
Towards an Analysis of Garbage Collection Techniques for Embedded
Real-Time Java Systems ∗

M. Teresa Higuera-Toledano
DACYA, Facultad de Informática, Universidad Complutense de Madrid,

Ciudad Universitaria, Madrid 28040, Spain
Email: mthiguer@dacya.ucm.es

Abstract

From a real-time perspective, the Garbage Collector
(GC) introduces unpredictable pauses that are not tolerated
by real-time tasks. Real-time collectors eliminate this prob-
lem but introduce a high overhead. Another approach is
to use Memory Regions (MR) within which allocation and
deallocation are customized. This facility is supported by
the memory model of the Real-Time Specification for Java
(RTSJ). This paper provides an indepth analytical investi-
gation of the problems and solutions of Java garbage col-
lection techniques regarding it use in embedded real-time
systems.

keywords: Java, embedded, real-time, write barriers, mem-
ory management, garbage collection

1 Introduction

Real-time programs must execute with time constraints,
which are part of the system’s behavioural requirements
[2]. Many aspects of modern general-purpose computers
have soft real-time execution issues (e.g., the software of
the monitor mouse activities). Then, real-time programs
must not only generate correct results; those results must
further be generated on time. In addition, these results,
in an embedded system, include control signals (e.g., sen-
sors readings and actuator reactions). Examples of embed-
ded real-time systems are flight control systems, automated
manufacturing plants and telecommunications and control
systems. Normally these programs operate with bounded
resources, including CPU time and memory. Embedded
real-time programs must be reliable, predictable, and de-
terministic even when the environment changes.

∗ This research was supported by Consejera de Educacin de Comu-
nidad de Madrid, Fondo Europeo de Desarrollo Regional (FEDER) and
Fondo Social Europeo (FSE), through BIOGRIDNET Research Program
S-0505/TIC/000101, and by Ministerio de Educacin y Ciencia, through the
research grant TIC2003-01321.

The Java environment provides attributes that make it
a powerful platform to develop embedded real-time appli-
cations (e.g., architecture-neutral, multithreaded, dynamic
loading, and garbage collection). However, it does not pro-
vide predictability facilities nor bounded resource usage,
which are needed for the above applications. In general,
Java presents some problems regarding its use in embedded
real-time environments. The National Institute of Standards
and Technology (NIST) has produced a basic requirements
document for a standard real-time Java API extension[1].
Where the memory management is one of the major issues
that need research when considering the extension of Java
for real-time.

In this paper, we present an analysis of the problems that
Java garbage collection techniques present regarding their
use in embedded real-time systems, and how these prob-
lems has been resolved in some Java solutions. We study
the memory fragmentation problem as consequence of a
conservative scanning (Section 2). We analyze the simple
garbage collection technique that makes of memory a crit-
ical region, and the way to make it incremental (Section
3). We study the incompatibility of hard real-time (critical)
systems with pre-emption latencies of the garbage collector
(Section 4). We give comparison of the studied solutions
(Section 5). Finally a summary of our contribution con-
clude this paper (Section 6).

2 Conservative scanning

Real-time garbage collection must assure memory avail-
ability for newly created objects without interfering with the
real-time constraints. An important source of unpredictabil-
ity in Java is the GC. The JVM specification does not spec-
ify how objects should be represented in the heap, and the
GC technique employed in Java depends on the virtual ma-
chine implementation. The Sun JDK [8] and SDK [9] use
a mark-and-sweep GC [7] that compacts the heap, avoiding
fragmentation problems. This collector is conservative with

1

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

respect to the native stack, but accurate with respect to the
heap and the Java stack. A conservative collector can in-
troduce memory leaks when an apparent reference is not a
real reference (e.g., when an integer is treated as a pointer to
an object). The strategy adopting by these JVMs relies on
occasionally running a compacting GC which implies some
degradation of real-time guarantees. To reduce the cost of
object relocation, each object has a non-moving handle that
points to the location of the object header (see Figure 1).

ptr into handle pool

an object reference

instance data

instance data

instance data

instance data

ptr to class data

ptr into object pool

the object poolthe handle pool

Figure 1. Object format with handle.

When an object is relocated, its handle is updated. In
this way, relocating objects is transparent to the application
program, which always accesses objects using their non-
moving handle. The heap is organized in two sections: the
handle space and the object space. Since the handle space
consists of fixed size objects (i.e., two words of 32 bits, the
first word provides a pointer to the object and the second,
a pointer to the object’s class), it does not need be com-
pacted. If the piece is not free, the data of an object follows
the header word. Compactation is made in two phases: the
object space is first compacted, and the handles are then up-
dated.

The HotSpot JVM provides an accurate GC, which elim-
inates object handles (see Figure 2). Then, the collector
must find and update all references to an object when the
object is relocated. Indirect handles make relocating ob-
jects easier, but it introduces performance degradation be-
cause references to instance variables require two memory
accesses. Eliminating handles improves also memory con-
sumption in a word per object (approximately 8% of the
total Java heap space).

the heap

ptr to class data

instance data

instance data

instance data

an object reference

ptr into heap

Figure 2. Object format without handle.

The Sun KVM [10], supports accurate garbage collection.
For this purpose, the object header has been augmented with
a word tag that stores information about the type of the

object and the object size (i.e., SIZE < 31 : 8 >, TYPE
< 2 : 7 >, MARK BIT < 1 >, and STATIC BIT < 0 >).
The collector utilizes the information of the TYPE field to
perform a different scanning depending on the type of the
object. Since this collector does not move objects, handles
are suppressed (see Figure 3). This strategy increases the
performance of both the application and the collector.

ptr to class data

an object reference

ptr into heap

the heap

data

(SIZE, TYPE, MARK_BIT)header tag

Figure 3. Object format in KVM.

In [11] D.F. Bacon presents a real-time GC algorithm imple-
mented in the Jikes RVM, which uses a simple segregated
free-list approach. This solution is based on the locality
size property, i.e., the objects sizes allocated frequently in
the past will tend to have a high correlation with objects
sizes allocated in the future. This property allows blocks in
a particular size class to be re-used. That means that when
the GC will find unused blocks they are inserted in the seg-
regated free-list. Since object allocation can cause external
fragmentation, this collector performs defragmentation.

3 Simple garbage collection

The GC of standard Java runs as a low-priority back-
ground thread. If the CPU is idle because there are I/O
operations, there is no problem. On the other hand, if
some threads need memory, the GC is scheduled for exe-
cution, leading to suspend all the other threads. Also the
GC runs when there is no memory space left to handle ap-
plication requests, and through the explicit invocation of
System.gc(). Once the GC is started, it must be executed
until completion. It can-not be stopped or preempted, be-
cause this would leave the heap in an inconsistent state.

In real-time systems, the GC cannot halt the program
and work as one atomic action, then small garbage collec-
tion units (called increments) must be interleaved with the
program execution, which does slow down the application
processing. Therefore, the goal for concurrent collectors
is keeping their pause times low, while simultaneously in-
creasing the application throughput. In order to synchro-
nize the concurrent execution of the application and the
collector, there are two basic techniques called read bar-
riers or write barriers. A read/write barrier traps pointer
loads/stores from/to the heap and records some information
that prevents race carrier conditions between the application
and the collector.

2

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

The HotSpot JVM [12] provides a generational collector
based on the train algorithm [13], which provides constant
pause times by dividing the collection of the old-space into
many tiny steps. This makes possible to run this collector
with multimedia applications. But it is not adequate for hard
real-time applications. It is not good, because the guaran-
teed upper limit on pause times is too large. The pauses
introduced by this collector provides constant pause times
(i.e., typically less than 10 Milliseconds).

The real-time collector of the Jikes RVM [11] use read
barriers; this is a copy-based collector. In order to maintain
a to-space invariant in the mutator, each object contains a
forwarding pointer that normally points to itself, but when
the object has been moved, points to the moved object. In
this solution the stack processing is not incremental yet. For
each pointer, read or write (depending on the barrier strat-
egy), the compiler must generate the necessary additional
instructions in the application object code. Write barrier
techniques are cheaper and more predictable than read bar-
riers [18].

Alternatively, read and write barriers can be assisted by
specialized hardware. The picoJava-II [14] microprocessor
specification executes most of the JVM instruction set di-
rectly in hardware. The core of this microprocessor checks
for the occurrence of write barriers, and notifies them us-
ing the gc notify trap. The reference-based write bar-
riers of picoJava-II can be used to implement incremen-
tal collectors based in the tri-color algorithm [15], whereas
the page-based barrier mechanism of was designed specifi-
cally to assist generational collectors based on the train al-
gorithm [16]. Both write barrier mechanisms allow us to
improve the performance of both the collector and the appli-
cation by disabling write barriers execution when disabling
the collector. The picoJava architecture description has not
been implemented.

The Jikes RVM [11] uses two different scheduling politi-
cizes: one based on time, the other based on work. On
time-based scheduling, the execution of the collector and
the mutator is interleaved using a fixed time quanta. Here
there are two fundamental parameters: the mutator quan-
tum that is the amount of time that the mutator can run be-
fore the collector can execute, and the collector quantum
that is the time based collector quantum. In the work-based
collector the collector and the mutator interleave their exe-
cution based on fixed amounts of allocation and collection.
In this case the two fundamental parameters are: the work-
based mutator quantum that is the amount of memory that
the mutator can allocate before the collector can run, and the
work-based collector quantum that is the amount of mem-
ory that the collector can allocate before the mutator yields
to it. Both schedulers are good for high priority tasks, but
for critical tasks they presents latency problems.

4 The priority inversion problem

The priority inversion problem arises when two tasks τ i

and τk with different priorities (τi < τk) attempt to access
shared data. If the task τk, with higher priority, gains access
first, the proper priority order is maintained. On the other
hand, if the task that gains access is the task τi, the task τk

can be blocked if it requests access to the shared data be-
fore task τi exits. It may further occur that a third task τj

with intermediate priority (i.e., τi < τj < τk) arrives in this
situation. Then, τi will be resumed, and task τk is blocked
during execution of task τj also. This blocking period can
be arbitrarily long. In order to avoid that critical tasks lost
deadlines because the collector, RTSJ makes distinction be-
tween three main kinds of tasks:

1. Low-priority tasks: are tolerant with the GC.

2. High-priority tasks: cannot tolerate unbounded pre-
emption latencies.

3. Critical tasks: cannot tolerate preemption latencies.

Whereas high-priority tasks require a real-time GC, critical
tasks must not be affected by the GC, and as a consequence
cannot access any object within the heap [3]. A reference
of a critical task to an object allocated in the heap causes
the MemoryAccessError() exception. RTSJ [3] defines
memory allocation and reclamation specifications that en-
able the use of real-time compliant garbage collection al-
gorithms without prescribing any specific solution to the
technique employed by the GC within the heap. As a com-
plement and alternative to the (real-time) GC, RTSJ pro-
vides also an interesting region-based memory allocation
technique, which enables grouping related objects within a
region.

The Real-time Core Extension for the Java Platform [4]
solution has two separate heaps, one for common threads,
and the other for core tasks. The core objects are not re-
located and garbage collected, and core methods do not in-
clude code for synchronization with the GC. Since tasks and
threads may share objects, memory sharing must be sup-
ported by the underlying RTOS. To make an object eligible
by the GC, the method unanchor() must be invoked. This
is an intermediate solution between explicit memory deal-
location and garbage collection.

5 Comparison

To evaluate the GC of studied JVM implementations, we
use several important criteria: memory requirements and
speed execution of the GC (efficiency), the degree to which
it is possible to know memory and CPU time requirements
of the application (predictability), how quickly the GC can

3

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

be preempted by the application (latency), the difficulty of
integrating the GC in a possible implementation of the Java
specifications (integration), and the adaptation degree to a
tiny embedded control device (embedded). A comparison
is summarized in Table 1 in terms of their strengths and
weaknesses. We use A, M, and - to mean the extent to which
the corresponding issue is addressed: in detail, only partly
addressed, and not addressed.

Feature Efficiency Predictability
Latency Integration Embedded

JVM CPU Mem CPU Mem

KVM M A - A - - A

picoJava-II A - A - M A A

JDK/SDK M - - - - M -

HotSpot A M M A M M -

Jikes RVM A A M M M M -

RTSJ - - M A A A A

Table 1. Comparison of Studied Solutions.

6 Conclusions

Garbage collection simplifies programming, but is often
considered infeasible in real-time systems. The problem
with GC algorithms is that to guarantee sufficiently short
delays, we introduce large overheads (e.g., by introducing
write barriers). With current hardware and sophisticated
reclamation techniques, this is no longer true. Thus, for
a large class of interactive applications (e.g., multimedia),
there is no need to exclude automatic memory management.
However if hard-real-time demands are imposed, there are
problems with the GC latency, which can result in too much
jitter in some high real-time tasks, or in missing deadlines.

In RTSJ, the way to offer real-time guarantees is by turn-
ing off the GC during the execution of critical tasks, which
only allocates objects in memory regions and cannot refer-
ence objects within the heap. Some real-time tasks can allo-
cate and reference objects within the heap, whereas others
(critical) are not allowed to allocate nor reference objects
within the heap.

References

[1] L. Carnahan and M. Ruark, Requirements For
Real-time Extensions For the Java Platform
http://www.itl.nist.gov/div897/ctg/real-time/rtj-final-
draft.pdf

[2] J. Mathai, Real-time Systems Specification, Verifica-
tion and Analysis, Prentice Hall, 1996

[3] The Real-Time for Java Expert Group, Real-Time Spec-
ification for Java, http://www.rtj.org

[4] ”J Consortium, Inc, Core Real-Time Extensions for
the Java Platform, NewMonics, Inc, http://www.j-
consortium.org

[5] H.G. Baker, The Treadmill: Real-Time Garbage Col-
lection without Motion Sickness, OOPSLA, 1991

[6] D. Gay and A. Aiken, Memory Management with Ex-
plicit Regions, ACM SIGPLAN PLDI, 1998

[7] P.R. Wilson, Uniprocessor Garbage Collection Tech-
niques, ftp://ftp.cs.utexas.edu/pub/garbage/bigsur.ps,
1994

[8] T. Lindholm and F. Yellin, The Java Virtual Machine
Specification, Addison-Wesley, 1997

[9] B. Venners, Inside the Java 2 Virtual Machine,
McGraw-Hill, 2000

[10] Sun Microsystems, KVM Technical Specification,
Java Community Process, 2000

[11] D.F. Bacon, P.Cheng and V.T. Rajan A Real-Time
Garbage Collector with Low Overhead and Consistent
Utilization, ACM-POPL, 2003

[12] Sun Microsystems, The Java HotSpot Virtual Ma-
chine, v1.4.1, http://java.sun.com/products/hotspot 2002

[13] J. Seligman and S. Grarup, Incremental Mature
Garbage Collection Using the Train Algorithm, LNCS
Springer-Verlag, 1995

[14] Sun Microsystems, picoJava-II Microarchitecture
Guide, http://www.sun.com/microelectronics/picoJava,
1999

[15] E.W. Dijkstra, L. Lamport, A.J. Martin, C.S. Schol-
tenand, and E.F.M. Steffens On-the-fly Garbage Collec-
tion: An Exercise in Cooperation, Communications of
the ACM, 1978

[16] R.L. Hudson and R. Morrison and J.E.B. Moss and
D.S. Munro, Garbage Collecting the World: One Car at
a Time, ACM SIGPLAN, 32, 19, 1977

[17] L. Sha and R. Rajkumar and J.P.Lechoczky, Priority
Inheritance Protocols: An Approach to Real-Time Syn-
chronization, IEEE Transactions on Computers, 39, 9,
1990

[18] S.M. Blackburn and A.L. Hosking, Barriers: Friend
or Foe?, International Symposium on Memory Manage-
ment, ACM-ISMM, 2004

4

Proceedings of the 12th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA'06)
0-7695-2676-4/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

