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Abstract
We consider the concurrent execution of several

applications within a single JVM. In order to have a 
different GC per application, we introduce and define 
application-specific memory, building upon the Real-
Time Specification for Java (RTSJ) from the Real-Time
Java Expert Group. The RTSJ memory model imposes 
strict assignment rules to or from memory areas
preventing the creation of dangling pointers. An
implementation solution to ensure  the pointer safety of 
Java consists to check the imposed rules before executing
each assignment statement by using write barriers.

1 Introduction

In this paper, we focus  on a memory management
solution in order to divide/share the heap among different 
real-time applications accounting for relevant Java
specifications: the application isolation API [5] and the
Real-time Specification for Java (RTSJ) [4], currently
under revision as JSR-121 and JSR-001 respectively.

The application isolation API [8] guarantees strict 
isolation between programs (isolates). An isolate
encapsulates an application or component, having its own 
version of a static state of the classes that it uses. Isolates 
have disjoint objects graphs, and sharing objects among 
two different isolates is forbidden. The Isolate class 
allows us to create an isolate by specifying a class. 

In RTSJ, the MemoryArea abstract class supports the 
memory region paradigm through the three following kinds 
of regions: (i) immortal memory, supported by the
ImmortalMemory and the ImmortalPhysicalMemory
classes, that contains objects whose life ends only when 
the JVM terminates; (ii) (nested) scoped memory,
supported by the ScopedMemory abstract class, that 
enables grouping objects having well-defined lifetimes;
and (iii) the conventional heap, supported by the
HeapMemory class. The lifetime of objects allocated in 
scoped regions is governed by the control flow. Strict 
assignment rules prevent the creation of dangling
pointers, which violation causes the
IllegalAssignment() exception.

The organization of the paper is as follows: we first 
present an approach to isolate the application memory,
and to detect whether the application attempts to create an 
illegal assignment (Section 2). We propose a strategy to 
collect the local heap of each application, improving the 
performance of critical tasks (Section 3). We compare our 
research to related works (Section 4). Finally, some
conclusions and a summary of our contributions;
conclude this paper (Section 5).

2 Supporting several applications

In this section, the memory management model of RTSJ 
is extended to offer a multi-process execution. In the 
proposed solution, some memory objects are accessible 
by all the applications in the system, which allows inter-
process communication by using both the communication
model of Java based on shared variables and monitors, 
and the classes that the RTSJ specification provides to 
communicate real-time tasks and non-real-time threads.

2.1 Extending the memory hierarchy

In order to obtain multi-process execution, we introduce 
the MemorySpace abstract class supporting two
subclasses: the CommonMemory class to support public 
memory without application access protection, and
ProtectedMemory to define application-specific memory 
with access protection. There is only one object instance 
of  the CommonMemory  class which is  created at
initialization system time and is a resource shared among 
all applications in the system. In contrast, a new
ProtectedMemory object is created when creating a new 
application and is a local resource protected from accesses 
of all the other applications in the system. Creating a 
protected memory space implies the creation of both the 
local heap and the local immortal memory regions of the 
corresponding application. An application can allocate 
memory within its local heap, its immortal region, several 
immortal physical regions, several scoped regions, and 
also within the common memory space.
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2.2 Sharing memory

To facilitate code sharing, classes are stored within the 
common immortal space (i.e., the
CommonImmortal.instance() object). In this way, all 
applications in the system access both code and data (i.e., 
class variables), of all classes. But there is a problem with 
the access to the class variables, declared as static in 
Java. These variables must be shared by all the tasks of an 
application, but they must be protected from the access of 
other activities. Thus, we maintain a copy of the class 
variables in the local immortal memory of the application.

The same problem arises with class monitors (i.e.,
shared code related to synchronization), these methods 
are declared in Java as static synchronized. When a 
task enters a class monitor and is suspended by another 
task, if both tasks are from the same application, there is 
no problem. The problem arises if the two tasks are from 
different applications. To ensure mutual exclusion among 
tasks from the same application, while avoiding other 
activities to be affected, each application must maintain a 
separate copy of the monitor [10]. Then, we maintain a 
copy of both class variables and class monitors in the 
immortal region of each application using the class, while 
maintaining only a single version of the class code. This
solution requires modifying the class loader.

2.3 Communication among applications

In order to share objects among applications, we
introduce the SharedObject class and the Shareable
interface that are equivalent to the RemoteObject class 
and Remote interface of the Java RMI. Objects allocated
within the common memory are restricted to be shared
objects (i.e., common objects belong to the
SharedObject class or any of subclasses). Non shared 
objects can only be referenced locally. We can compare a 
shareable method to the synchronize methods of Java.
Shared objects can be accessed only by invoking the
methods declared in a shareable interface. This restriction 
avoids that two tasks access the same object concurrently 
without synchronization, which makes programs robust.
Since shareable interfaces provide synchronization among 
tasks of either the same or different applications, to ensure
mutual exclusion we allocate both shared objects and 
shareable interfaces within the common memory.

2.4 Introducing write barriers

An attempt to create a reference to an object into a 
field of another object requires a different treatment
depending on the space to which the object belongs:

• Treatment A: the reference is within a protected
space. We must take into account the assignment 
rules imposed by RTSJ [4] (i.e., objects within the
local heap or the local immortal memory cannot
reference objects within a scoped region, and objects
within a scoped region cannot refe rence objects
within another scoped region that is neither non-outer
nor shared).

• Treatment B: the reference is within the common 
immortal memory. It is allowed and nothing needs to 
happen.

In Figure 1, we can see the write barrier pseudo-code that
we have to introduce in the interpretation of the
putfield, aastore, and putstatic bytecodes . We
denote as X the object that makes the reference, and as Y 
the referenced object. The spaceT() function returns:
common or protected depending on the type of the 
space to which the object parameter belongs. The
regionT() function returns: heap, immortal, or
scoped depending on the type of the region to which the 
object belongs. The shared() function returns true
when the region of the object  is a shared one. And the
nested(X,Y) function returns true, when the region’s
scope of the Y object is the same or outer than the region
of  the X object   [5].

Figure 1: Write barrier code detecting illegal assignment.

The header of the object  must specify both the space and 
the region to which the object belongs. Then, when an 
object/array is created by executing the new (new_quick)
or newarray (newarray_quick) bytecode, it is
associated with the scope of both the active space and the 
active region. Local variables are also associated with the 
scope of the active region. 

3 Collecting the local heap

Different GC techniques are appropriate depending on the 
real-time embedded application. If the application does not 
generate cyclic data structures, a reference-counting GC 
algorithm is the most appropriate. Alternatively, a
generational GC collects the younger objects more
frequently than the older ones. While real-time GCs 
provide the worst-case guarantees, generational GCs
improve the average performance at the expense of the 
worst-case.

if (spaceT(Y)=protected) and (space(X)<>space(Y))) IllegalAssignment();

if ((regionT(Y)=scoped) and (regionT(X)<>scoped)) IllegalAssignment();

if ((regionT(Y)=scoped)  and (not shared(Y) and (not nested(X, Y))) IllegalAssignment();
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3.1 The local collector strategy

There are also some important considerations when 
choosing a real-time GC strategy, among them are space 
cost and barrier costs. Copying GCs require doubling the 
memory space, because all the objects must be copied 
during GC execution. Non-copying GCs do not require this 
extra space, but are subject to fragmentation. We
specifically consider the incremental non-copying GC
based on the tri-color treadmill algorithm [1]. This
algorithm allows the interleaved execution of the collector 
and the application, which execution is synchronized by 
using write barriers to detect whether the application
updates a pointer from a black object to a white one. Each
root stack is processed root by root, and each object 
referenced by a root is inserted in a grey-list. If during this 
phase, the application treats to make a reference from a 
black object to a white one, the color of the referenced
object is turned grey and the object is moved from the 
white-list to the grey-lis t, which is   achieved by using 
write barriers.

Alternatively, we can use a generational copying
collector such the employed by the Java HotSpot VM, 
which uses a GC based on the train algorithm [11] to 
collect the old space, which divides the old object space 
into a number of fixed blocks called cars, and arranges the 
cars into disjoint sets (trains). This technique uses write 
barriers to trap both the inter-generation references 
(pointers form objects within the old generation to objects 
within the new generation), and references across cars
within the same train.

Since objects allocated within regions may contain 
references to objects within the local heap, a tracing-based
GC (e.g., incremental or generational) must take into 
account these external references, adding them to its 
reachability graph. When an object outside the heap 
references an object within the heap, we must to add the 
object that make the reference to the root-set of the 
collector, which is   achieved by using write barriers [5].
When the collector explores an object outside the heap 
(i.e., a root), which has lost its references into the heap, it 
is eliminated from the root-set. When collecting a scope 
region because their reference-counter reaches zero, the 
root-list of the local GC is updated to remove all the 
objects in the region that are external roots for the GC.

3.2 Dealing with critical tasks

From a real-time perspective, the Garbage Collector (GC) 
introduces unpredictable pauses that are not tolerated by 
real-time tasks. Real-time collectors eliminate this problem 

but introduce a high overhead. RTSJ [4] makes distinction
between three main kinds of tasks: (i) low-priority that are 
tolerant with the GC, (ii) high-priority that cannot tolerate 
unbounded preemption latencies, and (iii) critical that
cannot tolerate preemption latencies. A reference of a 
critical task to an object allocated in the heap causes the 
MemoryAccessError() exception, which we achieve by 
using read barriers. Read barriers occur upon all object 
accesses, which means upon executing both types of 
bytecodes: those which cause a load reference (i.e., the
getfield, aaload, and getstatic bytecodes) and
those causing a store reference (i.e., the putfield,
aastore, and putstatic bytecodes). Note that read 
barriers are strictly necessary only when using read
barrier-based collectors (i.e., incremental copying). When
using a non-read barrier-based collector (i.e., mark-and-
sweep, generational, and reference-counter), load
operations do not affect the GC data structure. As
consequence, the GC does not causes delays to critical 
tasks when accessing objects . Then, the restriction on 
critical tasks can be reduced to write barrier checks. And, 
the MemoryAccessError() exception, which raises when 
a critical task attempts to access an object  within the 
heap, is changed by the IllegalAssignmentError()
exception, which raises when a critical task attempts to 
assign an object  that belongs to the heap[5].

4 Related works

Unlike traditional JVMs, in our proposed solution, the 
applications run concurrently within a single JVM
instance. In [6], we study the management of resource
consumption taking into account both real-time
constraints and the available memory budget. To support
the memory model of RTSJ, the JVM must check for the 
assignment rules before to execute an assignment
statement. Our solution consists to check both violation 
spaces, and the imposed RTSJ access and assignment
rules dynamically, just when executing an assignment
statement. In order to do so, we introduce an extra code in 
all bytecodes causing an object assignment. The use of 
write barriers to detect illegal assignments was introduced 
in [7]. Another effort to partition the Java memory is 
described in [3]. In this model, the creation of a new heap 
is optional; the proposed interface allows us to create a 
new name-space which shares the system heap rather than 
creating a new one. In order to avoid malicious cross-
reference between private heaps, this solution uses both 
read and write barriers. As our solution, the
implementation of heap partitioning binds heaps to
objects by adding a field in the object header. 

In order to provide strong isolation between services, 
both to enforce security and to control resource
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consumption, the solution proposed in [12] subdivides a 
physical machine into a set of fully isolated protection 
domains. As in our solution, each virtual machine is 
confined to a private namespace.  In a way similar to the 
Java Os from Utah [2], in order to provide secure and 
controlled accesses, we limit direct sharing among
applications. When two activities want to communicate, 
they must share an object residing in the common heap. 
We take this solution as a trade-off between a more 
general solution such as allowing activities to
communicate using the RMI, and forbidding all possible 
communication. Objects in the shared heap are not
allowed to have pointers to objects in any user heap. 
Then, attempts to assign such pointers will result in an 
exception, which is enforced by using write barriers, as in 
our proposed solution.

In order to avoid the problem with enforced write 
barriers, the solution proposed in [10] modifies the Isolate 
API by introducing two objects called Portal and 
DefereedPortal to communication among isolates, 
and a security manager providing hierarchical access 
rights. In this model, a parent can grant and revoke the 
communications rights of its children.  The solution
presented in [9] modifies the semantics of concurrent 
programs by combining Hoare´s monitors with the Java 
RMI. While in a Java application all threads share the 
same objects, in this solution application consist of a set 
of sequential processes not sharing any kind of data. In 
order to share object among processes, this solution 
introduces the SharedObject class and the
Shareable  interface. This solution is similar to our 
proposed mechanism to share objects within the common 
memory.

5 Conclusions

This paper has presented a memory management design 
solution for extending the RTSJ specification to execute 
several activities concurrently in the same JVM. To
facilitate code sharing, classes are stored in the immortal 
common space. In order to provide secure and controlled 
access to the common memory regions and to maintain the 
assignment rules of RTSJ, we use a write barrier strategy. 
Our approach does not necessarily performs better than 
others RTSJ-based approaches, more over the use of write 
barriers to support the memory spaces reduces the JVM
performance. Full class loading is required only for the 
first application that loads a given class. To communicate 
two tasks of different activities, we present a limited
sharing model based on the common immortal memory 
space. We have no tread yet the scheduling problem, but 
we consider that multiprogramming scheduling algorithm 
in RTSJ is an interesting future work.
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