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Abstract

The memory model wused in the Real-Time
Specification for Java (RTSJ) imposes strict assignment
rules to or from memory areas preventing the creation
of dangling pointers, and thus maintaining the pointer
safety of Java. An implementation solution to ensure the
checking of these rules before each assignment
statement consists of performing it dynamically by using
write barriers. This solution adversely affects both the
performance and predictability of the RTSJ application.
In this paper we present an efficient algorithm for
managing scoped regions which requires some
modifications in the current RTSJ specification.

Keywords: Real-time Java, Scopedregions, Garbage
collection, Write-barriers.

1. Introduction

From a realtime perspective, the Garbage Collector
(GC) introduces unpredictable pauses that are not
tolerated by realtime tasks. Real-time collectors eliminate
this problem but introduce a high overhead. An
intermediate approach is to use memory regions within
which allocation and de-allocation are customized and
also space locality is improved. Application of these two
implicit strategies has been studied in the context of
Java; they are combined in the Real-time Specification
for Java (RTSJ) [16], which introduces the concept of
scoped memory to Java. RTSJ extends the Java memory
model by providing several kinds of memory regions,
among them the garbage-collected heap. RTSJ memory
regions have different properties in term of both the
object lifetimes and the object allocation/de-allocation
timing guarantees. Particularly, immortal memory regions
are never garbage collected, and scoped memory regions
are collected when there is not a thread using the area.

The garbage collector within the heap must scan all
objects allocated within immortal or scoped memory
regions for references to any object within the heap in
order to preserve the integrity of the heap.

Because scoped regions can be reclaimed at any time,
objects within a region with a longer lifetime are not
allowed to create a reference to an object within another
region with a potentially shorter lifetime. An RTSJ
implementation must enforce these scope checks before
executing an assignment. A possible solution is to
perform these checks dynamically, each time a reference
is stored in the memory (i.e., by using write barriers)
91

This paper focuses on the data structure and the
algorithms used to implement an alternative RTSJ
memory model based on both the first [2] [15] and
current edition of RTSJ [16], which allow us to enforce
the safety assignment rules in a more efficient way. The
main contribution of this paper is that of showing how all
the necessary run time checks can be performed in
constant time by simplifying the scoped memory
hierarchy. This allows us to avoid the single-parent rule
checks and to use a range-based encoding to implement
dynamic scoped checks.

In this paper, we first present an in depth description
of the RTSJ memory model regarding its current
implementation techniques (Section 2). Then, we present
our solution to improve the RTSJ suggested memory
model implementation, showing how our alternative
model can be implemented efficiently by using simple
data structures and algorithms (Section 3). We include
the maintaining of a display-based technique which uses
to check illegal references makes the management of the
RTSJ scoped memory areas time-predictable, presenting
some results of performance analysis (Section 4). We
provide an outline of the state of the art and related work
(Section 5). Finally a summary of our contribution
together with an overview of our ongoing work towards
offering an overall memory management solution for real-
time Java systems conclude this paper (Section 6) .

* Founded by the Ministerio de Ciencia y Tecnologia of Spain (CICYT); Grant Number TIC2003-01321.
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2 The RTSJ memory model

The MemoryArea abstract class supports the region
paradigm in RTSJ through the three following kinds of
regions: (/) immortal memory, supported by the
ImmortalMemory and the ImmortalPhysicalMemory
classes, that contains objects whose life ends only when
the JVM terminates; (i) (nested) scoped memory,
supported by the ScopedMemory abstract class, that
enables grouping objects having well-defined lifetimes
and that may either offer temporal guarantees (i.c.,
supported by the LTMemory and LTPhysicalMemory
classes) or not (i.e., supported by the VTMemory and
VTPhysicalMemory classes) on the time taken to create
objects; and (iii) the conventional heap, supported by
the HeapMemory class. In the following, we study how
these memory regions are used by a reaHime application.

2.1 The memory model behavior

There is only one object instance of the
HeapMemory and the ImmortalMemory classes in the
system, which are resources shared among all threads in
the system and whose reference is given by the
instance () method. In  contrast, for the
ImmortalPhysicalMemory and ScopedMemory
classes, several instances can be created by the
application. An application can allocate memory into the
system heap, the immortal system memory region,
several scoped memory regions, and several immortal
regions associated with physical characteristics.

Objects allocated within immortal regions live until
the end of the application and are never subject to
garbage collection. Objects with limited lifetime can be
allocated into a scoped region or the heap. Garbage
collection within the application heap relies on the (real-
time) collector of the JVM. A scoped region gets
collected as a whole once it is no longer used. The
lifetime of objects allocated in scoped regions is
governed by the control flow. Strict assignment rules
placed on assignments to or from memory regions
prevent the creation of dangling pointers (see Table 1).

Scoped areas can be nested and each scope can have
multiple sub-scopes, in this case the scoped memory
hierarchy forms a tree. Consider two scoped memory
regions, A and B, where the A scoped region is parent of
the B region. In such a case, a reference to the A scoped
region can be referenced from a field of an object
allocated in B. But a reference from a field of an object
within A to another object allocated in B raises the
IllegalAssignment ()  exception. When a thread
enters a scoped region, all subsequent object allocations
come from the entered scoped region. When the thread
exits the scoped region, and there are no more active
threads within the scoped region, the entire memory
assigned to the region can be reclaimed along with all
objects allocated within it.

2.2 The task model behavior

Also, RTSJ makes a distinction between three main
kinds of tasks: (i) low-priority that are tolerant with the
GC, (ii) high-priority that cannot tolerate unbounded
preemption latencies, and (iii) critical that cannot
tolerate preemption latencies. Low-priority tasks, or
threads, are instances of the Thread class, high-priority
tasks are instances of the RealtimeThread class,
which extend the Thread class to support realtime
tasks, and critical tasks are instances of the
NoHeapRealtimeThread class, which extend the
RealtimeThread class to avoid critical tasks that have
delays because of the GC' [16]. Since immortal and
scoped regions are not garbage collected, they may be
exploited by critical tasks, especially LTMemory and
LTPhysicalMemory objects, which guarantee allocation
time proportional to the object size”

Several related threads, possibly real-time, can share a
memory region, and the region must be active until at
least the last thread has exited. The way that threads
access objects within memory regions in the current
RTSJ edition is governed by the following rules:

1. A traditional thread (i.e, a Thread object) can
allocate memory only within the traditional heap.

2. High-priority tasks (i.e., RealtimeThread objects)
may allocate memory within the heap, or within a

Reference | Reference Reference
to Heap to Immortal | to Scoped
Heap Yes Yes No
Immortal Yes Yes No
Scoped Yes Yes Same or
outer
Locai Variable Yes Yes Same or
outer

Table 1: Assignment rules in RTSJ.

'In RTSJ, the NoHeapRealtimeThread class specializes
RealtimeThread, that extends java.lang.Thread for real-
time.

The ImmortalPhysicalMemory, VTPhysicalMemory, and
LTPhysicalMemory classes support regions with special
memory attributes (e.g., dma, shared, swaping).
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memory region other than the heap by making that
region the current allocation context.

3. Crtical tasks (i.e.,, NoHeapRealtimeThread
objects) must allocate memory from a memory region
other than the heap by making that area the current
allocation context.

4. A new allocation context is entered by calling the
MemoryArea.enter () method, the
MemoryArea.executeInArea() method, or by
starting a real-time thread (i.e., a task or an event
handler) whose constructor was given a reference to
an instance of the MemoryArea abstract class. Once
a region is entered, all subsequent uses of the new
keyword, within the program logic, will allocate
objects from the memory context associated to the
entered region. When the region is exited, all
subsequent uses of the new operation will allocate
memory from the region associated with the
enclosing scope.

5. Each real-time thread is associated with a scoped
stack containing all the regions that the thread has
entered but not yet exited.

In the former RTSJ edition [15], this mle does not
appear.

2.3 Scoped region behavior

For the scoped region model behavior, the current
edition of the RTSJ specification has the following rules:

1. The structure of enclosing scopes is accessible
through a set of methods on the RealtimeThread
class, which allows outer scopes to be accessed like
an array (e.g., the getOuterScope() method).

In the former RTSJ edition [15], this rule has been
formulated, as follows: The getOuterScope ()

method  of  the
RealtimeThread) class allows us to know, for

ScopedMemory  (instead

the current thread, the memory region prior to
entering the active region (i.e., the ancestor of the
current active region).

2. Each instance of the class ScopedMemory or its
subclasses must maintain a reference count of the
number of threads in which it is being used.

In the former RTSJ edition [15], this rule has been
formulated, as follows: Each instance of the class

ScopedMemory or its subclasses must maintain a
reference count of the number of scopes (instead
threads) in which it is being used.

4. When the reference count for an instance of the
class ScopedMemory is decreased from one to zero,
all objects within that area are considered
unreachable and are candidates for reclamation. The
finalizers for each object in the memory associated
with an instance of ScopedMemory are executed to
completion, before any statement in any thread
attempts to access the memory area again.

5. The parent of a scoped region is the region in which
the object representing the scoped region is
allocated.

In the former RTSJ edition [15], this rule does not
appear.

6. The single parent rule requires that a scoped region
has exactly zero or one parent.

In the former RTSJ edition [15], this rule does not
appear.

7. Scoped regions that are made current by entering
them or passing them as the initial memory area for a
new task must satisfy the single parent rule.

3 Our RTSJ suggested scoped memory model

In the current RTSJ, when a task or an event handler
tries to enter a scoped region S, we must check if the
corresponding thread has entered every ancestor of the
region S in the scoped region tree. Then, the safety of
scoped regions requires both checking the set of rules
imposed on their entrance and checking the
aforementioned assignment rules. Both tests require
algorithms, the cost of which is linear or polynomial in
the number of memory regions that the task can hold.
Also, in practice we have not found realtime application
scenarios that would require more than a handful of
scoped regions. We suppose that the most common
RTSJ uses a scoped area to repeatedly perform the same
computation in a periodic task. Then, to optimize the
RTSJ memory subsystem, we suggest simplifying data
structures and algorithms. In order to do that, we
propose to change the RTSJ suggested implementation’
of the parentage relation for scoped regions [16].

* Note that we do not propose to change the scoped regions
parentage relation, but its suggested implementation.
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3.1 The RTSJ single parent rule

Therefore, the single parent rule guarantees that a
parent scope will have a lifetime that is not shorter than
of any of its child scopes, which makes safe references
from objects in a given scope to objects in an ancestor
scope, and forces each scoped region to be almost once
in the tree containing all region stacks associated with
the tasks that have entered the regions supported by the
tree. The single-parent rule also enforces every task that
uses a region to have exactly the same scoped region
parentage.

The implementation of the single-parent rule as
suggests the current RTSJ edition [16] makes the
behavior of the application non-deterministic. In the
guidelines given to implement the algorithms affecting
the scope stack (e.g., the enter () method), the single
parent rule guarantees that once a thread has entered a
set of scoped regions in a given order, any other thread
is enforced to enter the set of regions in the same order.

Consider three scoped regions: A, B, and C, and two

task T1 and T2. Where task Tl wants enter the regions as
follows: A, B, and C, whereas T2 wants to enter the
regions in the following order: A, C and B. Let us
suppose that task Tl has entered regions A and B, and
task T2 has entered regions A and C. If task Tl tries to
enter the region C (see Figure 1.a) or task T2 tries to enter
the region B (see Figure 1.b), the single parent rule is
violated and as consequence the
ScopedCycleException () throws.

Cc

~— Scope SP of 1l Scope SP of 12
B C
A A

a. Tl violates the single parent rule.

B

~=— Scope SP of Tl Scope SP of 12
B C
A A

b. 12 violates the single parent rule..

Figure 1: Violating the single parent rule.

Moreover, if for example, T1 enters the region B before
T2 tries to enter it, T2 violates the single parent rule
raising the ScopedCycleException() exception (see
Figure 2.2). But, if T2 enters the region C before T1 tries

to enter it, then it is T2 which violates the single parent
rule and raises the ScopedCycleException ()
exception (see Figure 2.b). Notice that determinism is an
important requirement for real-time applications.

~=— Scope SP of 12

B | C

3 ~=t— Scope SP of Tl
LA | A

B

—=— Scope SP of Tl Scope SP of 12
B C
A A

b. 12 violates the single parent rule.

Figure 2: Example of non deterministic situation.

3.2 The proposed parentage relation

In order to maintain the single-parent rule of the
current RTSJ edition, we consider that the parent of a
scoped region is the region within which the region is
created [16], and we add the following rules:

1. The parentage relation of regions implies a region
tree structure.

2. In the ScopedMemory class, the
getOuterScope () method allows ws to know, for
the current task the memory region is prior to
entering the current region (i.e., its ancestor). This
rule was in the former edition of RTSJ.

3. Each instance of the class ScopedMemory or its
subclasses must maintain a reference count of the
number of threads having it as current region (task-
counter), and also a reference count of the number
of scoped regions created within the region
(children-counter).

4. When both task and child reference counters for an
instance of the class ScopedMemory reach zero, the
scoped region is a candidate for reclamation. The
finalize () method of each object allocated within
the region must be executed to completion before to
collect the region.
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In this way, as in the current RTSJ edition, we obtain a
region tree based on a hierarchy relation. But the parent
relation is based on the way that scoped regions are
created, instead on the order in which scoped regions
have been entered by threads.

Consider three scoped egions: A, B, and C, which
have been created in the following way: the A region has
been created within the heap, the B region has been
created within the A region and the C region has been
created within the B region. That means that the heap
was the current region at the moment of the A object
creation, A was the current region at the moment of the B
object creation, and B was the current region at the
moment of the C object creation. In this way the creation
of the A, B, and C scoped regions gives the following
parentage relation: the heap is the parent of A, the region
A is the parent of B, and B is the parent of C.Then, the
child-counter for A and B has been incremented to 1,
whereas for C it is 0.

Let us further consider the two tasks t1 and 12 of our
previous example, where we have supposed that task 1l
has entered areas A and B, which increases by 1 the
task<counter for A and B. And task 12 has entered areas
A and C, which increases by 1 the task-counter for A
and C (see Figure 3.a). In this situation, the task-counter
for A is 2, whereas for B and C is 1. If task 11 enters the
area C and task 2 the area B, at different than those that
occur in the suggested implementation of RTSJ [16] [7],
the single parent rule is not violated. Then, instead of
throwing the ScopedCycleException(), we have
the situation shown in Figure 3.5. At this moment, the
task-counter for scoped memory areas A, B, and C are 2.

Scope SP of 12
C
~% Scope SP of 1l
B B
A A

a. Tl enters B scoped region and 12 enters C.

~*— Scope SP of 11
C C
Scope SP of 12
B B
A A

b. tl enters C scoped region and 2 enters B.
Figure 3: The scope stack and the single parent rule.

Note that the scoped stack associated to task 2 includes
only the A and B scoped regions. Then, even if the task

72 has entered the scoped memory C before entering B,
pointers from objects allocated in B to objects allocated
in C are dangling pointers, as consequence they are not
allowed. We consider another situation: task Tl enters
into scoped area A creates B and C, which increases
both the task-counter of A by 1 and its child-counter by
2, whereas both the task-counter and the child -counter
of B and C are 0. Then, task 1l enters into scoped areas B
(Figure 4a) and C (Figure 4b), which increases in 1 the
task-counter of both B and C. Only references from
objects allocated within B or C to objects within A are
allowed. Note that it is not possible for task 71 to create a
reference from an object within B to an object within C,
and vice-versa from an dject within B to an object
within C, even if task Tl must exit the area C before to exit
the area B. Then, if a task @2 enters into scoped area C
and stays there for a while, task tl leaves C and leaves B,
the scoped area B can be collected and there are not
dangling pointers.

—=— Scope SP of 1 ~=— Scope SP of 7l

B C
A A

a. tl enters B area. b. 1l enters C area.

Figure 4: Two state for the coped stack of task t1.

Non=scoped areas (i.c. the heap and immortal areas) are
not supported in the scoped tree. Moreover, the heap
and immortal areas are considered as the primordial
scope, which is considered to be the root of the area tree
[7]. Notice that, for the heap and immortal memory areas,
there is no need to maintain the reference-counters
because these areas exist outside the scope of the
application.

Then, we propose to change the RTSJ specification,
so that scoped memory areas are parented at creation
time. This new parentage relation introduces great
advantages because i) simplifies the semantic of scoped
memory as the single parent rule becomes trivially true,
ii) scope cycle exceptions donot occur, iii) each thread
requires only one scoped stack, and iv) the parentage
relation does not change during the scoped memory life.

3.3 Scoped region collection

In RTSJ, the method getReferenceCount () of the
ScopedMemory abstract class, allows us to obtain the
number of threads that may have access to a scoped
region. In this case, when creating a scoped region, the
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reference-counter of the region is initialized at zero, and it
is increased when entering the region (i.e., through the
enter () method) or when associating the region or an
inner region to a task (i.e., when creating a realtime
thread with an initial scoped region through the
RealtimeThread, NoHeapRealtimeThread, or
AsincEventHandler  constructors). And it is
decreased when exiting the region (i.e., when returning
from the enter () method), or when a task leaves the
region or an inner region (ie., when a task using the
scoped region exits).

Instead of the method getReferenceCount (), we
introduce two new methods in the ScopedMemory
abstract class. That is, getChildrenCount () and
getTaskCount () method, which allows us to know
respectively the number of scoped regions created
within the considered scoped and the number of tasks
for which the region is the current one. Since we suggest
maintaining two counters per scoped region, our
proposed solution requires taking actions in the
following cases:

e  When a scoped region becomes the current region
for a task (i.e., by entering it or by creating a real-
time thread), we must increase the taskreference
count of the region. And we must decrease it when
the task leaves the region (i.e., when returning from
the enter () method or when the task exits).

e  When creating a scoped region, we must increase
the children-reference count of the parent region.
And we must decrease it when the created region is
collected. Both the children-reference count and the
task-reference count of the new region are initialized
at zero. And to collect it, we must check that both
reference counts reach zero.

Notice that our proposed solution requires to take only
one action (i.e., increase/decrease a counter) when a task
or a region is created/destroyed, or a region is
entered/exited. Whereas in the RTSJ suggested
implementation solution, actions are required each time a
task is created/destroyed have a O(n) complexity, where
n is the number of nested scoped regions.

3.4 Maintaining the scope stack

In the current RTSJ specification edition, the enter ()
method can throw the ScopeCycleException()
whenever entering in a scoped region that would violate
the single parent rule. The current RTSJ edition also
advises to push/pop the entered region on the scope
stack belonging to the current task and to

increase/decrease the reference counter of the region
when the task enters/exits the enter ()method (see
Figure 5). Checking the single parent rule requires an
exploration of the scoped stack, in which case we
conclude a complexity of O¢n) for the suggested
algorithm of the enter () method.

enter

if entering ma would violate the single parent rule
throw ScopedCycleException;
push ma on the scope stack belonging to the current thread,
increase the ma reference count;
execute logic.run method;
decrease the ma reference counter;
pop ma from the scope stack.

Figure 5: Current pseudo-code for ma.enter(logic).

The ScopeCycleException() method does not
appear in the former edition of the RTSJ specification
[15], which does not advise using a scope stack
associated to each task. Since in our proposed solution
there are no cycles in the region tree structure, we do not
consider the ScopeCycleException ()exception, and
we avoid the single parent rule checks. In contrast, we
consider the region tree to contain all possible scoped
stacks associated to all the tasks of an application at a
determined instant. Where each scope stack is
composed of the current region and all regions following
in the path to reach the root of the region tree. The scope
stack pointer is part of the task execution context and
points to the current region. Figure 6 shows the rewritten
pseudo-code for the enter operation, which has constant
execution time.

enter

make the scope stack pointer points ma in the region tree;
increase the task reference count of ma;

execute logic.run method;

decrease the task reference count of ma;

restore the previous scope stack pointer for the current task.

Figure 6: Suggested pseudo-code for ma.e nter(logic).

Figure 7 shows the pseudo-code of another operation
affecting the scope stack; that is the construction of a
new task. In order to maintain the reference counter
collector of scoped regions, we must increase/decrease
the reference counter of all regions on the scope stack
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when creating/destroying the task. Examination of this
algorithm reveals a complexity of O(2n).

Construct a RealtimeThread

cma = curent memory region;
ima = initial memory region;
if cma is heap or immortal
create a new scope stack containing cma
else
start a new scope stack containing the entire current scope stack;
for every scoped memory area in the new scope stack
increase the reference count;
if ima != current allocation context
push ima on new scope stack;
run the new thread with the new scope stack;
when the thread terminates
every memory area pushed by the thread will have been
popped;
for every scoped memory area in the scope stack
decrease the reference count;
free the scope stack.

Figure 7: RTSJ pseudo-code to construct a task.

Since we propose a more complex collector for scoped
regions based on two reference counters instead of only
one, we guarantee the life of scoped regions having
children without exploring the stack. Note that an
exploration of the scope stack requires a complexity of
O(n). Figure 8 describes the suggested behavior forthe
construction of a real-time thread, which have constant

avacntinn time

Construct a RealtimeThread

ima = initial memory region;

make that the new scope stack pointer points ima in the region tree;
increase the task reference count of ima;

run the new thread with the new scope stack;

when the thread terminates decrease the task reference count of ima.

Figure 8: Suggested pseudo-code to construct a task.
4 Using a display-based technique

Since assignment rules cannot be fully enforced by
the compiler, some dangling pointers must be detected at
runtime [7]. Moreover, the RTSJ specification does not
explicitly provide an algorithm to enforce the assignment
rules. The more basic approach is to take the advice
given in the current elition of the RTSJ specification
[16], to scan the scoped region stack associated to the
current task, verifying that the scoped region from which

the reference is created was pushed in the stack before
than the region to which the referenced object belongs.
This approach requires the introduction of write barriers
[11]; that is, to introduce a code exploring the scoped
region stack when creating an assignment. Note that the
complexity of an algorithm which explores a stack is
O(n), where n is the depth ofthe stack.

Since real-time applications require putting
boundaries on the execution time of some piece of code,
and the depth of the scoped region stack associated with
the task of an application are only known at runtime; the
overhead introduced by write barriers is unpredictable.
In order to fix a maximum boundary or to estimate the
average write barrier overhead, we must limit the number
of nested scoped levels that an application can hold [10].
We next show how to extend scope tree data structures
to perform all required checks in constant time. Our
approach is inspired in the suggested parentage relation
of scoped memory regions.

4.1 Checking the assignment rules

As stated the RTSJ imposed assignment rules,
references can always be made from objects within a
scoped memory to objects within the heap or immortal
memory; the opposite is never allowed. Also the
ancestor relation among scoped memory regions is
defined by the nesting regions themselves, and this
parentage is supported by the region tree. Since region
tree changes occur only at determined moments (i.c.,
when creating or collecting a scoped region) we can
apply the technique based on displays that has been
presented in [6]. In this technique, to facilitate constant-
time checking for the assignment rules, each scoped
region has associated adisplay containing the type
identification codes of its ancestors and its depth in the
region tree (see Figure9).

[3[ABIC]

©
—

Figure 9: Display-based region tree structure.
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In order to use the display-based technique, we suggest
including the following rules in RTSJ, instead of the rule
which associates a scope stack to each task:

1. The heap and immortal memory regions are always
assigned the minimum depth.

2.  When a scoped memory region is created, the depth
assigned to the new region is the father region
depthplus 1.

3. The method depth() in the ScopedMemory
abstract class allows us to know the nested level of
the region.

Notice that the depth is the same as the display length,
so it is not necessary to store it twice. But to store it
allows us to have a more efficient implementation and a
simpler exposition of the algorithm[6]. Figure 10 shows
the pseudo-code that we must introduce in the execution
of each assignment statement (e.g., x.a=y) to perform

the assignment checks in constant- time.

Write barrier

X = region to which the x object belongs;

Y = region to which the y object belongs;

if ((Y.depth <> 0) and (X.display[Y.depth]<>Y display[Y.depth]))
illegalAssignment();

Figure 10: Checking the assignment rules.
4.2 Maintaining the display structure

This parentage relation is less dynamic than in the
current RTSJ edition, where the parent-child relations
changes as scoped memory regions are entered and
exited. Thus, the associated type hierarchy is not fixed,
but only changes at the point that the children reference
count increases or decreases. Then, the management of
displays only requires to copy the parent display
including the new created region identifier at the endof it
when creating a scoped region, and to invalidate it when
the region is collected. Then, the structure of the display
tree does not affected, when entering/exiting a region or
creating/destroying a thread.

The current RTSJ edition [16] also presents another
method allowing a task to change the allocation context;
the executeInArea() method, which checks the
current scope stack in order to find the region to which
the message associated with the method is sent. If it is
found, a new scope stack containing the found region
and all scopes below this region on the scope stack is
started. If it is not found, the

InaccesibleAreaException() exception is raised. In
this method, the newArray() and newInstance()
methods allow a task to allocate objects outside the
current region. Since these methods require an
exploration of the stack, they have an O(n) complexity
(see Figure 11).

executelnArea, newArray or newinstance

if ma is an instance of heap or immortal
start a new scope stack containing only ma
else ma is scoped
if ma is in the scope stack for the current task
start a new scope stack containing ma and all
scopes below ma on the scope stack
else throw InaccessibleAreaException;
make the new scope stack the scope stack for the current thread;
execute logic.run or construct the object;
restore the previous scope stack for the current thread;
discard the new scope stack.

Figure 11: Current memory context switch.

Notice that in our proposed solution entering a region
older than the current one that is in the same branch of
the region tree (i.e., in the same scope stack), has the
same consequences as the executeInArea () method.
Therefore, this method is not strictly necessary, and
actually it does not appear in the former edition of the
RTSJ specification [15]. Figure R shows the rewritten
pseudo-code using displays, which is constant-time
executable.

executelnArea, newArray or newinstance

cma = current region
if ((ma.depth <> 0) and (cma.dispaly[ma.depth] <>
ma.dispaly{ma.depth]))

throw InaccessibleAreaException;
make ma the current region;
execute logic.run or construct the object in ma;
restore the previous current region.

Figure 12: Memory context switch with displays.
4.3 Estimating the write barrier overhead

We have modified the KVM [17] to implement three
types of memory regions: (i) the heap that is collected
by the KVM GC, (ii} immortal that is never collected and
can not be nested, and (iii) scoped that have limited
live-time and can be nested. These regions are supported
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by the HeapMemory, the ImmortalMemory, and the
ScopedMemory classes. Unlike RTSJ, in our prototype
the ScopedMemory class is a non-abstract class, and the
ImmortalPhysicalMemory class has not been
implemented.

To obtain the overhead that write barrier introduces ,
two measures are combined: the number of events, and
the cost of the event. We use an artificial collector
benchmark which is an adaptation made by Hans Boehm
from the John Ellis and Kodak benchmark® This
benchmark executes 262*10° bytecodes and allocates 408
Mbytes. The number of executed bytecodes performing
the write barrier test is 15*10° (ie., aastore: 1*10°,
putfield: 6*10°,  putfield fast: 7*10°,
putstatic: 19*10° and putstatic_fast: 0). This
means that 5% of executed bytecodes perform a write
barrier test, as already obtained with SPECjvm98 in [18].

The write barrier cost is proportional to the number of
executed evaluations. With our proposed solution, the
overhead introduced to evaluate a condition of the write
barrier test in the KVM is about 16% in each assignment.
Because of this, the average write barrier cost introduced
in an application is only 1.6%. But the most important
consequence of this approach is that the time taken to
detect an allowed or dangling reference is the same, and
it does not depend on the nested level of the region to
which the two objects of the memory reference belong.

5 Related works

The main contribution of our approach is to avoid the
single parent checks by changing the parentage relation
of scoped region within the region tree, which ensures all
algorithms managing scoped regions to be executed in
constant-time. A study of the behaviour of the RTSJ
simple parent rule and a first approach in order to avoid
checking it when entering a scoped area has been
presented in [12]. Our proposed solution also simplifies
the maintaining of the display structure used to check
illegal assignments in [6]. The display-based technique
has been introduced in [5] to evaluate expressions in
constant time. And it was firstly used to support RTSJ
scoped region in [6]. The main difference between both
techniques is that the encoding of the type hierarchy in
{5] is known at compile time, whereas in [6] the region
tree changes at runtime. Qur proposed solution makes
the scoped region tree structure more static, because the
region tree structure changes only when a scoped region
is created/destroyed instead every time a thread
enters/exits a scoped region. An alternative technique to

4http://www,hpLhp.comlpersonaI/Hans_Boehm/gclgc_bench.html

subtype test in Java have been presented in [14]. This
technique has been extended to perform memory access
checks in constant-time.

The idea of using both write barrier and a stack of
scoped regions ordered by life-times to detect illegal
intertegion assignments was first introduced in [9]. A
similar approach using also a stack-based memory
management that operates dynamically is given in [3].

The most common approach to implement read/write
barriers is by inline code, consisting in generating the
instructions executing barrier events for every load/store
operation. Beebe and Rinard use this approach [1], and
their implementation uses five runtime heap checks to
ensure that a critical task does not manipulate heap
references. Alternatively, our solution instruments the
bytecode interpreter, avoiding space problems, but this
still requires a complementary solution to handle native
code [11]. The use of the hardware support for write
barriers has been the subject of [8] and [9], where we
propose to improve the performance of checking illegal
references by two different ways: using existing
hardware support and modifying existing hardware. The
performance improvement introduced by these solutions
has been compared in [10].

In [4], we found a region-based approach to memory
management in Java based on static analysis. But the
dynamic issues that Java presents, requires for some
cases to check the assignment rules at run-time.
However, static and dynamic techniques can be
combined to provide more robustness and predictability
of RTSJ applications.

6 Conclusions

To enforce the RTSJ imposed rules, a compliant

JVM must check both the single parent rule on every
attempt to enter a scoped memory region, and the
assignment rules on every attempt to create a reference
between objects belonging to different memory regions.
Since objects references occur frequently, it is important
to implement checks for assignment rules efficiently and
predictably.
To support scoped memory regions, we propose a
mechanism based on a reference-counter collector and a
scoped region tree based on the parentage relation of
scoped regions, which contains all scope stacks allowed
in the system in a given instant. Note that by collecting
regions, problems associated with reference-counting
collectors are solved: the space and time to maintain two
reference-counts per scoped region is minimal, and there
are no cyclic scoped region references. The parentage
relation is based on the way they are created/collected,
instead of the way they are entered/exited by tasks.

TEEE ':a

COMPUTER
SOCIETY

Proceedings of the 11th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS’05)
1080-1812/05 $ 20.00 IEEE



Every scoped region has two reference counters
associated to it, which allows us a more efficient
management of regions, making it time predictable. Every
region has also a scope stack supporting all scoped
regions containing objects allowed to be referenced from
it. When a task enters a region, the region stack
associated to the egion becomes the scoped region
associated to the task. The scope stack can be coded as
a display, which allows us to use subtype test based
techniques making the enforcement of memory
references time-predictable. It is interesting to compare
the proposed solution and the hardware-based
solutions.
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