Container Model Based on RTSJ Services

Ruth Tolosal, José P. Mayo], Miguel A. de Miguell,
2 1
M. Teresa Higuera-Toledano , and Alejandro Alonso

! Department of Telematics Engineering, Technical University of Madrid.
2 Faculty of Computer Science, Complutense University of Madrid,
Ciudad Universitaria, 28040 Madrid Spain
mmiguel@dit.upm.es

Abstract. The container is a basic structure of J2EE used to reduce the
complexity of clients and applicative services. Component-based infrastructures
use this type of structures and provide support for the development and
execution of component-based systems. However, they have limitations in their
application in real-time and reliable systems, because they neither integrate
facilities to support these types of problems nor include services of
predictability and dependability. RTSJ is a basic framework that includes the
basic services for the construction of Java real-time systems. The combination
of both Java approaches (Containers and RTSJ) is a good solution to reduce the
complexity of real-time Java programs. The integration requires the adaptation
of both approaches. In this paper we introduce a new model of component
container that integrate the RTSJ services based on a resource reservation
model.

1 Introduction

Currently, the development and implementation of real-time systems requires the
detailed comprehension of some complex techniques (e.g. scheduling analysis
techniques, real-time memory management), and the languages or APIs that support
these concepts (e.g. RTSJ [2] and RTCore [10]). The integration of these APIs and
techniques with application specific problems increases the complexity of design and
implementations of applications and their mantenability.

J2EE uses middle-tier server solutions to reduce the complexity of clients and
application services. EJB (Enterprise Java Beans) container is a basic structure to
support the J2EE middle-tier architecture [S]. The container is a runtime environment
that controls the business implementations and provides them with important system-
level services. Since developers do not have to develop these services, they are free to
concentrate on the application methods. The containers support the common technical
solutions, and isolate dependencies of specific implementations. This approach avoids
the problems of incorrect use of RTSJ APIs and simplifies the component. The
system-level services that integrate current models of containers do not include real-
time facilities such as RTSJ services. Current models of EJB are supported by
services such as transaction, persistence, and security.

R. Meersman and Z. Tari (Eds.): OTM Workshops 2003, LNCS 2889, pp. 385-396, 2003.
© Springer-Verlag Berlin Heidelberg 2003

386 R. Tolosa et al.

The model of container that introduces Section 2 and the basic services of RTSJ
define a component model equivalent to other EJB object types (session, message,
and entity), which address other types of problems. This new type of component gives
support to represent conversational interactions that require limited response times
and resource consumption. In this paper we introduce some solutions for the
integration of RTSJ (Real-Time Specification for Java) APIs in container
infrastructures. In this integration the container controls two basic resources that
supports RTSJ: CPU and memory. The management of these resources in the
container isolates in the component container the problems of concurrency, memory
management, predictability and synchronization, which support RTSJ. In some
previous works we have designed container models that provide predictability of
methods invocations based on network reservation and admission control services
[6,7]. This paper includes a container model that executes components in local mode
(the system executes in mono-processor mode, as RTSJ) and we use the RTSJ
resource services to improve the predictability of application components.

The Section 2 includes the general properties of this component model, Section 3
introduces some practical solution to support this model with RTSJ, Section 4
includes some practical results, Section 5 includes the related work and Section 6

includes the conclusions.
XML Component
Descriptor

{0

Generator of
Container

L _
»O Comp

Business Interface

RT Object RTBST 6

-3 0 —-—=0

Fig. 1. RTC component model

2 Real-Time Component Model

The resource-consuming component is a processing entity that includes a group of
concurrent units of execution, which cooperate in the execution of a certain activity
and share common budgets. The budget is an assigned and guaranteed share of a
certain resource. A component has associated: i) facets (interfaces provided and
synchronously or asynchronously used by clients), and ii) receptacles (interfaces
synchronously and asynchronously used by this component). A component can

Container Model Based on RTSJ Services 387

negotiate the arrival-pattern and latency for its facets and receptacles. The process of
negotiation establishes the temporal properties of component execution. The container
implements the negotiation associated to the facets; the container negotiates that there
are resources available and reserves the resources. Specific services included in the
component’s facet support the negotiation facilities and the container intercepts the
invocation of these services. The negotiations are expressed in terms of the quality
attributes that define the arrival-patterns and latencies of method invocations and
memory usage that support the component.

Figure 1 includes the main blocks associated to the component and its development
process. Home interface and the Business Interface are structures defined in EJB. The
rest of block are inspired in EJB model, but we adapt them to real-time and RTSJ
domains.

1. External Interfaces. The external interface of the component includes the
Business Interface that identifies the business methods of the interface, the
Home interface that includes the factory methods of the component, and the
RTObject interface that is a common interface for all RTC (Real-Time Component)
components. RTObject includes methods for the negotiation and other system
services.

2. Component Descriptor. This XML file includes the identification of the
component type and its attribute values. RTC includes attributes for the identification
of the type of reservation that is used and the resources required in the component in
general and in its methods specifically, the maximum number of references that the
component can support, maximum number of concurrent invocations supported, scale
of times used in time expressions, and execution times for applicative methods.

3. Container. The container supports the type of component specified in the
Component Descriptor, for the Business Interface. The container
implementations use RTSJ to guarantee the allocation of resources for the component,
it manages the concurrency in the component, and uses RTSJ for the evaluation of the
response time negotiated with clients. The Generator of Container has as inputs the
component descriptor and the Business Interface, and generates automatically
the container of this component. The container intercepts any method call to the
component; it delegates the applicative methods, but during the execution it and the
basic services monitor the method execution.

4. RTContext. This interface includes the internal services provided by the
container to the business component. It provides methods for the dynamic
specification of resources required (memory and execution times) during the
component construction, provides information about the CPU available for the current
budget, methods that evaluate the proximity of the deadline, methods that return the
internal memory available in the component, and other general component services.

5. RTBean. The applicative component must implement the RTBean interface. In
this solution the business component cannot customize the negotiation process as in
[6], the component descriptor includes all the information to configure the
negotiation. This interface includes methods for the notification of new reservations
that can affect the execution of this component.

6. Home. The home is a component factory that creates component instances and
returns component references. Each component instance can have associated a set of
references and a set of clients can use the same reference to communicate with the
same component instance.

388 R. Tolosa et al.

2.1 Model of Method Invocation, Resource Reservation, and Negotiation

The interface RTObject includes a set of services for the negotiation with its clients
the arrival-pattern invocation that the component can support (e.g. periodic, aperiodic,
group-server), the specific parameters of each pattern (e.g. minimum period,
maximum number of concurrent executions), and the allowed latency (e.g. deadline)
for the responses. The arrival-pattern is a constraint that the client must achieve, and
the latencies are the constraints that the component achieves, when the negotiation
contract is done. The container intercepts these invocations and uses the RTSJ
services to make the CPU reservation and detect the admission control problems. The
containers support two types of reservations that depend on the method to describe the
cost of execution in the component. i) The component descriptor includes the
execution cost for each business method, and the arrival pattern includes the
identification of methods that will be requested. ii) The client only specifies the
percent of CPU that the component must reserve for any invocation associated to this
reservation. In both cases, the container computes the budget, uses RTSJ services to
make the reservation and to evaluate the new schedulability configuration.

The model of reservation could be based on several programming concepts. Three
examples are: i) the negotiation process reserves resources for the specific client that
makes the negotiation, ii) the negotiation affects to all clients of a component
instance, and all clients share the same reservation, and iii) the reservation is
associated to component references, and all clients that share the same reference,
share the reservations, but different references have different reservations. The Home
interface includes methods for the construction of new components and to get
references to components created. We use the third solution, because it can support
the other solutions. In this solution, the interface Home creates the references and
initializes its reservation (initially they have a best-effort reservation). The container
associates a pool of threads to the reference (in some cases this pool includes a single
thread, the number and type of thread is included in the component descriptor). A
multiple thread configuration allows the concurrent execution of invocations for the
same reference. In this case, the reservation is a group reservation that limits the CPU
consumption of the thread group. The resource manager reloads the cost for the
execution for all threads every period. Depending on the number of threads, the
method invocation can be blocked because there is no thread available, and it will stay
blocked until the end of one method invocation for this reference.

2.2 Model of Memory Management

In our memory model the component has associated two types of memory spaces.
One space support the instances handled inside the component (internal memory), this
space is configured when the component is created. The second set of spaces
(external memory) support the interchange of information (object instances of method
parameters and return object values) with the component’s client. The component
description includes the default type of internal memory that the home factory uses,
when the constructor do not specify the memory type. The default external memory is
the memory active when the method invocation occurs. RTObject includes methods
for the execution of methods in specific external memories. Internal and external

Container Model Based on RTSJ Services 389

memories must respect the lifetime rules of RTSJ scoped references, and the lifetime
of the component (and the internal memory) must be shorter than the lifetime of
external memories in use.

The container updates the active memory in the method invocation and at the end
of the method execution reestablishes the memory active in the invocation. The
interface RTContext includes operations to create the return instances in the external
memory. The component must not create references from the external objects to the
internal memory.

The component descriptor includes information about the maximum memory
allocation that have associated each method. This information is reused to compute
the allocation time of threads and the allocation time is submitted to admission
control. This model supports the local execution of components. This model supports
the local execution of components. If the execution were distributed, the unmarshal
code could instantiate the serialized objects in the internal memory.

2.3 Model of Synchronization

The sequence of execution of a method invocation can be blocked because of several
reasons until the end of the method invocation. Different types of reasons are:

1. Synchronized method. This type of method avoids the concurrent executions
inside the component. Different clients, with the same or different references, cannot
execute concurrently the same or different synchronized methods for the same
instance.

2. Multiple invocations for the same reference. A reference classified periodic
or aperiodic has associated a single thread to serve the method invocations. A
reference classified group-server has associated a limited number of threads.
Concurrent invocations for the same reference periodic are not allowed. But several
clients can use the same group-server reference simultaneously. If the number of
clients (c) that execute concurrent invocations is more than the number of threads in
the group (#), c-t clients will be blocked until the end of method invocations.

3. Container synchronizations. The container uses some synchronization
structures to maintain the consistency of references and other internal objects. For
example to detect that a reference in use is not removed. The execution times for the
operations that handle these structures are very short, but priority inversions may
extend the blocking time.

3 Implementation of RTC Based on RTSJ

RTS]J includes services for the implementation of model of container introduced in
Section 2. The basic services provide support for: i) the resource reservation
management (CPU and memory), ii) synchronization and concurrency in the
component model, iii) patterns of method invocation, iv) limitation of blocking times
and response times. These services make the component response time predictable,
and limit the resource consumption for the component.

390 R. Tolosa et al.

3.1 Invocation Sequence, Resource Reservation, Admission Control

The predictability of response time of components requires contracting the temporal
distribution of method invocation from clients. Depending on the type of invocation
pattern and the temporal parameters, we must do the resource reservation. In Section
2 we consider three types of invocations (periodic, aperiodic, group-server) with
specific parameters. RTSJ includes classes for the specification of release of threads
(PeriodicParameters, AperiodicParameters, SporadicParameters) and the
class ProcessingGroupParameters can group schedulable objects. The container
creates pools of RealtimeThreads that serve the invocations for the references. The
release parameters of threads depend on the type of invocation release and the
temporal parameters that include the negotiation protocols.

In the negotiation process, the new RealtimeThreads are included as feasible in
the schedulabilty analysis and the class PriorityScheduler returns the results for
the admission control. The scheduling analysis takes into account the memory
management information. The component descriptor includes the worst-case execution
times for each application method. It will be used as cost parameter of constructor
of classes

PeriodicParameters, AperiodicParameters, SporadicParameters.

Problems: Class MemoryArea provides methods for the computation of memory
remaining in a memory block, but RTSJ does not includes services for the evaluation
of CPU available for current budget. This reduces the types of negotiation services
that the container can implement (the container can not negotiate based on the
amounts of CPU non-reserved, or based on the CPU reservations not consumed). This
requires specific resource management services implemented in lowest scheduling
levels, or some of hooks in the context switch to compute the CPU consumed.

3.2 Component Memory Management

RTSJ memory areas that support the internal memory are ImmortalMemory and
LTMemory. The structure of the component model, based on an interceptor design
pattern, allows the interception of all invocations , and the container updates the
active memory areas before the business method execution and reestablishes the
active memory at the end of the execution. The component factory that implements
the container for the instantiation creates a new LTMemory instance or configures the
ImmortalMemory as internal memory and this do not change during the execution
of the component.

The memory schema allows the reference to the external objects that represent the
input parameters, during the execution of the component’s methods. And the return
objects are copied or created in the external memory to make references from the
external memories. The containers implement the copy of return objects to external
memory, when this is needed (if the internal memory is ImmortalMemory this is not
needed). The component descriptor includes the maximum allocation memory (the
maximum number of bytes that the method can allocate in one execution) for each
method. This value and the temporal distribution of method invocations are used in

Container Model Based on RTSJ Services 391

the computation of allocationRate parameter of MemoryParameters, which is
given on the constructor of RealtimeThread and is used for the admission control.

3.3 Component Synchronizations and Blocking Times

The synchronizations for the access to the business component and for the race
conditions in the container may block the execution of the invocation sequences. The
synchronization protocols that support RTSJ (priority inheritance and ceiling
protocol) limit the blocking times and avoid the inversion of priority. Classes
PriorityCeilingEmulation and PriorityInheritance support the protocols
and we can compute the worst-case blocking times. The container includes the
information about the temporal distribution of invocations and the protocols that are
used in the synchronizations.

Problems: RTSJ does not include services for the computation of blocking times or
their impact in the feasibility analysis. Classes RealtimeThread, Scheduler, and
ReleaseParameters includes information of temporal distribution of threads
execution, but they and their subclasses do not include associations with
synchronization classes. New classes that extend Scheduler or
PriorityScheduler and ReleaseParameters can include new methods to define
association with synchronization, and the new Scheduler class can take into account
the blocking time in the feasibility analysis. Section 2.3 includes a type of
synchronization (multiple invocations for the same reference) that cannot be
computed as blocking time of single data resource as the rest of blocking times. The
thread pool is an example of multiple instance data resource. This type of blocking
requires specific algorithms for the computation of blocking times; [3] includes
algorithms to compute the blocking time in multi-unit object protocols.

4 Practical Results

The execution results that we are going to introduce are based on an implementation
of component model introduced in Section 2. This implementation does not use RTSJ
but uses the services of a Resource Manager [8], for the reservation of CPU. The
component, clients and resource manager execute in the operating system pSoS, and
the hardware is a CPU for multimedia applications (TriMedia TM 1000 card). The
Resource Manager executes in pSoS OS and provides services for monitoring
execution times, control of budgets and admission control. The Resource Manager
assigns the budgets to clusters of tasks and controls the consumption and reload of
budgets. The Resource Manager uses pSoS to schedule and monitor the execution of
tasks. It includes services for the reservation of CPU and it manages the priority of
tasks. It decomposes the priorities in two bands. The tasks that have not consumed its
priority budget execute in the high priority band, and when they consume their
reservation execute in the low priority band with a best-effort behavior.

392 R. Tolosa et al.

The implementation of application interfaces is a set of synthetic operations with
fixed CPU consumption (in the examples the components include three methods with
execution times of 100, 150 and 200 milliseconds). The containers make the
reservation of CPU as response to negotiation request of clients. In following
scenarios, the clients make as much invocations as possible. The clients execute in the
low priority band. We are going to introduce two execution scenarios: basic
reservation operations, and references with cluster of tasks and multiple clients.

4.1 Basic Reservation Operations

This execution includes one component instance and three clients. The clients make
the invocation of methods 0 and 1, and negotiate the frequency of invocation of these
methods or the bare percent of CPU reservation. The sequence of operations for the

clients is included in next Table.

Table 1. Reservation of CPU for Scenario 1

Time | Client | Reference Reservation
0 0 0 No reservation
0 1 1 50% of CPU
180 2 2 method 0, 2 times per second (20% CPU)
480 2 2 method 0, 4 times per second (40% CPU)
780 1 1 remove the reference 1
1080 0 0 method 1, 4 times per second (60% CPU)
1380 2 2 remove the reference 2
1680 0 0 method 1, 2 times per second (30% CPU)
1980 0 0 remove the references 0 and 2

The container creates a cluster of tasks for each reference. During the negotiation
process, it makes the reservation of CPU for each cluster. Figure 2 includes the
monitoring result for each cluster that provide the Resource Manager. The Figure
includes the amount of CPU that they use of their reservation. Reference 0 has a best-
effort behavior until it makes a reservation. Reference 1 removes its reservation and
therefore its budget. Both references also make other modifications of their
reservations. The clusters created for each reference disappear when the client
removes the reference.

Figure 3 includes the response time of method invocation for the different
references. The unit of axis y is 10 milliseconds. Figure 3 (a) includes the reference 0
that vary its response time until it makes a reservation (instant 1080). The response
time and its variance are bigger when the total reservation of references 1 and 2 is the
70% and 90%. The reference 1 in Figure 3 (a) has response time less than 200
milliseconds for all the execution (because it executes with a base reservation of 50%
of CPU). In Figure 3 (b) we can see two response times higher than 100000
milliseconds, when the reference 2 removes its reservation (because of the preemption
of reference 0). And between the instants 1500 and 2000 it has no reservation, but it
reduces its response times when the reference O reduces the reservation.

70,000%

60,000%

50,000%

40,000%

CPU(%)

30,000%

20,000%

10,000%

0,000%
0

Container Model Based on RTSJ Services

Reference Monitoring

——Refo

| Ref2

e \

200 400 600 800 1000 1200 1400 1600 1800 2000
Monit. periods

Fig. 2. Reservation of CPU for Scenario 1

Response Times Response Times.

393

100000

g

[R——

Response (csecs) Reference 2

Response (csecs) References 0 and 1

o i

Time

(a)

(b)

Fig. 3. Response Times for Scenario 1

4.2 References with Multiple Clients and Clusters

This scenario creates three references, but there are three clients for each reference.
The Table 2 includes the sequence of reservation. All clients compete to make their
invocations, and the different reservations produce different response times, for the
different groups of clients.

Figure 4 includes the response time for the three references. The unit of axis y is 10
milliseconds. Figure 4 (a) includes the response times of reference 0. From instant
300 until instant 1620 the clients that use the reference 0 must compete with the
clients that use the reference 1 and 2. Because reference O has no reservation and
during this interval and the CPU is busy, the number of executions is reduced and
their response time is high. In the Figure 4 (b) we can see the different of response
time for the references 1 and 2, when the reservation of CPU is 20% and 40%.

394 R. Tolosa et al.

Table 2. Reservation of CPU for Scenario 2

Time | Client | Reference Reservation
0 0,1,2 0 No reservation
300 3,4,5 1 20% of CPU
600 6,7,8 2 method 0, 2 times per second (20% CPU)
960 3,4,5 1 40% CPU
960 6,7,8 2 method 0, 4 times per second (40% CPU)
1320 3,4,5 1 remove the reference 1
1620 | 6,7,8 2 remove the reference 2
1980 | 0,1,2 0 remove the reference 0
Response Times
Response Times
100000
° 100000 ’ % 10000
,g % 1000
g 1000 %
o 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 s 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000
Time Time
(@) (b)

Fig. 4. Response Times for Scenario 2

5 Related Work

The integration of QoS in component infrastructures is a subject that has a very short
history. Most of Component infrastructure standards (EJB 2.0, CCM and .NET) are
very recent, and their integration with QoS and Real-Time facilities requires some
basic practical improvements (e.g. CCM does not have industrial implementations
yet, and open source implementations of .NET has started to appear last months).

Some proposals study the integration of QoS facilities in component models such
as CCM (CORBA Component Model) [13,9]. The OMG is currently analyzing
propose an RFP (Request for Proposal) for the extension of CCM with basic QoS
facilities. The proposal by Wang et al [13] pays special attention to the QoS-enabled
location transparency, reflective configuration of component server and container, and
the strategies to reconfigure the component server. COACH IST [4] project includes
some activities for the integration of QoS facilities in CCM standard. These
extensions define generic interfaces to allow negotiation of QoS characteristics
between supplier and consumer CORBA components.

Lusceta [1] is a component model (it is not based on industrial component
infrastructures) environment based on formal techniques, which can be simulated and
analyzed. Lusceta provides support for the specification of QoS management, which

Container Model Based on RTSJ Services 395

can be used to synthesize (dynamic) QoS management components. The execution
framework is a general QoS-aware reflective middleware. Another component
modeling environment is presented in [11]. It proposes solutions for the description of
component architectures and for evaluation of response times. This is an architectural
environment not supported by execution environments.

[6,7] introduces a solution for the integration of QoS basic services, such as
resource reservation and negotiation, in EJB (Enterprise Java Beans). The EJB
containers implement some basic negotiation algorithms and isolate the business
components from reservation services. The negotiation algorithms implement some
basic adaptation process based on the renegotiation of resources and renegotiation
with other components.

Schantz et al [12] describe how priority and reservation-based OS and network
QoS management mechanisms can be coupled with standards-based, off-the-shelf
distributed object computing middleware to better support dynamic distributed real-
time applications with end-to-end real-time requirements. They compare two
solutions based on priorities and resource reservation for CPU and bandwidth. The
reservation solution is based on RSVP and TimeSys Linux RTOS, and the priority-
oriented solution is based on Diffserv and TimeSys Linux RTOS.

6 Summary and Discussion

RTSJ provides basic services to support the component model that introduces Section
2. This component model provides high level facilities to make Java components time
predictable. The container structure reduces the complexity of applications, and its
configured based on attributes. These attributes characterize the temporal behavior
and resource consumption of components, and this solution avoids the detailed
comprehension of RTSJ complex APIs.

RTSJ can be improved to support models of predictability based on resource
reservation. RTSJ include basic services for the evaluation of feasibility of response
times, but do not provide information about amount of CPU available, occupation of
CPU depending on amounts available, redistribution of non-used CPU (worst case
CPU occupation is less than 100%, or the threads do not consume their worst case
execution times). Another improvement is the integration of blocking time
evaluations in the feasibility schemas. RTSJ includes classes that support time
predictable synchronization protocols, but RTSJ do not provide information about
blocking times, and there is not associations between these classes and deadline
feasibility analysis.

References

1. L. Blair, G. Blair, A. Andersen and T. Jones. “Formal Support for Dynamic QoS
Management in the Development of Open Component-based Distributed Systems”. IEE
Proceedings Software. Vol. 148 No. 3. (June 2001).

2. G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, D. Hardin, and M. Turnbull. The
Real-Time Specification for Java. Sun Microsystems, 2000.

396

10.

11.

12.

13.

R. Tolosa et al.

M. Chen and K. Lin. “A Priority Ceiling Protocol for Multiple-Instance Resource”. Proc.
of IEEE Real-Time Systems Symposium, (1991).

Coach IST Project. http://coach.objectweb.org

L. DeMichiel, L. Yalinalp, and S. Krishnan. Java 2 Platform Enterprise Edition
Specifications, v2.0. Sun Microsystems, 1999.

M. de Miguel, J. Ruiz and M. Garcia, “QoS-Aware Component Frameworks”, Proc.
International Workshop on Quality of Service, (May 2002).

M. de Miguel “Integration of QoS Facilities into Component Container Architectures”,
Proc. 5th IEEE Object-Oriented Real-Time Distributed Computing. IEEE Computer
Society, (May 2002).

Marisol Garcia-Valls, Alejandro Alonso, José F. Ruiz, amd Angel Groba “An
Architecture for a Quality of Service Resource Manager Middleware for Flexible
Multimedia Embedded Systems”, Proc. International Workshop on Software Engineering
and Middleware - SEM 2002. Orlando, Florida (2002)

Gokhale, D. Schmidt, B. Natarajan and N. Wang, "Applying Model-Integrated Computing
to Component Middleware and Enterprise Applications", The Communications of the ACM
Special Issue on Enterprise Components, Service and Business Rules, Vol. 45, No. 10,
(October 2002)

J. Consortium Inc. “Core Real-Time Extensions for the Java Platform”. Technical Report.
New-Monics Inc. http://www.j-consortium.org. (2000).

U. Rastofer and F. Bellosa. “An Approach to Component-based Software Engineering for
Distributed Real-Time Systems®. Proc. SCI 2000 Invited Session on Generative and
Component-based Software Engineering. IIIS (2000).

R. Schantz, J. Loyall, C. Rodrigues, D. Schmidt, Y. Krishnamurthy and I. Pyarali.
“Flexible and Adaptive QoS Control for Distributed Real-time and Embedded
Middleware”. Proc. Middleware 2003. (June 2003).

N. Wang, D. Schmidt, M. Kircher, and. K. Parameswaran. “Adaptative and Reflective
Middleware for QoS-Enabled CCM Applications”. IEEE Distributed Systems Online Vol 2
No. 5. (July 2001).

	Introduction
	Real-Time Component Model
	Model of Method Invocation, Resource Reservation, and Negotiation
	Model of Memory Management
	Model of Synchronization

	Implementation of RTC Based on RTSJ
	Invocation Sequence, Resource Reservation, Admission Control
	Component Memory Management
	Component Synchronizations and Blocking Times

	Practical Results
	Basic Reservation Operations
	References with Multiple Clients and Clusters

	Related Work
	Summary and Discussion

