RTSJ edition, where the parent<hildrelationship 
changes as scoped memory areas are entered and exited. 
In our solution, the parent-child relationship only 
changes when creating or destroying a scoped memory 
area (i.e., when the children reference count increases or 
decreases). Then, the structure of the scope tree is not 
affected, when enteringlexiting a memory area or 
creatingldestroying a thread. 

Figure 6: Memoryarea tree structure. 

Figure 7 shows the pseudocode that we must introduce 
in the execution of each assignment statement (e.g., 
x.a=y) to perform the assignment checks in constant- 
time. 

wrie berrii 
X - name of me region to which the x objm belongs: 
Y - namedme region to which they object belongs; 
if ((Y an3 X )  <> Y)) illegalAssignmenr0: 1 

Figure 7: Checking the assignment rules. 

4.3 Estimating the write barrier overhead 

We consider that the time cost to detect illegal 
assignments is a fraction of the total program execution 
time. Then, to obtain the overhead that write barrier 
introduces, two measures are combined, the number of 
events, and the cost of the event.All the objects created 
in Java are allocated in the heap (i.e., dynamic memory 
that in RTSJ may be within either the heap or another 
memory area); only primitive types are allocated in the 
runtime stack 141. 

In most applications of the SPECjvm98 benchmark 
1121, less than half (i.e., 45%) of the references are to 
objects within the heap rather than primitive types (e.g., 
bytes or integers), the other half is to either the Java or 
the native stack (see Table 2). We also notice that about 
35% of the total executed hytecodes requires an object 
reference, where typically 70% is for load operations and 
30% for store operations. Then, 15% (i.e, 0.45*0.35) of 
the bytecodes reference an object within the heap, where 
10% (i.e, 0.15*0.30) of the hytecodes requires write 
baniers avoiding illegal assignments. As a conclusion, 
5% i.e, 0.15*0.30) of the executed bytedodes requires 
write barrier executions. 

Table 2. Memory reference behavior. 

We also use an artificial collector benchmark which is an 
adaptation made by Hans Boehm from the John Ellis and 
Kodak benchmark'. This benchmark executes 262*106 
bytecodes and allocates 408 Mhytes. The number of 
executed bytecodes performing the write barrier test is 
15*106 (i.e., a a s t o r e :  1*106, p u t f i e l d :  6*106, 
pu t f  i e ld - fas t :  7*106, p u t s t a t i c :  19*106, and 
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pu t s t a t i c - fas t  : 0). This means that 5% of executed 
bytecodes perform a write banier test, as already 
obtained with SPECjvm98 in[8]. 

l h e  wi le  bamer cosi is proportional to the number of 
executed evaluations. With our proposed solutioq the 
overhead introduced to evaluate a condition of the write 
hamer test in the KVM is about 16% in each assignment. 
Because of this, the average write bamer cost introduced 
in an application is only a8%. Nevertheless, the most 
important consequence of this approach is that the time 
taken to detect an allowed or dangling reference is the 
same, and it does not depend on the nested level of the 
area to which the two objects ofthe reference belong. 

5 Conclusions 

The proposed parentage relation of memory areas allow 
us to use a name-based technique to check illegal 
references, which simplifies the suggested RTSJ 
implementation based on a scope stack. Since checks for 
illegal references requires actions before each 
assignment statement, which adversely affects both the 
performance and predictability of the RTSJ application, 
our suggested parentage relation results particularly 
interesting. 

Our proposed solution requires that every scoped 
area have two reference counters associated to it. Note 
that by collecting areas, problems associated with 
referencecounting collectors are solved: the space and 
time to maintain two referencecounts per scoped area is 
minimal, and there are no cyclic scoped area references. 
Note that the introduction of this change in the 
parentage relation simplifies the complex semantics for 
scoped memoryareas adopted by RTSJ. 

References 

[I] A. Corsnro and R.K. Cytron. "Efficient Reference 
Checks for Real-time Java". ACM SIGPLAN 
Conference on Languages, Compilers, and Tools for 
Embedded Systems", L C E S  2003. 

[2] P.C. Dibble. "Real-Time Java Platform 
Programming". hentice Hall 2002. 

[3] D. Dvorak, G. Bollella, T. Canham, V. Carson, V. 
Champlin, B. Giovamoni, M. Indictor, K. Meyer, A. 
Murray, and K Reinholtz. "Project Golden Gate: 
Towards ReaCTime Java in Space Missions". The 
7th lEEE International Symposium on Object- 

oriented Real-time distributed Computing (ISORC). 
IEEE 2004. 

[4] D. Gay and B. Steensgaard. Stack Allocating Objects 
in Java. Technical report, Research Microsoft, 1998. 

[S] M.T. Higuera, V. Issamy, M. Banatre, G. Cabillic, J.P. 
Lesot, and F. Parain. "Java Embedded Real-Tie 
Systems: An Overview of Existing Solutions". In 
Proc. of the 3Ih Intemational Symposium on Object- 
Chiented Real-Tie Distributed Computing (ISORC), 
pages 392-399. IEEE, March 2000. 

[6] M.T. Higuera and, V. Issarny "Analyzing the 
Performance of Memory Management in RTSJ". In 
Proc. of the 5' International Symposium on Object- 
Oriented Real-Tie Distributed Computing (ISORC). 
IEEE 2002. 

[7] M.T. Higuera-Toledano. "Towards an 
Understanding of the Behaviourof the Single Parent 
Rule in the RTSJ Scoped Memory Model". In Proc. 
Of the 10' IEEE Real-time and Embedded 
Technology and Applications Symposium (RTAS). 
IEEE 2004. 

[8] J.S. Kim and Y. Hsu. "Memory System Behaviour of 
Java Programs: Methodology and Analysis". In 
Proc. of the ACM Java Grande 2000 Conference. 

[9] K. Palacz and J. Vitek. "Java Subtype Tests in Real 
Time" In Proc of 1 7 ~  European Conference for 
Object-Oriented hogramming (ECOOP) 2003. 

[lo] The Real-Time for Java Expert Group. "Real-Time 
Specification for Java". Addison-Wesley,2000. 

[I I] The Real-Time for Java Expert Group. "Real-Time 
Specification for Java". RTJEG 2002. 
http://ww.rtj.org 

[I21 Standard Performance Evaluation Corporation: SPEC 
Java Virtual Machine Benchmark Suite. 
http:liwww.spec.org/osg/jvm98, 1998. 

[I31 T. Zhao, J.Nohle, and 1. Vitek. "Scoped Types for 
Real-Time Java", In Proc of 25' IEEE International 
Real-Time Systems Symposium(RTSS) 2004. 

663



664


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



