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Abstract. Our objective is to adapt the Java garbage collection to an embedded
system, e. g., wireless PDA executing multimedia applications. We consider the
concurrent execution of several applications within a single JVM, giving an
approach to divide/share the memory among the applications executing
concurrently in the system. Since a multimedia application is supported by
several tasks, some of them being response time limited, while others being
high performance oriented, we must consider the real-time characteristics of the
GC. In order to have a different GC per application, we introduce and define
application-specific memory, building upon the Real-Time Specification for
Java (RTSJ) from the Real-Time Java Expert Group.

1   Introduction

Demands for multimedia services in embedded real-time systems, such as wireless
Personal Digital Assistants (PDAs), are increasing. The use of PDAs is foreseen to
outrun the one of PCs in the near future. However, for this actually happen there is
still the need to devise adequate software and hardware platforms in order to not
overly restrict the applications that are supported. In general, the environment must
accommodate the embedded small-scale constraints associated with PDAs, and enable
the execution of the applications traditionally supported on the desktop such as soft
real-time multimedia applications that are becoming increasingly popular. In
particular, it is mandatory to finely tune the management of memory consumption,
and to enable provisioning new applications extending the capabilities of the mobile
phones.

Addressing the above requirements then lies to devising resource management
policies taking into account both real-time constraints and the available memory
budget, and offering an open software environment which enables extending the
application set that can be supported by the PDA. The ideal candidate to providing an
open environment is Java, which appears as a major player in the area of embedded
software environment, and allows us to get portable code, which can possibly be
dynamically downloaded.  Although, Java has some shortcomings regarding the target
device, that have been solved by extending Java API to meet the requirements
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appertained to embedded real-time software [4] and [11], such as real-time scheduling
and predictable memory.

Therefore the need for executing multiple applications in the same JVM is
increasing [2], [5]. When executing concurrently multiple applications, if an
application consumes all the available memory, the other applications get starved.
One way to avoid this problem is to divide the memory among running applications in
the system, giving to each application a separate garbage collectable area. Hence, the
partition of the heap in separate sub-heaps allows: invoking several collectors
concurrently; having a collector per sub-heap that is customized according to the
behaviour of the embedding application, minimizing the latency time to preempt a
local collector from the CPU when a high priority task from another application
arrives, and distributing the collector overhead among activities.

From a real-time perspective, the Garbage Collector (GC) introduces unpredictable
pauses that are not tolerated by real-time tasks. Real-time collectors eliminate this
problem but introduce a high overhead. An intermediate approach is to use Memory
Regions (MRs) within which both allocation and de-allocation are customized and
also the space locality is improved. Application of these two implicit strategies has
been studied in the context of Java, which are combined in the Real-time Specification
for Java (RTSJ) [4]. The J Consortium solution [11] proposes allocation contexts
allowing us to group core objects that are free upon disposal of the allocation context.
The core objects are not relocated and garbage collected, and core methods do no
include code for synchronization with the GC.

This paper focuses on a memory management solution in order to divide/share the
heap among different real-time applications accounting for the RTSJ.

1.1   The RTSJ Memory Model

The MemoryArea abstract class supports the region paradigm in the RTSJ
specification through the three following kinds of regions: (i) immortal memory,
supported by the ImmortalMemory and the ImmortalPhysicalMemory classes,
that contains objects whose life ends only when the JVM terminates; (ii) (nested)
scoped memory, supported by the ScopedMemory abstract class, that enables
grouping objects having well-defined lifetimes; and (iii) the conventional heap,
supported by the HeapMemory class. Objects allocated within immortal regions live
until the end of the application and are never subject to garbage collection. Objects
with limited lifetime can be allocated into a scoped region or the heap. Garbage
collection within the application heap relies on the (real-time) collector of the JVM.

RTSJ also makes distinction between three main kinds of tasks: (i) low-priority
that are tolerant with the GC, (ii) high-priority that cannot tolerate unbounded
preemption latencies, and (iii) critical that cannot tolerate preemption latencies. Low-
priority tasks, or threads, are instances of the Thread class, high-priority tasks are
instances of the RealtimeThread class, and critical tasks are instances of the
NoHeapRealtimeThread class. Synchronization among critical tasks and non-
critical ones is problematic, since the non-critical may cause delays to the critical ones
due to the execution of the GC. RTSJ solves the synchronization problem by
introducing unsynchronized and non-blocking communication, e.g., the
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WaitFreeReadQueue (resp. WaitFreeWriteQueue) class supports a read-free
(resp. write-free) queue, which is unidirectional from non-real-time to real-time.

1.2   Paper Organization

The rest of this paper is organized as follows. Section 2 presents the general
guidelines of our solution design to execute concurrently several applications. Section
3 details the characteristics of the local GC embedded in each application. Section 4
discusses resource management policies taking into account both real-time constraints
and the available memory budget. Section 5 sketches an overview of related work.
Finally, Section 6 offers some conclusions.

2   Extending RTSJ to Support Several Applications

In this section, the memory management model of RTSJ is extended to offer a multi-
process execution. In the proposed solution, some memory regions are accessible by
all the activities in the system, which allows inter-process communication by using
both the communication model of Java based on shared variables and monitors, and
the classes that the RTSJ specification provides to communicate real-time tasks and
non-real-time threads.

2.1   Extending the MemoryArea Hierarchy

In order to obtain multi-process execution, we introduce the MemorySpace abstract
class supporting three subclasses: the CommonHeap and CommonImmortal to
support public memory without application access protection, and
ProtectedMemory to define application-specific memory with access protection.
There is only one object instance of both the CommonHeap and the
CommonImmortal classes which are created at initialization system time and are
resources shared among all activities in the system. In contrast, a new
ProtectedMemory object is created when creating a new application and is a local
resource protected from accesses of all the other activities in the system.

Creating a protected memory space implies the creation of both the local heap and
the local immortal memory regions of the corresponding application. As in RTSJ, an
application can allocate memory within its local heap, its immortal region, several
immortal physical regions, several scoped regions, and also within the common heap
and the common immortal spaces.

In order to obtain the reference of the common heap and the common immortal
region in a similar way to the RTSJ model, we introduce the instance() method in
both the CommomHeap and ImmortalMemory classes.
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2.2   Sharing Memory

To facilitate code sharing, classes are stored within the common immortal space (i.e.,
the CommonImmortal object). In this way, all applications in the system access both
code and data (i.e., class variables), of all classes. But there is a problem with the
access to the class variables, declared as static in Java. These variables must be
shared by all the tasks of an application, but they must be protected from the access of
other activities. Thus, we maintain a copy of the class variables in the local immortal
memory of the application. As in the solution given in [5], we maintain a copy of the
class variables for each application using the class, while maintaining only a single
version of the class code.

The same problem arises with class monitors (i.e., shared code related to
synchronization), these methods are declared in Java as static synchronized.
When a task enters a class monitor and is suspended by another task, if both tasks are
from the same application, there is no problem. The problem arises if the two tasks
are from different activities. To ensure mutual exclusion among tasks from the same
application, while avoiding other activities to be affected, each application must
maintain a separate copy of the monitor. The solution is then to allocate also in the
immortal memory of the application a copy of the static code. This solution
requires modifying the class loader to allocate in the immortal memory of each
application, a copy of data and code declared with the static statement [5]. In
general, there is a problem with resources shared among all tasks of an application
that must be isolated from tasks of the other application.

2.3   Dealing with Critical Tasks

Whereas high-priority tasks require a real-time GC, critical tasks must not be affected
by the GC, and as a consequence cannot access any object within the heap [4]. A
reference of a critical task to an object allocated in the heap causes the
MemoryAccessError() exception, which can be achieved by using read barriers.
Note that read barriers occur upon all object accesses, which means upon executing
both types of bytecodes: those causing a load reference1 and those causing a store
reference2.

Note that read barriers are strictly necessary only when using read barrier-based
collectors (i.e., incremental copying without handlers). When using a non-read
barrier-based collector (i.e., mark-and-sweep, generational, copying-based using
handles, and reference-counter), load operations do not affect the GC data structure.
As consequence, the GC does not causes delays to critical tasks when accessing
objects. Hence, we apply the same optimization as for the incremental GC which is to
use write barriers instead of read barriers [2]. Since reads do not interfere with the
GC, the restriction on critical tasks can be reduced to write barrier checks. And, the
MemoryAccessError() exception, which raises when a critical task attempts to
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bytecodes.
2 putfield, putstatic, aputfield_quick, aputstatic_quick, aastore, or
aastore_quick bytecodes.
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access an object  within the heap, is changed by the IllegalAssignmentError()
exception, which raises when a critical task attempts to assign an object  that belongs
to the heap [7].

3   Garbage Collection in an Embedded Multimedia Framework

Different GC techniques are appropriate depending on the real-time embedded
application. If the application does not generate cyclic data structures, a reference-
counting GC algorithm is the most appropriate. Alternatively, a generational GC
collects the younger objects more frequently than the older ones. While real-time GCs
provide the worst-case guarantees, generational GCs improve the average
performance at the expense of the worst-case. Generational collectors may be good
for some applications, which are soft real-time, like multimedia ones.

3.1   The Basic Collector Strategy

The characterization of the applications behaviour related with dynamic memory
allocation helps choosing the local GC technique. There are also some important
considerations when choosing a real-time GC strategy, among them are space cost
and barrier costs. Copying GCs require doubling the memory space, because all the
objects must be copied during GC execution. Non-copying GCs do not require this
extra space, but are subject to fragmentation. We specifically consider the incremental
non-copying GC based on the tri-color treadmill algorithm [1] that has been described
in [7]. This algorithm allows the interleaved execution of the collector and the
application3, which execution is synchronized by using write barriers to detect
whether the application updates pointers. When the collection is completed, objects
that must execute the finalize() method are moved to the finalize-list, which are
executed by a specialized thread such as in  [15]. Finally, for objects that have
finalized, their memory is freed. Then, a compacting phase can be added to move
objects into a continuous block into the heap, which implies some degradation of real-
time guarantees.

Alternatively, we can use a generational copying collector such the employed by
the Java HotSpot VM, which uses a GC based on the train algorithm [9] to collect the
old space, which divides the old object space into a number of fixed blocks called
cars, and arranges the cars into disjoint sets (trains). This technique uses write-
barriers to trap both the inter-generation references (pointers form objects within the
old generation to objects within the new generation), and references across cars within
the same train.

We can improve the performance of the above collectors using the hardware write
barrier support that the picoJava-II microprocessor [17] provides. From the standpoint
of GC, this microprocessor checks for the occurrence of two type of write barriers:
reference-based used to implement incremental collectors, and page-based designed
specifically to assist generational collectors based on the train-based algorithm.

                                                          
3 Each small GC unit interleaved with the application execution is called increment.
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3.2   The GC and MR

Since objects allocated within regions may contain references to objects within the
local heap, a tracing-based GC (e.g., incremental [1] or generational [9]) must take
into account these external references, adding them to its reachability graph. When an
object outside the heap references an object within the heap, we must to add the
object that make the reference to the root-set of the collector, which is   achieved by
using write barriers. When the collector explores an object outside the heap (i.e., a
root), which has lost its references into the heap, it is eliminated from the root-set.
Finally, when a scoped MR ends, all objects within the region having references to
the objects within the heap are removed from the root-list of the collector, and all the
objects within the region are moved to the finalize-list.

3.3   Running the Local GC

In RTSJ, an instance of the abstract Scheduler class implements a scheduling
algorithm, providing flexibility to install an arbitrary scheduler. The
PriorityScheduler subclass contains the base scheduling, which is preemptive
and priority-based, having at least 28 real-time priority levels plus the 10 traditional
Java threads priorities. Since fixed-priority scheduling with preemption is the most
commonly used in real-time system construction, we adapt our real-time collector to
this scheme by establishing the following main priority levels:

1. Low-priority task are mapped in the 10 Java priority levels.
2. The incremental GC is mapped in the lowest real-time priority level (i.e., the

11 priority level).
3. High-priority tasks are mapped in the lowest real-time priority levels, and can

be interleaved with the GC (e.g., the 12-38 priority levels).
4. Critical tasks are mapped in the highest real-time priority levels, and can

preempt the GC at any instant (e.g., the 12-38 priority levels).

When creating a task, in addition to the memory parameters, the memory region, and
the runner code, we can specify both a PriorityParameters object and a
ReleaseParameters object to control the task behavior. Figure 1 shows how we
can create a task executing the incremental GC algorithm. Where the increment value
is computed as the worst case execution time of a GC increment and is used to specify
both parameters its worst case execution time and its deadline.

RealtimeThread gc = new RealtimeThread(
       new PriorityParameters(PriorityScheduler.getMinPriority()+10),
       new AperiodicParameters(increment, increment, null, null),
       null, null, null,  new MyIncrementalGC());

Fig. 1. Scheduling the GC as a task in RTSJ�
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4   Resource Management and Memory Negotiation

Resource management allows making real-time systems safe and extensible, and can
be studied from three points of view: the ability to allocate resources to an application
(resource allocation), the ability to track resource usage (resource accounting), and
the ability to reclaim the resources of an application when it terminates (resource
reclamation). There are two costs associated with the heap allocation, the direct cost
of the new() method and the cost to perform the GC. In programs with high
allocation rate, like multimedia applications, this cost can be substantial. Resource
accounting is influenced by the way in which activities obtain services, and is difficult
when there are shared system services. And resource reclamation presents some
problems when a task terminates exceptionally.

4.1   Resource Allocation

The partition of memory allows us to invoke several collectors concurrently, where
the reclamation rate can be different for each application. When an application
allocates objects, the assigned memory is not necessarily continuous, e. i., partitions
are not physical4. The execution of applications further relies on a negotiation
protocol as commonly used when running multimedia applications. The handling of
real-time constraints together with the limited capability of the PDA requires making
sure that there is enough resource available to execute a new application. In the case
where there is not enough resource left, it is common to have a negotiation protocol
taking place between the application and the system where the application lowers its
resource requirements by changing the resulting quality of service offered to the user.
We are interested in addressing dynamic negotiation in order to benefit from
resources left by applications that terminate.

Considering the RTSJ solution, prior to starting a task, a MemoryParameters
object must be assigned to it. The memory requirements of a task are used for both the
executive (to control admission) and the GC (to satisfy all tasks allocation rates).
When a task exceeds its memory resource limitation, the executive can generate an
exception to reject workloads. This solution allows communicating the memory
requirements of a task to the system, but we can not change these requirements during
the live time of the task. We found interesting that applications can negotiate
dynamically with the real-time executive for resources. The resources budgets that we
consider are: memory size and memory allocation rate. Upon arrival a new
application, it must reserve resources. If there are not enough resources available, the
application must revise its requirements. If still there are not resources available, the
memory requirements of all applications can be revised. Finally, the incoming
application will be either, accepted or rejected according to the results of the
negotiation.

                                                          
4 As an exception, the memory assigned to LTMemory objects must be continuous, because

this kind of regions provides linear allocation time.
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4.2   Resource Shared and Communication

Resource management is related with the communication model. The standard JVM
supports a direct sharing communication model, which makes difficult resource
reclamation (e.g., when an application ends and has shared objects with tasks of other
applications). To communicate two tasks of different activities, both critical or both
non-critical, we present a limited sharing model, where shared objects must be
allocated within the common memory. Hence, this model is less flexible than direct
sharing. However when an application ends, all objects are reclaimed without
problems. For object allocated within the common spaces, class variables and class
monitors are allocated within the common immortal memory. When applications have
no address space shared, copying is the only possibility. This solution is the most
flexible and the most adequate for a distributed real-time Java extension.

Communication among tasks which belong either to the same or different activities
is safe, when both tasks are critical or when both tasks are non-critical. But
communication when a task is critical and the other one non-critical require
unsynchronized and non-blocking operations which make it unsafe. Note that when
both tasks are from different activities, there is no problem with the local collector.
However, the problem still exists with the common collector. Then, communication
among critical and non-critical tasks of different applications must be achieved by
using the common heap as the memory area parameter in the constructor of the wait-
free queues.

4.3   Resource Reclamation

Each application heap is collected by a local collector (e.g., the GC described in
Section 3), while the objects shared by the applications are collected by an
incremental collector based on the reference-counting technique. Then, some form of
distributed information to collect shared objects is required. We maintain a list of
pointers, called external-references, to objects within the common heap having
references from objects within other memory spaces. And for each object within the
common heap, we maintain a counter giving the number of links to the object. An
attempt to create a reference to an object into a field of another object requires three
different treatments depending on the space to which the object belongs:

• Treatment A: the reference is within the common heap. It is not allowed for
critical tasks, therefore the write must be aborted and the
IllegalAssignemt() must be triggered. For non-critical tasks, the write
must take actions for the reference-counter collector, and also it causes the
creation of  an external-reference whether the X object is allocated outside  the
common heap (i.e., for inter-space references).

• Treatment B: the reference is within the common immortal memory. It is
allowed and nothing needs to happen.

• Treatment C: the reference is within a protected. We distinguish two cases. For
intra-spaces references (i.e., space(X)=space(Y)), we must take into account the
assignment rules imposed by RTSJ [3] and actions needed by the local GC
whether the reference is within the protected space [8]. For inter-spaces
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references, the write must be aborted and the IllegalAssignemt() must
be triggered for  inter-region references.

5   Related Work

The literature already provides us with a number of base solutions upon which we can
build to meet our objectives. Focusing on work from the operating system
community, relevant work on the issue of resource reservation has been examined in
[14]. The proposed solution lies in a real-time JVM that interfaces with the
abstractions of a resource kernel to build a resource-based JVM semantically
compliant with RTSJ. Compared to this work, we are interested in examining
management of resource consumption taking into account both real-time constraints
and the available memory budget. Unlike traditional JVMs, in our proposed solution,
the applications run concurrently within a single JVM instance, in a way similar to the
Java Os from Utah [2]. Like in this solution, in order to provide secure and controlled
accesses, we limit direct sharing among activities. When two activities want to
communicate, they must share an object residing in the common heap. We take this
solution as a trade-off between a more general solution such as allow activities to
communicate using the RMI, and forbidding all possible communication.

The main applications for the PDAs are typically those run during a trip. In this
context, applications will be Internet-based for accessing both discrete and continuous
multimedia data. Internet services contain active code rather than static data, which
raises serious trust and security issues. In order to provide strong isolation between
services, both to enforce security and to control resource consumption. In [18], a new
kernel architecture to isolate un-trusted applications has been proposed, whose
function is to subdivide a physical machine into a set of fully isolated protection
domains, and where each virtual machine is confined to a private namespace. Since
Internet services are designed and operated by independent users, sharing is
considered infrequent, and isolation has been strengthened.

A reconfigurable virtual machine supporting multiple user environments with
varying degrees of criticality and privilege has been presented in [12]. This
architecture provides hardware-enforced guarantees of resource separation, and it is
based on the JEM-1 Java-based microprocessor. Hardware-based Java platforms (e,
g., [6]) provide efficient support for bytecode execution, hard real-time, and also safe
and secure multiple virtual machine execution.

In [10], we found a study of the requirements for embedded software environment
aimed at wireless PDAs. These requirements have been addressed through a
middleware platform, where the main issues in offering services for resource
management lie in customized memory management. A solution to resource
management and negotiation has not yet been addressed by the NIST group.
However, its recommendation is to   negotiate resources via the API. The PERC
executive [13] analyzes availability of resources and determines when to accept a new
real-time activity through  a representation of the activity’s minimum and desired
resources, which allows resource negotiation.
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6   Conclusions

This paper has presented a memory management design solution for extending the
RTSJ specification to execute several activities concurrently in the same JVM. Two
issues that we have addressed are how the memory is shared/divided among
applications, and how allocation and deallocation are managed. To facilitate code
sharing, classes are stored in the immortal common space. In order to provide secure
and controlled access to the common memory regions and to maintain the assignment
rules of RTSJ, we use a write barrier strategy. The logical distribution of the memory
among applications can be based on a negotiation protocol, as typically used by
multimedia systems. Regarding the customization of the collector running within each
application heap, its selection depends on the features of the hosted application, and is
left upon the responsibility of the developer (possibly aided by adequate analysis
tools). For example, if the application does not generate any cyclic data structure, a
reference counting GC algorithm is the most appropriate.

Our proposal builds upon existing work since the area of memory management.
The contribution of our work comes from the adaptation and integration of relevant
solutions in the context of RTSJ. This work need to be extended in multiple
directions. Firstly, the proposed solution needs to be implemented and experimented
with. Therefore, a memory allocation profile and techniques to determine the memory
usage profile are very important issue requiring study.
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