Job Scheduling and Resource Management

Techniques in Economic Grid Environments*

Rafael Moreno! and Ana B. Alonso-Conde?

! Departamento de Arquitectura de Computadores y Automatica,
Universidad Complutense, 28040 - Madrid, Spain
rmoreno@dacya.ucm.es
2 Dept. Economia Financiera, Contabilidad y Comercializacién,
Univ. Rey Juan Carlos, 28032 - Madrid, Spain

abac@fcjs.urjc.es

Abstract. In this paper, we analyze the problem of grid resource broker-
ing in the presence of economic information about the price of resources.
We examine in detail the main tasks that a resource broker has to carry
out in this particular context, like resource discovery and selection, job
scheduling, job monitoring and migration, etc. Then, we propose an ex-
tension of the grid resource information service schema to deal with this
kind of economic information, and we evaluate different optimization
criteria for job scheduling and migration, combining both performance
and economic information. The experimental application benchmark has
been taken from the finance field, in particular a Monte Carlo simulation
for pricing European financial options.

1 Introduction

Computational Grids are emerging as a new computing paradigm for solving
grand challenge applications in science, engineering, and economics [1]. Grid de-
velopment involves the efficient management of heterogeneous, geographically
distributed, and dynamically available resources. In this environment, the re-
source broker (or scheduler) becomes one of the most critical components of the
grid middleware. Following, we analyze in detail the main tasks that the resource
broker has to carry out [2], and the most common approaches to perform these
tasks, specially in case of the presence of economic information.

Resource Discovery and Selection. The first task of the scheduler is resource
discovery. The main goal is to identify a list of authorized hosts that are available
to a given user. Most resource discovery algorithms interact with some kind of
grid information service (GIS), like MDS (Monitoring and Discovery Service) in
Globus [3]. Once the list of possible target hosts is known, the second phase of
the broker is selecting those resources that are expected to meet the time or cost

* This research was supported by Ministerio de Ciencia y Tecnologia through the
research grant TIC 2002-00334.

F. Fernandez Rivera et al. (Eds.): Across Grids 2003, LNCS 2970, pp. 25-32, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

26 R. Moreno and A.B. Alonso-Conde

constraints imposed by the user. In order to fulfill the user time restrictions the
resource broker has to gather dynamic information about resource accessibility,
system workload, network performance, etc. Moreover, if we contemplate an eco-
nomic environment, the broker has to gather additional information about the
price of the resources. Some environments like GRACE (Grid Architecture for
Computational Economy) [4] provides a suite of trading protocols which enables
resource consumers and providers to negotiate the cost of resources according to
different criteria.

Job Scheduling. The next stage of resource brokering is job scheduling, i.e.,
the mapping of pending jobs to specific physical resources, trying to maximize
some optimization criterion specified by the user. Most of the grid systems in
the literature use performance-guided schedulers, since they try to find a job-
to-resource mapping that minimizes the overall execution time (i.e. optimizes
performance) [5] [6]. On the other hand, economy-guided schedulers include the
cost of resources as optimization criterion [7] [8]. For example the Nimrod/G
broker [7] allows users to specify a budget constraint (cost of resources), a dead-
line constraint (execution time), or both, and it incorporates different scheduling
algorithms for cost optimization, and/or time optimization.

Job Migration. A grid is inherently a dynamic system where environmental
conditions are subjected to unpredictable changes. In such a context, job migra-
tion is the only efficient way to guarantee that the submitted jobs are completed
and the user restrictions are met. Most of the systems dealing with job migra-
tion face up to the problem from the point of view of performance [6] [9]. The
main migration policies considered in these systems include, among others, per-
formance slowdown, target system failure, job cancellation, detection of a better
resource, etc. However, there are hardly a few works that manage job migration
under economic conditions [8]. In this context, new job migration policies must
be contemplated, like the discovery of a new cheaper resource, or variations in
the resource prices during the job execution.

2 Resource Brokering
in a Dynamic Economic Environment

In this work we investigate the influence of economic factors over dynamic re-
source brokering, in the context of the GridWay project [6]. We propose an ex-
tension of the MDS information service schema [3] in order to deal with economic
information. Then, we evaluate different optimization criteria for job scheduling
and migration, which combine both performance and cost information.

2.1 The GridWay Framework

The GridWay framework is a Globus compatible environment, which simplifies
the user interfacing with the Grid, and provides the mechanisms for efficient
execution of jobs on the Grid with dynamic adaptation to changing conditions.
From the user point of view, the GridWay framework consists of two main com-
ponents:

Job Scheduling and Resource Management Techniques 27

Command-Line User Interface. This interface significantly simplifies the
user operation on the Grid by providing several user-friendly commands for sub-
mitting jobs to the Grid (“gwsubmit”) along with their respective configuration
files (job templates), stopping/resuming, killing or re-scheduling jobs (“gwkill”),
and monitoring the state and the history of the jobs (“gwps” and “gwhistory”).
For a given job, the template file must include the name of the executable file,
its arguments, the name of the input and output files, the name of the restart
files for checkpointing purposes in case of migration, and a per-job optimization
criterion, which have to be maximized whenever is possible, when the job is
scheduled on the Grid.

Personal Resource Broker. Each user interacts with its own personal re-
source broker, called Submission Agent. It is responsible for resource discover-
ing, scheduling and submitting the user jobs, monitoring job performance, and
migrating jobs when it is required. The scheduling policy is based on a greedy
approach, so that the scheduler tries to maximize the optimization criterion spec-
ified by the user for each individual job, without considering the rest of pending,
rescheduled or submitted applications. The migration of a job can be initiated
by several events: (a) A rescheduling request sent by the user; (b) A failure in
the target host; (¢) A new better resource is discovered, which maximizes the
optimization criterion selected for that job.

2.2 Extension of the MDS Schema and New Information Providers

To adapt the GridWay framework for dealing with economic information, it
is necessary to extend the Globus MDS schema and design new information
providers, which supply this kind of information to the Grid Resource Informa-
tion Service (GRIS).

The extension of the MDS schema is achieved by adding to the LDAP di-
rectory a new structural object class called MdsEconomicInfo, and a new auxil-
iary object class called MdsCpuPrice. The attribute Mds-Cpu-Price-Per-Second
of this object class contains the CPU price information generated by the re-
source provider, which uses an abstract monetary unit, called Grid Currency
Unit (g.c.u.). In addition to these new object class and attributes, we have de-
fined new auxiliary objects to manage the cost of other physical resources, like
the cost of the memory space and disk space used by the program, or the cost
of the network bandwidth consumed by the program. However, these elements
are reserved for a future use, and they are not considered in this work.

The information provider for supplying the economic data is based on a
simple implementation, since it reads the information about the cost of resources
(CPU, memory, disk or network) from a file stored in each target host. In a future
work, we plan to integrate the GridWay broker with the GRACE economic
information providers [4] and GridBank [10], which include a suite of trading
protocols for resource cost negotiation between resource consumers and resource
providers.

28 R. Moreno and A.B. Alonso-Conde

3 Experimental Environment

3.1 The Benchmark: A Financial Application

The experimental benchmark used in this work is based on a financial applica-
tion [11] [12] in particular, a Monte Carlo (MC) simulation for pricing European
Call options. We briefly describe this problem.

Using the assumption of no arbitrage, the price of a derivate security can be
computed as the expected value of its discounted payouts, where the expectation
is taken with respect to the risk-neutral measure. In the particular case of a
European call option, its price is the expected value of the payoff:

E{e " maz(S(t + At) — X (t),0)} (1)

where t is the current time, r is the risk-free rate of interest, X (¢) is the exercise
price, At is the holding period, and S(t + At) is the stock price at time ¢t + At.

Although Black and Scholes [13] provide an exact analytic method for pric-
ing European options, numerical solutions are also very attractive, since they
provide a general framework for solving this kind of problems, yet when an ana-
lytic model cannot be obtained. In particular, MC simulation exhibits significant
advantages relative to other numerical models: it is a flexible technique, easy to
implement, and inherently parallel, since random samples can be generated and
evaluated independently. Furthermore, the error convergence rate in MC simula-
tion is independent of the dimension of the problem, since the standard deviation
of the MC estimation decreases at the order O(1/v/N), where N is the number
of simulations.

The MC approach for pricing options is based on simulating the changes in
the values of the stock over the time horizon. The evolution of the asset, S(¢),
can be modelled as a random walk following a Geometric Brownian Motion:

dS(t) = pS(t)dt + o S(t)dW (t) 2)

where dW (t) is a Wiener process, p the instantaneous drift, and o the volatility
of the asset.

Assuming a lognormal distribution, using the It’s Lemma, and integrating the
previous expression over a finite time interval, dt, we can reach an approximated
solution for estimating the price evolution of S(t):

S(t + ot) = S(t)eln="/2Dotraon Vot (3)

where 7 is a standard normal random variable.

To simulate an individual price path for a given holding period At, using a
m-step simulation path, it is necessary to evaluate the price of the asset at each
time interval: S(t+dt), S(t+26t),..., S(t+ At)=S(t+mdt), i = 1,2, ...,n, where
0t is the basic simulation time-step, i.e. it = At/m.

To generate random numbers, we rely on the Scalable Parallel Random Num-
ber Generators (SPRNG) library, developed at the Florida State University [14].

Job Scheduling and Resource Management Techniques 29

This library includes different parallel random number generators, which can be
used to develop a parameterized version of our Monte Carlo simulation algo-
rithm. In our simulations, we have used the additive Fibonacci random number
generator.

In particular, our experiment computes the expected price of a European Call
Option over one year time horizon (At = 1), using a simulation time interval of
one week (dt = 1/52), i.e., each simulation path is computed by a sequence of
52 time steps. The number of independent paths simulated is N=4 millions. The
estimated price of the Call Option is given by the average value of the payoff
computed for the 4 million simulations.

3.2 Results

In this section we investigate how the scheduling and migration decisions taken
by the GridWay resource broker can change according to the optimization crite-
rion specified by the user for a given job, and how these different decisions can
affect to the overall execution time of the job, and the total CPU price.

Our Grid testbed consists of three Sun Workstations with Solaris 8, whose
main characteristics are summarized in Table 1.

Table 1. Characteristics of the machines in the research testbed.

host Model Speed Memory Perform.(peak)
sunblade Sun Blade 100 500MHz 256MB 1000 MFLOPS
ultral ~ Sun Ultra 1 167MHz 128MB 334 MFLOPS

sun250 Sun Enterprise 250 296MHz 256MB 600 MFLOPS

In the subsequent experiments, we assume that the cost of different resources
exhibits the following behavior (see Figure 1): When the program execution
starts, all the three hosts on the grid charge the same CPU price per second (12
g.c.u.). Around two minutes later, the sun250 and ultral hosts reduce the CPU
price to 6 g.c.u., and 5 g.c.u. per second respectively.

sunblade 12 g.c.u.

| | | | |
sun250 12 g.c.u. | 6g.cu.

[| | | |
ultral 12 g.c.u. | 5g.c.u.

I I I I I

0 100 200 300 400 500 600

Time (s)

Fig. 1. Dynamic changes in the CPU prices of the testbed hosts.

30 R. Moreno and A.B. Alonso-Conde

Next, we analyze the different schedules generated by the resource broker
under three different optimization criteria specified by the user:

Criterion #1: Performance * CPU-Free(%). This optimization criterion
tries to minimize the overall execution time of the application. If the user estab-
lishes this criterion for the job, and assuming that all the machines are idle, the
resource broker allocates the job to the host with highest performance, i.e., the
sunblade host. Since changes in CPU prices have no effect on performance, the
scheduler does not trigger any migration and the program is executed entirely
on the initial host. Table 2 (#1) shows the time and the price of this schedule.
Notice that the overall elapsed time includes de user and system CPU times, the
I/0O time, and also the overheads due to the transmission of the executable file,
and the input and ouput files.

Criterion #2: 1 / CPU-Price-per-Second. This optimization criterion tries
to minimize the total amount that the user pays for the CPU usage. To compute
this amount only the user CPU time expended by the job is considered. Other
times, like the system CPU time, the I/O time, or the CPU time expended
by other processes are not considered. Using this optimization criterion, the re-
source broker will submit the job to the cheapest resource on the Grid. If two
hosts are the same price, the broker selects that with maximum performance.
Under this optimization criterion, the program execution starts on the sunblade
host, which exhibits the highest performance at the same price. Two minutes
later, when sun250 and ultral CPU prices change, the resource broker migrates
the job to the new cheapest host, i.e., the ultral host. Table 2 (#2) displays the
results for this schedule. As we can observe, this optimization criterion improves
neither the price nor the time with respect to the first schedule. This is due
to the low performance of the ultral host, which takes a long time to execute
the program. Consequently, the total accumulated CPU price is higher than the
previous case, despite the lower price per second of the ultral host.

Criterion #3: Performance / CPU-Price-per-Second. To avoid worthless
migrations, we consider this third optimization criterion, which tries to minimize
the performance to CPU price ratio. If the user specifies this criterion for the
job, the program execution starts on the sunblade host, which exhibits the best
trade-off between performance and price (see Table 3). When sun250 and ultral
prices change, the resource broker migrates the job to the sun250 host, which
maximizes now the optimization criterion (see Table 3). The results displayed in
Table 2 (#3) show that this schedule gets an 8.2% reduction in the total CPU
price with respect to the criterion #1, against a 32.4% increment in the overall
elapsed time.

Figure 2 compares graphically the accumulated price and the overall elapsed
time of the three schedules.

Job Scheduling and Resource Management Techniques 31

Table 2. Results for different schedules.

Criterion CPU time (s) Total Price (g.c.u.) Elapsed time (s)
#1 Perf. * CPU-Free(%) 218.6 2,623.6 271.2
#2 1/CPU-price 103.2 + 348.6 2,981.7 553.3
#3 Perf./CPU-price 103.2 + 195.1 2,409.4 359.2

Table 3. Performance to CPU-price-per-second ratio for the testbed hosts.

Host CPU-Price (Perf./CPU-price) CPU-Price (Perf./CPU-price)

sunblade 12 g.c.u. 83.3 12 g.c.u. 83.3
sun250 12 g.c.u. 50.0 6 g.c.u. 100.0
ultral 12 g.c.u. 27.8 5 g.cu. 66.8

3000 /. /././.—.

2500

2000

1500

1000 —— Criterion #3
—®— Criterion #2

—@— Criterion #1

Accumulated CPU Price (g.c.u.)

o
o
o

0 100 200 300 400 500 600
Elapsed Time (s)

Fig. 2. Comparison of the schedules with different optimization criteria.

4 Conclusions and Future Work

This paper is focused on the problem of dynamic resource brokering in the
presence of economic information. An extension of the MDS information service
schema, in the context of the GridWay project has been proposed, in order to
deal with this new kind of information. We have evaluated several optimization
criteria for job scheduling and migration, and we conclude that, in order to
reduce the overall CPU cost, it is important to use optimization criteria based
on both performance and CPU price measures.

In a future work, we plan to incorporate to the brokering model the cost of
other physical resources, like the cost of the memory and disk space used by the
program, the cost of the network bandwidth consumed, etc. Other improvements
contemplated include the evaluation of alternative optimization criteria, the de-
velopment of new information providers, and the integration with the GRACE

32

R. Moreno and A.B. Alonso-Conde

and GridBank environments, which supply a complete suite of economic infor-
mation providers and trading protocols.

References

10.

11.

12.

13.

14.

. Foster, 1., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.

Morgan Kaufmann (1998)

Schopf, J.: A General Architecture for Scheduling on the Grid. Special issue of
JPDC on Grid Computing (2002)

Czajkowski, K., Fitzgerald, S., Foster, 1., Kesselman, C.: Grid Information Services
for Distributed Resource Sharing. 10th IEEE Int. Symp. on High-Performance
Distributed Computing (2001)

Buyya, R., Abramson, D., Giddy, J.: An Economy Driven Resource Management
Architecture for Global Computational Power Grids. Int. Conf. on Parallel and
Distributed Processing Techniques and Applications (2000)

Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed resource manage-
ment for high throughput computing. Int. Symp. on High Performance Distributed
Computing (1998)

Huedo, E., Montero, R.S., Llorente, I.M.: An Experimental Framework For Execut-
ing Applications in Dynamic Grid Environments. NASA-ICASE Technical Report
2002-43 (2002)

Abramson, D.; Buyya, R., Giddy, J.: A Computational Economy for Grid Comput-
ing and its Implementation in the Nimrod-G Resource Broker. Future Generation
Computer Systems Journal, Volume 18, Issue 8, Elsevier Science (2002) 1061-1074
Sample, N., Keyani, P., Wiederhold, G.: Scheduling Under Uncertainty: Planning
for the Ubiquitous Grid. Int. Conf. on Coordination Models and Languages (2002)
Allen, G., Angulo, D., Foster, I., and others: The Cactus Worm: Experiments with
Dynamic Resource Discovery and Allocation in a Grid Environment. Journal of
High-Performance Computing Applications, Volume 15, no. 4 (2001)

Barmouta, A. and Buyya, R., GridBank: A Grid Accounting Services Architecture
(GASA) for Distributed Systems Sharing and Integration. 17th Annual Int. Paral-
lel and Distributed Processing Symposium (IPDPS 2003), Workshop on Internet
Computing and E-Commerce (2003)

Moreno-Vozmediano, R., Alonso-Conde, A.B.: A High Throughput Solution for
Portfolio VaR Simulation. 4th WSEAS Int. Conf. on Mathematics and Computers
in Business and Economics (2003) in press.

Branson, K., Buyya, R., Moreno-Vozmediano, R., and others: Global Data-
Intensive Grid Collaboration. Supercomputing Conf. (SC2003), HPC Challenge
Awards (2003)

Dupire, B.: Monte Carlo Methodologies and Applications for Pricing and Risk
Management. Risk Books, 1st edition (1998)

Mascagni, M., Srinivasan, A.: Algorithm 806: SPRNG: a scalable library for pseu-
dorandom number generation. ACM Trans. on Mathematical Software (TOMS),
Vol. 26, Issue 3, September (2000) 436-461

	1 Introduction
	2 Resource Brokering in a Dynamic Economic Environment
	2.1 The GridWay Framework
	2.2 Extension of the MDS Schema and New Information Providers

	3 Experimental Environment
	3.1 The Benchmark: A Financial Application
	3.2 Results

	4 Conclusions and Future Work
	References

