The Indeterministic Behavior of Scoped Memory in Real-Time Java’

M. Teresa Higuera- Toledano

Facultad Informatica, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid Spain
Email; mthiquer@dacya.ucm.es

Abstract

The memory model used in the Real-Time
Specification for Java (RTSJ) includes both a heap
within a traditional garbage collector, which collects
the not used objects, and a new memory management
feature based on scoped memory areas. The scoped
memory dareas model allows programmers fo ensure
constant-time reclamation thus to have predictable
performance. In order to maintain the pointer safety of
Java, RISJ imposes strict assignment rules to or firom
memory areas preventing the creation of dangling
pointers, at the cost of an unfamiliar programming
model. The guidelines given by RTSJ to implement the
assignment rules also increase the program complexity;
more over, makes indeterminist the program behavior.
In order to solve these problems, we propose to redefine
some RTSJ rules.

Keywords: Realtime Java, Scoped-regions, Single parent
rule, Illegal assignments, Garbage collection, Write-
barriers.

1. Introduction

The Real-Time Specification for Java (RTSI)[11] allows
us to use the Java environment in the construction of
realdime systems. The interdependence between
functional and real-time semantics of real-time software
makes its maintenance especially difficult. In addition,
embedded software systems are not portable as they
depend on the particular underlying operating system
and hardware architecture. The Java environment
provides attributes that make it a powerful platform to
develop embedded reaktime applications. Since
embedded systems normally have limited memory, an
advantage that Java presents is the small size of both the
Java runtime environment and the Java application

programs. Dynamic loading of classes facilitates the
dynamic evolution of the applications embedded in the
system. Additionally, the Java platform provides classes
for building multithreaded applications and automatic
garbage collection. However, it does not guarantee
determinism nor bounded resource usage, which this
type of systems needs.

In order to solve the shortcomings of Java regarding
its use for embedded real-time programming some
solutions are been proposed. In [5], we review the
proposed realtime Java solutions, considering and
analyzing the following embedded real-time issues: i)
Solutions to access the underlying hardware. ii) What is
the most adequate model for real-time thread scheduling,
iii) How to solve the priority inversion problem, iv) How
to generate and handle asynchronous events, v) How to
manage resources. And vi) how to modify the garbage
collection in order to make it compatible with reaktime
tasks execution. From our point of view, RTSJ [11]
constitutes the most adequate solution for realtime
systems, which use in mission critical systems are
currently been evaluated in a number of projects such as
[3].

RTSIT covers well all aforementioned features, in
particular, the memory model includes both a heap with a
traditional garbage collector, and a new memory
management feature based on scoped memory areas.
From a real-time perspective, the garbage collector
introduces unpredictable pauses that are not tolerated
by real-time tasks. Real-time collectors eliminate this
problem but introduce a high overhead. The scoped
memory areas model allows programmers to ensure
constant-time reclamation thus to have predictable, at
the cost of its explicit management which affects
particularly how programs are written.

Because scoped areas can be reclaimed at any time,
objects within a memory area with a longer kfetime are
not allowed to create a reference to an object within
another area with a potentially shorter lifetime. An RTSJ

* Founded by the Ministerio de Ciencia y Tecnologia of Spain (CICYT); Grant Number TIC2003-01321.

1-4244-0212-3/06/$20.00/©2006 IEEE

656



implementation must enforce these scope checks before
executing an assignment. In order to do that, RTSJ
establishes a parentage relationship between the scoped
memory areas; which is called the single-parent rule. To
enforce the RTSJ imposed rules, a compliant JVM must
assure both the single parent rule and the assignment
rules. The suggested RTSJ] implementation requires
checking the single parent rule on every attempt to enter
a scoped memory area, and to explore the scope stack on
every attempt to create a reference. Since objects
references occur frequently, it is important to implement
checks for assignment rules efficiently and predictably.

In this paper, we avoid the exploration on the scope
stack, by replacing it by a name-based technique making
the enforcement of memory references time-predictable,
because it does not depend of the nested level of the
area to which the two objects of the memory reference
belong. In order to do that, we propose to base the
parentage relation of memory areas on the way they are
created/collected, instead on the way they are
entered/exited by tasks such as the RI'SJ suggests.
More over, we avoid checks on every attempt to enter a
scoped memory area.

1.1 Related work

The main contribution of our approach is to introduce a
name -based solution for illegal assignments, which avoid
the exploration of the scope stack as suggest the current
RTSJ. This solution is a direct consequent of the work
presented in [ 7], which shows how all the necessary run
time checks can be performed in constant time by
simplifying the scoped memory hierarchy. This allows us
to use a name-based encoding to implement dynamic
scope checks, and also to avoid the single-parent rule
checks. In [12] we present a study of the behaviour of
the RTSJ simple parent rule and a first approach in order
to change the parentage relation of scoped memory
areas, avoiding its checks when entering a scoped area.

The work presented in [1] introduces a display-
based technique to support RTSJ scoped area and to
check illegal assignments. An alternative technique to
subtype test in Java have been presented in [ 10], which
has been extended to perform memory access checks in
RTSI. Another solutions tray to maintain statically the
RTSI invariants such as [9] and [13]. However, the
dynamic issues that Java presents, requires some cases
to check the assignment rules at run-time. However,
static and dynamic techniques can be combined to
provide more robustness and predictability of RTSJ
applications.

657

1.2 Paper Organization

The paper is organized as follows. Section 2 presents an
in depth description of the semantics of the RTSJ
memory model, being centred in the scoped memory
areas and its relations, giving sufficient details about the
subtleties of this model. Section 3 introduces an
alternative solution to improve the RTSI suggested
memory model implementation, which is based on the
identifier of memory areas and includes a new point of
view in the way to understand the RTS] memory area
relationships, particularly the single-parent rule. Section
S, finally, concludes this paper.

2 The RTSJ memory model

Implicit garbage collection has always been recognized
as a beneficial support from the standpoint of promoting
the development of robust programs. However, this
comes along with overhead regarding both execution
time and memory consumption, which makes (implicit)
garbage collection poorly suited for small-sized
embedded realdime systems. This must not lead to
undertake the unsale primitive solution that consists in
letting the application programmer to explicit deal with
memory reclamation. An alternative approach is to use
memory regions within which both allocation and de-
allocation are customized, also space locality is
improved. Such a [acility is supported by RTSI through
the introduction of three kinds ol regions, called memory
areas.,

2.1 The memory are as model

The RTSJ introduces memory regions and allows the
implementation of realdime compliant collectors to be run
within regions except within those associated with hard
timing constraints. The MemoryArea abstract class
provides three kinds of regions having dilferent
properties in term of both the object lifetimes and the
object allocation/de-allocation timing guarantees:

i) Immortal memory areas contain objects whose life
ends only when the JVM terminates and are never
garbage collected.

ii) Scoped supported by the
ScopedMemory abstract class, enables grouping objects
having well-defined lifetimes. Scoped areas are collected
when there is not a thread using the area, and may either

memory areas,



offer temporal guarantees or not on the time taken to
create objects.

iii) The garbage collector within the heap must scan all
objects allocated within immortal or scoped memory
areas for references to any object within the heap in
order to preserve the integrity of the heap. RTSI further
delines the GarbageCollector abstract class, which
can be customized through an incremental collector
allowing the application to execute while the collector
has been launched.

Each memory area is then managed to embed objects that
are related regarding associated lifetime and reaHime
requirements. Particularly, objects allocated within
immortal memory areas live until the end of the
application and are never subject to garbage collection.
Objects with limited lifetime can be allocated into a
scoped arca or the heap. Garbage collection within the
application heap relies on the (real-time) collector of the
VM.

2.2 The task model

RTSJ makes distinction between three main kinds of
tasks: i) low-priority that are tolerant with the garbage
collector, i) high-priority that cannol tolerate
unbounded preemption latencies, and iii) critical that
cannot tolerate preemption latencies, Then, RTSJ
introduces two new kind of thread: both are reaHime
threads. Nevertheless, the latter is protected from the
collector delays, which can come about for two reasons:

e The collector is invoked during the execution ol a
real-time thread as consequence of memory
allocation.

e  The collector is running and must arrive to a point
where all data structures are in a consistent state to
be preempted by a high-priority task (preemption
lateney), which can be also cause the inversion
priority problem.

In RTSIJ critical tasks avoids both problems by running at a
higher priority than the collector does, also they are not
allowed to access heap allocated objects (i.e., critical
tasks do not cause heap allocation and do not require
heap allocated objects). An application can allocate
memory into memory areas, as follows:

i) Low-priority tasks or traditional threads can allocate
memory only within the traditional heap.

658

if) High-priority tasks or real-time threads may allocate
memory within the heap or within a memory area other
than the heap by making that area the current allocation
context (e.g., by entering the area).

iii) Critical tasks or non-heap real-ime threads must
allocate memory from a memory area other than theheap
by making that area the current allocation context.

A new allocation context is entered by calling the
MemoryArea.enter () method orby starting a reakime
thread whose constructor was given a reference to a
memory area. As an example, Figure 1 shows a reaktime
thread called myTask (line 13), which allocates an array of
10 integers within the heap (line 5), and another of 20
integers in the scoped memory area called myRegion, Once
a memory area is entered (line 15), subsequent uses of
the new keyword, within the program logic, will allocate
objects from the memory context associated to the
entered area (line 6). When the area is exited, subsequent
uses of the new operation will allocate memory from the
area associated with the enclosing scope.

© import jJavax.realtime;

1

2:

3. class Allocator implements Runnable {
4: public void run() {

§ HeapMemory.instance(). newArray(Integer, 10);
6: int]] x = new inlf20];

I: |

8}
9:
10: class ReglonUsek xample |

11:  public static void main (String|| args) {

12: ScopedMemory myRegion = new VTMemory(1024, 2°1024);
13 RealtimeThread my Task = new RealtimeThread(null, null,

14 new MemaryParameters(1024, 0),
15: myReglon, null,

16 new Allocator ());

11, my Task.start();

18 }

19: )

Figure 1: Using RTS.J memory regions.
2.3 Thescoped memory areas

Scoped regions may or may not be subject to internal
realdime garbage collection depending on their temporal
properties. However, since RTSJ does not impose the
collection of objects within scoped regions, we consider
in this paper that scoped regions are never garbage

4 hitp:/f'www hpl.hp.com/personal/Hans_Boehm/gc/ge_bench.htmi



collected. Since objects within immortal and scoped
areas are not garbage collected, they may be exploited by
critical tasks. A scoped region gets collected as a whole
once it 18 no longer used. The lifetime ol objects
allocated in scoped areas is governed by the control
flow. Strict assignment rules placed on assignments to or
from memory areas prevent the creation of dangling
pointers (see Table 1),

Reference to | Reference to | Reference
Heap Immortal to Scoped
Heap Yes Yes No
Immortal Yes Yes No
Scoped Yes Yes Same or
outer
Local Yes Yes Same or
Variable outer

Table 1: Assignment rules in RTSJ.

An implementation solution to ensure the checking of
these rules before each assignment statement consists of
performing it dynamically, each time a reference is stored
in the memory (i.e., by using write barriers ). This solution
adversely alfects both the performance and predictability
of the RTSI application.

2.4 The single parent rule

Scoped areas can be nested and each scope can have
multiple sub-scopes. Several related threads, possibly
realdime, can share a memory area, and the area must be
active until at least the last thread has exited. When no
active threads within the scoped area, the entire memory
assigned to the area can be reclaimed along with all
objects allocated within it. The RTSI suggested
implementation associates to each real-time thread a
scope stack containing all the areas that the thread has
entered but not exited. The structure of enclosing scopes
(1.e., the scope stack) i1s accessible through a set of
methods on the RealtimeThread class, which allows
outer scopes to be accessed like an array. In order to
maintain the scope stack contain all nested scoped areas
that a thread can hold, RTS] establishes the single
parent rule:

“If a scoped region is not in use, it has no parent.
For all other scoped objects, the parent is the nearest
scope outside it on the current scoped region stack. A
scoped region has exactly zero or one parent.”

The parentage relationship requires that a scoped
memory area has exactly zero or one parent. Scoped
areas that are made current by entering them or passing
them as the initial memory area for a new task must

659

salisfy the single parent rule. Therefore, the single
parent rule guarantees that a parent scope will have a
lifetime that is not shorter than of any of its child scopes,
which makes safe references from objects in a given
scope o objects in an ancestor scope, and forces each
scoped area to be almost once in the scope stack
associated with the task.

The single-parent rule also enforces every task that
uses a memory area to have exactly the same scoped area
parentage. Consider two scoped memory areas, A and B,
where the A scoped area is parent of the B area. In such
a case, a reference to the A scoped area can be
referenced from a field of an object allocated in B. But a
reference from a field of an object within A to another
object allocated within B raises the
IllegalAssignment () exception.

Since scoped areas are collected when there is not a
thread using the area, each scoped memory area object
(i.e., each instance of the class ScopedMemory) must
maintain a reference count of the number of threads in
which it is being used. When the reference count for a
scoped area is decreased from one to zero, all objects
within the area are considered unreachable and are
candidates for reclamation.

3 The name-based solution

We suppose that the most common RTS]1 useof a scope
area is repeatedly to perform the same computation in a
periodic task. In the current RTSJ, when a task or an
event handler (ries to enter a scoped area S, we musl
check il the corresponding thread has entered every
ancestor of the area S in the scoped area tree. Then,
safety of scoped areas requires checking both the set of
rules imposed on their entrance and the aforementioned
assignment rules. Both tests require algorithms , the cost
of which is linear or polynomial in the number of memory
areas that the task can hold. In order to optimize the
RTSI' memory model, we suggest simplifying data
structures and algorithms, and propose to change the
definition of the single parent rule.

3.1 Theindeterminism of single parent rule

The implementation of the single-parent rule as suggests
the current RTSJ edition | 11] makes the behavior of the
application non-deterministic. In the guidelines given to
implement the algorithms affecting the scope stack (e.g.,
the enter () method), the single parent rule guarantees
that once a thread has entered a set of scoped areas ina
given order, any other thread is enforced to enter the set
ol areas in the same order. Consider three scoped areas:



A, B, and C, andtwo task Tl and T2. Where task T1 tries
to enter the areas as follows: A, B, and C, whereas T2
tries to enter the areas in the following order: A, C and B.
Let us suppose that task TI has entered areas A and B,
and task T2 has entered areas A and C. [T task T1 tries to
enter the area C(see Figure 2.a) or task T2 tries to enter
the area B (see Figure 2.b), the single parent rule is

violated and as consequence the
§_g_g£ggj;;ycleExcept ion() throws.
_C -— Scope SPof 71 8
B C cope SP of 72
A A
a. T violates the single parent rule.
o B
B | =-— Scope SP ol tl C Scope SP of 12
A A

b. 2 violates the single parent rule.
Figure 2: Violating the single parent rule.

Moreover, if for example, T2 enters the area C before Tl
tries to enter i, then it is T2 which violates the single
parent rule and raises the ScopedCycleException()
exception (see Figure 3.a). However, il T] enters the area
B before T2 tries to enter it, T2 violates the single parent

rule raising the ScopedCycleException() exception
(see Figume 3.b). Notice that determinism 1s an important
requirement for real-time applications.

~a— Scope SP of 12

B
5 G

T‘ ~— Scope SP of 71 %

a. tl violates the single parent rule.

—e— Scope SP of Tl {=e— Scope SP of 72

‘:c»‘o vs)

A
b. 2 violates the single parent rule.

Figure 3: Example of non-deterministic situation.

660

3.2 The proposed parentage relation

In order to solve the indeterminism problem introduced
by scoped memory in RTSJ, we redefine the single parent
rule as follows:

“The parent of a scoped area is the area in which
the object representing the scoped area is allocated.”

Then, we propose to base the parentage relationship on
the way that scoped areas are created, instead of the
order in which scoped areas have been entered by
threads such as in RTSJ. In order to do that we suggest
take into account the following modifications [7]:

i) The parentage relation of areas implies to maintain
only a scope tree structure, which is shared by all real-
time thread of the application; instead to maintain a
scope stack for each realdime thread, as the current
edition of RTSJ suggest.

it)  The ScopedMemory  class  contains  the
getOutersScope () method, which allows us to know,
for the current task, the memory area which is prior to
entering the current area (i.e., its ancestor). This rule was
in the former edition of RTSJ | but not in its current
edition. Note that in the current RTSJ specification, this
method belongs to the RealTimeThread class (see
Section 2).

iii) Each instance of the class ScopedMemory or its
subclasses must maintain a reference count of the
number of realdime threads having it as current area
(task-counter), and also a reference count of the number
of scoped areas created within the area (children-
counter). Note that the current RTSI] specification
maintains only a reference counter for real-time threads
using the scoped area (i.e., the task-counter). Then, we
maintain this reference counter and also we add another
reference counter for the children of the memory area.
When both task and child reference counters for a
scoped memory reach zero, the scoped area is a
candidate for reclamation.

3.3 The determinism of our proposed solution

Consider three scoped areas: A, B, and C, which have
been created in the following way: the A area has been
created within the heap, the B area has been created
within the A arca and the C area has been created within
the B area. That means that the heap was the current area
when creating the A object, A was the current area when
crealing the B object, and B was the current area when



creating the C object. In this way, the creation of the A,
B, and C scoped areas gives the [ollowing parentage
relation: the heap is the parent of A, the area A is the
parent of B, and B is the parent of C Then, the child-
counter for A and B has been incremented to one,
whereas for C il 18 zero.

Let us further consider the two tasks tl and 12 of our
previous example, where we have supposed that task 7l
has entered areas A and B, which increases by | the
task-counter for A and B. Moreover, task 12 has entered
areas A and C, which increases by one the task-counter
for A and C (see Figure 4.4). In this situation, the task-
counter for A is two, whereas for B and C is one. Iftask
Tl enters the area C and task 12 the area B, at different
fromthose that occur in RTSI[11], the single parent rule
is not violated.  Then, instead of throwing the
ScopedCycleException(), we have the situation
shown in Figure 4.6. At this moment, the task<counter for
scoped memory areas A, B, and Care two.

== Scope SP of <2

C
B

| ™= Scope SPof 11

B
A

a. Tl enters B scoped area and 2 enters C.

=~ Scope SPof 71

_C
B
A

Scope SP of 12

> W 0

b. tl enters C scopedarea and @2 enters B,

Figure 4: The scope stack and the single parent rule.

Note that the scoped stack associated to task @2 includes
only the A and B scoped areas. Then, even il the task 12
has entered the scoped memory C belore entering B,
pointers from objects allocated in B to objects allocated
in C are dangling pointers, as consequence they are not
allowed.

We consider another situation: task tl enters into
scoped area A and creates B and C, which increases its
task-counter by one and its child-counter by two,
whereas the task-counter and the child-counter of both B
and C are zero. Then, task 1l enters into scoped arcas B
(Figure 5.¢) and C (Figure 5.5), which increases by 1 the
task-counter of both B and C. In this situation, only

661

references from objects allocated within B or C to objects
within A are allowed. Note that it is not possible for task
tl create a relerence [rom an object within B to an object
within C, and vice-versa from an object within B to an
object within C, even if task ©1 must exit the area C before
to exit the area B. Then, if a task 12 enters into scoped
area C and stays there for a while, task Tl leaves C and
leaves B, the scoped area B can be collected and there
are nol dangling pointers.

~=— Sope SP of 71 -— Scope SP oftl

B C
A A

a. Tl enters B area. b. 1l enters C area.

Figure 5: Two state for the coped stack of task tl.

Non-scoped areas (i.e, the heap and immortal areas) are
not supported in the scoped tree. Moreover, the heap
and immortal areas are considered as the primordial
scope, which is considered the root of the scoped tree
[2]. Notice that, for the heap and immortal memory areas,
there is no need to maintain the reference-counters
because these areas exist outside the scope of the
application. As we can show, our proposed
implementation of the parentage relation introduces great
advantages because i) simplilies the semantic ol scoped
memory as the single parent rule becomes trivially true,
ii) scope cycle exceptions do not occur, and iii) the
parentage relation does not change during the scoped
memory life.

3.3 Checking the assignment rules

Since assignment rules cannot be fully enforced by the
compiler, some dangling pointers must be detected at
runtime R|. The more basic approach is to take the
advice given in the current edition of the RTSI
specification [ 11]. That is to introduce a code to explore
the scope stack associated to the current task, in order to
verify that the scoped area from which the reference is
created was pushed in the stack before than the area to
which the referenced object belongs. This approach
requires the introduction of write barriers : that is to take
actions in each sfore operation. Note that the complexity
of an algorithm, which explores a stack, 1s O(n), where n
is the depth ol the stack.

Since real-time applications require putling
boundaries on the execution time of some piece of code,
and the depth of the scoped area stack associated with
the task ol an application are only known at runtime; the
overhead introduced by write barriers is unpredictable.



In order to fix a maximum boundary or to estimate the
average write barrier overhead, we must limit the number
ol nested scoped levels that an application can hold [ 6].
As stated the RTSJ imposed assignment rules,
references can always be made from objects within a
scoped memory to objects within the heap or immortal
memory: the opposite is never allowed. The ancestor
relation among scoped memory areas is defined by the
nesting areas themselves. Since n our proposed
implementation, the parentage relation changes at
determined moments (i.e., when creating or collecting a
scoped area) we can use a name-based technique, which
facilitates constant-time checking for the assignment
rules. The management of memory areas mmes only
requires to copy the parent name and to include the new
created area identifier at the end of it when creating a
scoped area, and to invalidate it when the area is
collected. Consider three scoped arcas: A, B, and Cwith

the following parentage relation: the heap is the parent of

A, the area A is the parent of B, and B is the parent of C.
Then, the name of the area A is *A’, the name of area B 1s
‘AB’, and the name of the area C is *ABC’ (see Figure 6).

Our parentage relation is less dynamic than in the
current RTSJ edition, where the parent-child relationship
changes as scoped memory areas are entered and exited.
In our solution, the parent-child relationship only
changes when creating or destroying a scoped memory
area (i.e., when the children reference count increases or
decreases). Then, the structure of the scope tree is not
affected, when entering/exiting a memory area or
creating/destroying a thread,

:

ABE

ABCD

—| B
0

AFGL

I*@*E/

Figure 6: Memory area (ree struclure.

Figure 7 shows the pseudo<ode that we must introduce
in the execution of each assignment statement (e.g.,
x.a=y) to perform the assignment checks in constant-
time.

662

Write barrier
X = nameof the region to which the x object belongs;
Y = name df the region to which the y object belongs;
if ((Y and X ) <> Y)) ilegalAssignment();

Figure 7: Checking the assignment rules.

4.3 Estimating the write barrier overhead

We consider that the time cost to detect illegal
assignments is a fraction of the total program execution
time. Then, to obtain the overhead that write barrier
introduces, two measures are combined, the number of
events, and the cost of the event. All the objects created
in Java are allocated in the heap (i.e., dynamic memory
that in RTSJ may be within either the heap or another
memory area); only primitive types are allocated in the
runtime stack [4]

In most applications of the SPECjvm98 benchmark
[12], less than half (i.e., 45%) of the references are to
objects within the heap rather than primitive types (e.g.,
bytes or integers), the other half is to either the Java or
the native stack (see Table 2). We also notice that about
35% of the total executed bytecodes requires an object
reference, where typically 70% is for load operations and
30% for store operations. Then, 15% (i.e, 0.45%0.35) of
the bytecodes reference an object within the heap, where
10% (i.e, 0.15%0.30) of the bytecodes requires write
barriers avoiding illegal assignments. As a conclusion,
5% i.e, 0.15%0.30) of the executed bytedodes requires
write barrier executions.

Executed | Object % Object | % Heap

Bytecodes | Accesses Accesses Accesses
JESS 1,820 707 38.84 39.40
DB 3,700 1,646 38.56 45.61
JAVAC 1,953 724 37.07 28.70
MIRT 2,122 575 27.09 50.97
JACK 2,996 1,022 34.11 50.74

Table 2. Memory reference behavior.

We also use an artificial collector benchmark which is an
adaptation made by Hans Boehm from the John Ellis and
Kodak benchmark®. This benchmark executes 262*10°
bytecodes and allocates 408 Mbytes. The number of
executed bytecodes performing the write barrier test 18
15*10° (i, aastore: 1*10°% putfield: 6*10°
putfield fast: 7*10°, putstatic: 19*10°, and




putstatic_fast : 0). This means that 5% of executed
bytecodes perform a write barrier test, as already
obtained with SPECjvm98 in|[8].

The write barrier cost is proportional to the number of
executed evaluations. With our proposed solution, the
overhead introduced to evaluate a condition of the write
barrier test in the KVM is about 16% in each assignment.
Because of this, the average write barrier cost introduced
in an application is only 0.8%. Nevertheless, the most
important consequence ol this approach is that the time
taken to detect an allowed or dangling reference is the
same, and it does not depend on the nested level of the
areato which the two objects ofthe reference belong.

5 Conclusions

The proposed parentage relation of memory areas allow
us to use a name-based technique to check illegal
references, which simplilies the suggested RTSI
implementation based on a scope stack. Since checks for
illegal references requires actions before each
assignment statement, which adversely afTects both the
performance and predictability of the RTSI application,
our suggested parentage relation results particularly
interesting.

Our proposed solution requires that every scoped
area have two reference counters associated to it. Note
that by collecting areas, problems associated with
referencecounting collectors are solved: the space and
time to maintain two reference-counts per scoped area is
minimal, and there are no cyclic scoped area references.
Note that the introduction of this change in the
parentage relation simplifies the complex semantics for
scoped memory areas adopted by RTSI.

References

[1] A. Corsaro and R.K. Cytron. “Efficient Reference
Checks for Realtime Java”. ACM SIGPLAN
Conference on Languages, Compilers, and Tools for
Embedded Systems", LCTES 2003,
P.C.  Dibble.  *“Real-Time

Programming™. Prentice Hall 2002.
D. Dvorak, G. Bollella, T. Canham, V. Carson, V.
Champlin, B. Giovannoni, M. Indictor, K. Meyer, A.
Murray, and K. Reinholtz. "Project Golden Gate:
Towards Real-Time Java in Space Missions". The
7th IEEE International Symposium on Object-

(2] Java  Platform

3]

663

oriented Real-time distributed Computing (ISORC).
[EEE 2004,

. Gay and B. Steensgaard. Stack Allocating Objects
in Java. Technical report, Research Microsoft, 1998,
[S] M.T. Higuera, V. Issarny, M. Banatre, G, Cabillic, 1.P.
[Lesot, and F. Parain. “Java Embedded Real-Time
Systems: An Overview of Existing Solutions™. In
Proc. of the 3" International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC),
pages 392-399. [EEE, March 2000.

M.T. Higuera and, V. Issarny “Analyzing the
Performance of Memory Management in RTSJ”, In
Proc. of the 5* International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC).
IEEE 2002.

M.T. Higuera-Toledano. "Towards an
Understanding of the Behaviour of the Single Parent
Rule in the RTSJ Scoped Memory Model”. In Proc.
Of the 10" IEEE ReaHime and FEmbedded
Technology and Applications Symposium (RTAS).
[EEE 2004,

4]

[6]

171

[8] JS.Kimand Y. Hsu. "Memory System Behaviour of
Java Programs: Methodology and Analysis". In
Proc. of the ACM Java Grande 2000 Conference.

[9] K. Palacz and J. Vitek. “Java Subtype Tests in Real

Time” In Proc of 17" European Conference for
Object-Oriented Programming (FECOOP) 2003.

[10] The Real-Time for Java Expert Group. "Real-Time
Specification for Java". Addison-Wesley, 2000,

[11] The Real-Time for Java Expert Group. "Real-Time
Specification for  Java". RTIEG 2002
hitp://www.rtj.org

[12] Standard Performance Evaluation Corporation: SPEC
Java  Virtual  Machine  Benchmark  Suite.
http://www.spec.org/osg/jvm98, 1998,

[13] T. Zhao, J.Noble, and J. Vitek. "Scoped Types lor
Real-Time Java", In Proc of 25" [EEE International
Real-Time Systems Symposium(RTSS) 2004,



664



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



