
Illegal References in a Real-Time Java Concurrent Environment∗

M. Teresa Higuera-Toledano

Facultad Informática, Universidad Complutense de Madrid , 28040 Madrid Spain
Email: mthiguer@dacya.ucm.es

∗ Founded by the Ministerio de Ciencia y Tecnología of Spain (CICYT); Grant Number TIC2002-00334.

Abstract
We consider the concurrent execution of several

applications within a single JVM. In order to have a
different GC per application, we introduce and define
application-specific memory, building upon the Real-
Time Specification for Java (RTSJ) from the Real-Time
Java Expert Group. The RTSJ memory model imposes
strict assignment rules to or from memory areas
preventing the creation of dangling pointers. An
implementation solution to ensure the pointer safety of
Java consists to check the imposed rules before executing
each assignment statement by using write barriers.

1 Introduction

In this paper, we focus on a memory management
solution in order to divide/share the heap among different
real-time applications accounting for relevant Java
specifications: the application isolation API [5] and the
Real-time Specification for Java (RTSJ) [4], currently
under revision as JSR-121 and JSR-001 respectively.

The application isolation API [8] guarantees strict
isolation between programs (isolates). An isolate
encapsulates an application or component, having its own
version of a static state of the classes that it uses. Isolates
have disjoint objects graphs, and sharing objects among
two different isolates is forbidden. The Isolate class
allows us to create an isolate by specifying a class.

In RTSJ, the MemoryArea abstract class supports the
memory region paradigm through the three following kinds
of regions: (i) immortal memory, supported by the
ImmortalMemory and the ImmortalPhysicalMemory
classes, that contains objects whose life ends only when
the JVM terminates; (ii) (nested) scoped memory,
supported by the ScopedMemory abstract class, that
enables grouping objects having well-defined lifetimes;
and (iii) the conventional heap, supported by the
HeapMemory class. The lifetime of objects allocated in
scoped regions is governed by the control flow. Strict
assignment rules prevent the creation of dangling
pointers, which violation causes the
IllegalAssignment() exception.

The organization of the paper is as follows: we first
present an approach to isolate the application memory,
and to detect whether the application attempts to create an
illegal assignment (Section 2). We propose a strategy to
collect the local heap of each application, improving the
performance of critical tasks (Section 3). We compare our
research to related works (Section 4). Finally, some
conclusions and a summary of our contributions;
conclude this paper (Section 5).

2 Supporting several applications

In this section, the memory management model of RTSJ
is extended to offer a multi-process execution. In the
proposed solution, some memory objects are accessible
by all the applications in the system, which allows inter-
process communication by using both the communication
model of Java based on shared variables and monitors,
and the classes that the RTSJ specification provides to
communicate real-time tasks and non-real-time threads.

2.1 Extending the memory hierarchy

In order to obtain multi-process execution, we introduce
the MemorySpace abstract class supporting two
subclasses: the CommonMemory class to support public
memory without application access protection, and
ProtectedMemory to define application-specific memory
with access protection. There is only one object instance
of the CommonMemory class which is created at
initialization system time and is a resource shared among
all applications in the system. In contrast, a new
ProtectedMemory object is created when creating a new
application and is a local resource protected from accesses
of all the other applications in the system. Creating a
protected memory space implies the creation of both the
local heap and the local immortal memory regions of the
corresponding application. An application can allocate
memory within its local heap, its immortal region, several
immortal physical regions, several scoped regions, and
also within the common memory space.

Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04)

0-7695-2124-X/04 $20.00 © 2004 IEEE

2.2 Sharing memory

To facilitate code sharing, classes are stored within the
common immortal space (i.e., the
CommonImmortal.instance() object). In this way, all
applications in the system access both code and data (i.e.,
class variables), of all classes. But there is a problem with
the access to the class variables, declared as static in
Java. These variables must be shared by all the tasks of an
application, but they must be protected from the access of
other activities. Thus, we maintain a copy of the class
variables in the local immortal memory of the application.

The same problem arises with class monitors (i.e.,
shared code related to synchronization), these methods
are declared in Java as static synchronized. When a
task enters a class monitor and is suspended by another
task, if both tasks are from the same application, there is
no problem. The problem arises if the two tasks are from
different applications. To ensure mutual exclusion among
tasks from the same application, while avoiding other
activities to be affected, each application must maintain a
separate copy of the monitor [10]. Then, we maintain a
copy of both class variables and class monitors in the
immortal region of each application using the class, while
maintaining only a single version of the class code. This
solution requires modifying the class loader.

2.3 Communication among applications

In order to share objects among applications, we
introduce the SharedObject class and the Shareable
interface that are equivalent to the RemoteObject class
and Remote interface of the Java RMI. Objects allocated
within the common memory are restricted to be shared
objects (i.e., common objects belong to the
SharedObject class or any of subclasses). Non shared
objects can only be referenced locally. We can compare a
shareable method to the synchronize methods of Java.
Shared objects can be accessed only by invoking the
methods declared in a shareable interface. This restriction
avoids that two tasks access the same object concurrently
without synchronization, which makes programs robust.
Since shareable interfaces provide synchronization among
tasks of either the same or different applications, to ensure
mutual exclusion we allocate both shared objects and
shareable interfaces within the common memory.

2.4 Introducing write barriers

An attempt to create a reference to an object into a
field of another object requires a different treatment
depending on the space to which the object belongs:

• Treatment A: the reference is within a protected
space. We must take into account the assignment
rules imposed by RTSJ [4] (i.e., objects within the
local heap or the local immortal memory cannot
reference objects within a scoped region, and objects
within a scoped region cannot refe rence objects
within another scoped region that is neither non-outer
nor shared).

• Treatment B: the reference is within the common
immortal memory. It is allowed and nothing needs to
happen.

In Figure 1, we can see the write barrier pseudo-code that
we have to introduce in the interpretation of the
putfield, aastore, and putstatic bytecodes . We
denote as X the object that makes the reference, and as Y
the referenced object. The spaceT() function returns:
common or protected depending on the type of the
space to which the object parameter belongs. The
regionT() function returns: heap, immortal, or
scoped depending on the type of the region to which the
object belongs. The shared() function returns true
when the region of the object is a shared one. And the
nested(X,Y) function returns true, when the region’s
scope of the Y object is the same or outer than the region
of the X object [5].

Figure 1: Write barrier code detecting illegal assignment.

The header of the object must specify both the space and
the region to which the object belongs. Then, when an
object/array is created by executing the new (new_quick)
or newarray (newarray_quick) bytecode, it is
associated with the scope of both the active space and the
active region. Local variables are also associated with the
scope of the active region.

3 Collecting the local heap

Different GC techniques are appropriate depending on the
real-time embedded application. If the application does not
generate cyclic data structures, a reference-counting GC
algorithm is the most appropriate. Alternatively, a
generational GC collects the younger objects more
frequently than the older ones. While real-time GCs
provide the worst-case guarantees, generational GCs
improve the average performance at the expense of the
worst-case.

if (spaceT(Y)=protected) and (space(X)<>space(Y))) IllegalAssignment();

if ((regionT(Y)=scoped) and (regionT(X)<>scoped)) IllegalAssignment();

if ((regionT(Y)=scoped) and (not shared(Y) and (not nested(X, Y))) IllegalAssignment();

Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04)

0-7695-2124-X/04 $20.00 © 2004 IEEE

3.1 The local collector strategy

There are also some important considerations when
choosing a real-time GC strategy, among them are space
cost and barrier costs. Copying GCs require doubling the
memory space, because all the objects must be copied
during GC execution. Non-copying GCs do not require this
extra space, but are subject to fragmentation. We
specifically consider the incremental non-copying GC
based on the tri-color treadmill algorithm [1]. This
algorithm allows the interleaved execution of the collector
and the application, which execution is synchronized by
using write barriers to detect whether the application
updates a pointer from a black object to a white one. Each
root stack is processed root by root, and each object
referenced by a root is inserted in a grey-list. If during this
phase, the application treats to make a reference from a
black object to a white one, the color of the referenced
object is turned grey and the object is moved from the
white-list to the grey-lis t, which is achieved by using
write barriers.

Alternatively, we can use a generational copying
collector such the employed by the Java HotSpot VM,
which uses a GC based on the train algorithm [11] to
collect the old space, which divides the old object space
into a number of fixed blocks called cars, and arranges the
cars into disjoint sets (trains). This technique uses write
barriers to trap both the inter-generation references
(pointers form objects within the old generation to objects
within the new generation), and references across cars
within the same train.

Since objects allocated within regions may contain
references to objects within the local heap, a tracing-based
GC (e.g., incremental or generational) must take into
account these external references, adding them to its
reachability graph. When an object outside the heap
references an object within the heap, we must to add the
object that make the reference to the root-set of the
collector, which is achieved by using write barriers [5].
When the collector explores an object outside the heap
(i.e., a root), which has lost its references into the heap, it
is eliminated from the root-set. When collecting a scope
region because their reference-counter reaches zero, the
root-list of the local GC is updated to remove all the
objects in the region that are external roots for the GC.

3.2 Dealing with critical tasks

From a real-time perspective, the Garbage Collector (GC)
introduces unpredictable pauses that are not tolerated by
real-time tasks. Real-time collectors eliminate this problem

but introduce a high overhead. RTSJ [4] makes distinction
between three main kinds of tasks: (i) low-priority that are
tolerant with the GC, (ii) high-priority that cannot tolerate
unbounded preemption latencies, and (iii) critical that
cannot tolerate preemption latencies. A reference of a
critical task to an object allocated in the heap causes the
MemoryAccessError() exception, which we achieve by
using read barriers. Read barriers occur upon all object
accesses, which means upon executing both types of
bytecodes: those which cause a load reference (i.e., the
getfield, aaload, and getstatic bytecodes) and
those causing a store reference (i.e., the putfield,
aastore, and putstatic bytecodes). Note that read
barriers are strictly necessary only when using read
barrier-based collectors (i.e., incremental copying). When
using a non-read barrier-based collector (i.e., mark-and-
sweep, generational, and reference-counter), load
operations do not affect the GC data structure. As
consequence, the GC does not causes delays to critical
tasks when accessing objects . Then, the restriction on
critical tasks can be reduced to write barrier checks. And,
the MemoryAccessError() exception, which raises when
a critical task attempts to access an object within the
heap, is changed by the IllegalAssignmentError()
exception, which raises when a critical task attempts to
assign an object that belongs to the heap[5].

4 Related works

Unlike traditional JVMs, in our proposed solution, the
applications run concurrently within a single JVM
instance. In [6], we study the management of resource
consumption taking into account both real-time
constraints and the available memory budget. To support
the memory model of RTSJ, the JVM must check for the
assignment rules before to execute an assignment
statement. Our solution consists to check both violation
spaces, and the imposed RTSJ access and assignment
rules dynamically, just when executing an assignment
statement. In order to do so, we introduce an extra code in
all bytecodes causing an object assignment. The use of
write barriers to detect illegal assignments was introduced
in [7]. Another effort to partition the Java memory is
described in [3]. In this model, the creation of a new heap
is optional; the proposed interface allows us to create a
new name-space which shares the system heap rather than
creating a new one. In order to avoid malicious cross-
reference between private heaps, this solution uses both
read and write barriers. As our solution, the
implementation of heap partitioning binds heaps to
objects by adding a field in the object header.

In order to provide strong isolation between services,
both to enforce security and to control resource

Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04)

0-7695-2124-X/04 $20.00 © 2004 IEEE

consumption, the solution proposed in [12] subdivides a
physical machine into a set of fully isolated protection
domains. As in our solution, each virtual machine is
confined to a private namespace. In a way similar to the
Java Os from Utah [2], in order to provide secure and
controlled accesses, we limit direct sharing among
applications. When two activities want to communicate,
they must share an object residing in the common heap.
We take this solution as a trade-off between a more
general solution such as allowing activities to
communicate using the RMI, and forbidding all possible
communication. Objects in the shared heap are not
allowed to have pointers to objects in any user heap.
Then, attempts to assign such pointers will result in an
exception, which is enforced by using write barriers, as in
our proposed solution.

In order to avoid the problem with enforced write
barriers, the solution proposed in [10] modifies the Isolate
API by introducing two objects called Portal and
DefereedPortal to communication among isolates,
and a security manager providing hierarchical access
rights. In this model, a parent can grant and revoke the
communications rights of its children. The solution
presented in [9] modifies the semantics of concurrent
programs by combining Hoare´s monitors with the Java
RMI. While in a Java application all threads share the
same objects, in this solution application consist of a set
of sequential processes not sharing any kind of data. In
order to share object among processes, this solution
introduces the SharedObject class and the
Shareable interface. This solution is similar to our
proposed mechanism to share objects within the common
memory.

5 Conclusions

This paper has presented a memory management design
solution for extending the RTSJ specification to execute
several activities concurrently in the same JVM. To
facilitate code sharing, classes are stored in the immortal
common space. In order to provide secure and controlled
access to the common memory regions and to maintain the
assignment rules of RTSJ, we use a write barrier strategy.
Our approach does not necessarily performs better than
others RTSJ-based approaches, more over the use of write
barriers to support the memory spaces reduces the JVM
performance. Full class loading is required only for the
first application that loads a given class. To communicate
two tasks of different activities, we present a limited
sharing model based on the common immortal memory
space. We have no tread yet the scheduling problem, but
we consider that multiprogramming scheduling algorithm
in RTSJ is an interesting future work.

References

[1] H.G. Baker. "The Treadmill: Real-Time Garbage
Collection without Motion Sickness". SIGPLAN
Notices Vol. 27, no. 3, 1992.

[2] G. Back, P. Tullmann, L. Stoller, W.C. Hsieh, and J.
Lepreau. Java Operating Systems: Design an
Implementation.. Technical report, Department of
Computer Science, University of Utah,
http://www.cs.utah.edu/projects/flux, August 1998.

[3] P. Bernadat, D. Lambright, D., and F. Travostino.
“Towards a resource safe Java for service guarantees
in uncooperative environments”. In Proc.s of the IEEE
Workshop on Programming Languages for Real-Time
Industrial Applications, 1998.

[4] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr,
D. Hardin, and M. Turnbull. (The Real-Time for Java
Expert Group). "Real-Time Specification for Java".
RTJEG 2002. http://www.rtj.org

[5] M.T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J.P.
Lesot, and F. Parain. "Memory Management for Real-
time Java: an Efficient Solution using Hardware
Support". Real-Time Systems journal. Kluwer
Academic Publishers, Vol.26, 2004.

[6] M.T. Higuera, "Memory Management Design to the
Concurrent Execution of RTSJ". Workshop on Java
Technologies for Real-Time and Embedded Systems
(JTRES), LNCS 2889, november, 2003.

[7] M.T. Higuera and M.A. de Miguel. "Dynamic
Detection of Access Errors and Illegal References in
RTSJ". In Proc. Of the 8th IEEE Real-time and
Embedded Technology and Applications Symposium
(RTAS). IEEE 2002.

[8] Java Community Process. Application Isolation API
Specification. http://jcp.org/jsr/detail/121.jsp, 2003.

[9] L. Mateu. “A Java Dialect Free of Data Races an
Without Annotations”. In Proc of the International
Parallel and Distributed Procesing Simposium
(IPDPS), IEEE , 2003.

[10] K. Palacz, G. Czajkowski, L. Daynès, and J. Vitek.
“Incomunicado: Efficient Communication for
Isolates”. ACM OOPSLA. November 2002.

[11] Sun Microsystems. “The Java HotSpot Virtual
Machine". Technical White Paper. 2001.
http://java.sun.com.

[12] A. Whitaker, M. Shaw, and S.D. Gribble. Denali: A
Scalable Isolation Ke rnel. In Proceedings of the Tenth
ACM SIGOPS European Workshop, Saint-Emilion,
France, September 2002.

Proceedings of the Seventh IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC’04)

0-7695-2124-X/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

