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Abstract: - This paper explores the application of Grid computing technology for solving compute-intensive 
problems in finance. In particular, we propose a high-throughput parallel version of the Monte Carlo algorithm 
for portfolio VaR simulation, based on a master-worker paradigm, which runs in a Grid environment an obtains 
a substantial time reduction with regard to the serial algorithm, by exploiting the idle periods of the existing 
computational resources, like PC’s or workstations. 
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1   Introduction 
The computational issues of common finance 
industry problems, such as option pricing, portfolio 
optimization, or risk analysis, require the use of 
high-performance computing systems and 
algorithms. Traditional solutions to these problems 
involve the utilization of parallel supercomputers [1], 
which exhibits several drawbacks: high cost of the 
systems, highly qualified personal for administration 
and maintenance, difficult programming 
environments (distributed memory or message 
passing), etc.  

In this context, the Grid is emerging as a new 
technology for next generation of high-performance 
computing solutions. This technology is based on the 
efficient sharing and cooperation of heterogeneous, 
geographically distributed computing resources, like 
CPUs, clusters, multiprocessors, storage devices, 
databases, scientific instruments, etc. Computational 
grids have been successfully experienced for solving 
grand challenge problems in science and 
engineering, however the use of this technology for 
high computational demand applications in 
economics and finance has not been deeply explored.  

Within the range of computational finance 
applications, the Monte Carlo simulation based 
models are used to solve a broad variety of problems. 
Monte Carlo applications are inherently parallel, 
since random samples can be generated and 

evaluated independently. In this paper we explore the 
use of grid technology to implement a parallel 
version of a Monte Carlo simulation algorithm for 
estimating the Value-at-Risk (VaR) of a portfolio. 
This grid-based implementation of the Monte Carlo 
algorithm is probed to be highly efficient, since it 
obtain a significant simulation time reduction with 
respect to the serial version of the algorithm. 
Moreover, it can be considered a low-cost solution, 
because it does not required the utilization of 
complex and expensive parallel computer, but it 
makes use of the idle existing computing resources, 
like PCs or workstations. 
 
 
2   Grid Computing Technology 
According to the definition of Kesselman and Foster 
[2] “A computational grid is a hardware and software 
infrastructure that provides dependable, consistent, 
pervasive, and inexpensive access to high-end 
computational capabilities.” In this context, a grid 
user will have the ability of look for and hire out 
computational resources around the world, based on 
his current computing needs. On the other hand, 
companies or individuals proprietary of computing 
systems, can benefit from the idle periods of such 
resources by making them available for renting on 
the grid. 
 



 
2.1   Grid components 
Conceptually the grid is made up of three key 
components [3], as shown in figure 1: 
- The grid fabric. This component embraces all the 

distributed resources that are available from 
anywhere on the Internet. The grid fabric can 
consist of different kinds computer systems (PCs, 
workstations, clusters, supercomputers, etc.) 
running various operating systems, as well as other 
components like specialized computing devices, 
storage systems, scientific instruments, etc. 

- The grid middleware. The main functionality of the 
grid relies on a complex software infrastructure, 
called grid middleware. This middleware includes 
different services for resource discovery, remote 
job execution and monitoring, remote storage 
access, security and quality of service, etc. 

- Grid applications. Typical grid applications are 
computing or data intensive applications, like 
simulations, parameter searches, NP-complete 
problems, etc., which demand massive computing 
power, or accessing to large data sets. Grid enabled 
applications come from many different areas of 
science and engineering, like high energy physics, 
tomography, drug design, climate modeling, 
aerodynamic simulation, financial analysis, etc. 
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2.2    The Globus Toolkit 
The Globus Toolkit [4] has become a de facto 
standard middleware in grid computing 
environments. Globus comprises a set of components 
that implement the basic grid services for security, 
information, resource management, and remote data 
access. Following, we briefly describe the basic 
functionality of these Globus services. 
- GSI (Globus Security Infrastructure). Grid 

operations involve the access of users to remote 
systems, which can belong to a different 
organization, and the transmission of information 
between grid machines. In this context it is 
necessary a security infrastructure supporting user 
authentication and encrypted communications. 

- GRAM (Globus Resource Allocation Manager). 
GRAM allows the users to run jobs in remote 
resources. It processes the user requests for remote 
application execution, allocates the required 
resources, and manages the active jobs.  

- MDS (Metacomputing Directory Service). MDS 
allows the users to discover and obtain information 
to about grid resources. The user can ask the MDS 
for static computer information (CPU type, 
operating system version, number of processors, 
memory size, etc.), dynamic computer information 
(load average, free memory, …), storage system 
information, etc.  

- Global Access to Secondary Storage (GASS). 
GASS provides the users basic access to remote 
files. Operations supported by GASS include 
remote file read, remote file write.  

 
 
2.2    The GridWay Framework 
Although Globus provides the basic tools for grid 
operation, the user is responsible for manually 
scheduling jobs to the grid. In this context, the 
GridWay framework [5] has been developed as a 
Globus compatible environment, which simplifies 
the user interfacing with the Grid, and provides the 
mechanisms for efficient job scheduling and 
execution on the Grid with dynamic adaptation to 
changing conditions. From the user point of view, 
the GridWay framework consists of two main 
components (see Figure 2). 
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Fig. 2. Gridway and Globus interoperability 

- The command-Line User Interface. This interface 
significantly simplifies the user operation on the 
Grid by providing several user-friendly commands 
for submitting jobs to the Grid along with their 



respective input files, controlling, and monitoring 
the state of the jobs.  

- The personal Resource Broker. Each user interacts 
with its own personal resource broker, which 
communicates with the different Globus 
components, and is responsible for resource 
discovering, scheduling and submitting the user 
jobs, monitoring job performance, and migrating 
jobs when it is required. The scheduling policy is 
based on a greedy approach, so that the scheduler 
tries to maximize the optimization criterion 
specified by the user for each individual job.  

 
 
3   Monte Carlo Value-at-Risk 
To illustrate the application of grid technology to 
solve complex computational problems in finance we 
have implemented a Monte Carlo simulation 
algorithm for computing the Value-at-Risk (VaR) of 
a portfolio [6]. 
The VaR of a portfolio can be defined as the 
maximum expected loss over a holding period, ∆t, 
and at a given level of confidence c, i.e.,  

cVaRtPob −=<∆∆ 1})({Pr  (1) 
where )()()( tPttPtP −∆+=∆∆  is the change in 
the value of the portfolio over the time period ∆t. 
Several methods for computing VaR have been 
proposed: 
- Parametric models, like asset-normal VaR, delta-

normal VaR, or delta-gamma-normal VaR. 
- Non-parametric models, like historical simulation 

or Monte Carlo (MC) simulation. 
The MC approach is based on simulating the changes 
in the values of the risk factors, and revaluating the 
entire portfolio for each simulation experiment. The 
main advantage of this method is its theoretical 
flexibility, because it is not restricted to a given risk 
term distribution and the grade of exactness can be 
improved by increasing the number of simulation. 
For simulation purposes, the evolution of a single 
asset, S(t), can be modeled as a random walk 
following a Geometric Brownian Motion: 

)()()()( tdWtSdttStSd σµ +=   (1) 
where dWt is a Wiener process, µ  the instantaneous 
drift and σ  the volatility of the asset. 
Assuming a lognormal distribution and using the 
Itô’s Lemma, the expression (2) can be transformed 
in an Arithmetic Brownian Motion: 

)()2/())((ln 2 tdWdttSd σσµ +−=  (3) 
Integrating the previous expression over a finite time 
interval, tδ , we can reach an approximated solution 
for estimating the price evolution of S(t): 

))2/( 2

)()( tetSttS δσηδσµδ +∆−=+  (4) 
where η is a standard normal random variable.  
For a portfolio composed by k assets, S1(t), S2(t), …, 
Sk(t), the portfolio value evolution can be modeled as 
k coupled price paths: 

))2/( 2
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where Zi are k correlated random variables with 
covariance 

ijjiji SSZZ ρ== ),cov(),cov(  (6) 
To transform a vector of k uncorrelated normally 
distributed random variables η =(η1, η2, …, ηk) into 
a vector of n correlated random variables Z =(Z1, Z2, 
…, Zk), we can use the Cholesky descomposition of 
the covariance matrix, R: 
R = AAT (7) 

where  
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 is assumed to be 

symmetric and positive definite, A is a lower 
triangular matrix and AT is the transpose of A. 
Then, applying the matrix A to η generates the new 
correlated random variables Z  
Z = A η  (8) 
To simulate an individual portfolio price path for a 
given holding period ∆t, using a m-step simulation 
path, it is necessary to evaluate the price path of all 
the n assets in the portfolio at each time interval:  
Si(t+δt), Si(t+2δt),…, Si(t+∆t)=Si(t+mδt), ∀ i=1, 2, 
…, n, where δt is the basic simulation time-step, δt 
=∆t/m.  
For each simulation experiment, j, the portfolio value 
at target horizon is 
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where wi is the relative weight of the asset Si in the 
portfolio, and N is the overall number of simulations. 
The changes in the value of the portfolio are 

NjtPttPtP jj ,...,1)()()( =∀−∆+=∆∆  (10) 
The portfolio VaR can be measured from the 
distribution of the N changes in the portfolio value at 
the target horizon, taking the (1-c)-percentile of this 
distribution, where c is the level of confidence. 
The convergence error (εN) of the MC estimation can 
be approximated to 

∑
=

−
−

=
K

j
jN PP

N 1

2)(
)1(

1 )
ε  (3) 



where P
)

 is the average value of the portfolio at 
target horizon. Hence, the convergence error of the 
MC estimation decreases at the order )1( NO . 
 
 
4  Monte Carlo Simulation on a Grid 
The main drawback of Monte Carlo simulation is the 
computational cost, since a large number of price 
paths may be necessary to evaluate in order to obtain 
accurate results, and hence the simulation time may 
be extremely long. To lessen this problem two kind 
of techniques are mainly used: 
- Variance reduction techniques. These techniques 

try to reduce the number of simulations required to 
reach a precise result. There is a good variety of 
variance reduction techniques [7], as for example 
control variate, importance sampling, stratified 
sampling, conditional Monte Carlo, etc. Although 
the efficiency of these techniques has been proved 
in several works, their use results in a substantial 
increase of the VaR model complexity. 
Nevertheless, the analysis of these techniques is 
beyond the scope of this paper. 

- Parallel Monte Carlo implementation. The second 
alternative to reduce the MC simulation time is 
implementing a high throughput version of the 
algorithm [7], capable of distributing the portfolio 
price path computations in parallel over different 
computing resources. These computer resources 
can be different processors within a parallel 
supercomputer, can be different computers within a 
cluster, or, as we propose in this work, can be 
different computing resources within a grid 
environment. 

Since MC simulation methods rely on the generation 
of random number sequences, we first analyze the 
most common methods for generating random 
numbers in a parallel environment, and then we 
propose a methodology for distributing the 
computations on the grid, based on a master-worker 
paradigm. 
 
 
4.1 Parallel random number generation 

An ideal random number generator (RNG) should 
meet with several conditions: the sequences satisfy 
statistical tests for randomness; are uniformly 
distributed; are not correlated; have long period; are 
reproducible; are fast; are portable; can be changed 
by adjusting seed; and require limited memory. 
Certainly, it is impossible for a computer to generate 
random number sequences satisfying all these 
requirements simultaneously. However, for practical 
purposes, MC algorithms can use pseudo-random 

number sequences, provided that the period of the 
stream is larger than the total number of random 
numbers needed by the application, and the 
correlations are sufficiently weak. The most common 
serial pseudo-random number generators employed 
in Monte Carlo applications are the Linear 
Congruential Generator (LCG) and the Lagged 
Fibonacci Generator (LFG).  
LFG has become very popular because it is easy to 
implement, the computation of the sequence exhibits 
low computational cost, and it satisfies excellently 
the statistical tests for randomness.  
On the other hand, parallel random number 
generators should satisfy the same conditions than 
serial RNGs, and some extra requirements: the 
streams should not exhibit inter-processor 
correlation; the algorithm must be scalable, i.e., it 
must work for any number of processors; the 
communication between processors must be 
minimum. 
In the last few years, a variety of parallel pseudo-
random number generators based on 
parameterization have been developed and tested. 
These algorithms have been implemented and freely 
distributed in the software package SPRNG (Pseudo 
Random Number Generators Library) [8], which 
includes different parallel pseudo-random number 
generators (linear congruential generators, additive 
and multiplicative lagged Fibonacci generators, and 
combined multiple recursive generators) 
 
 
4.2  The master-worker computing paradigm 
The Master-Worker (MW) paradigm has been 
broadly used to solve a variety of large-scale 
problems in a parallel or distributed environment, 
like tree-search algorithms, genetic algorithms, or 
Monte Carlo simulations.  
As shown in Figure 3, the master application 
partitions the problem in T identical subtasks or jobs, 
which are distributed among different workers. The 
master can monitor the activity of the workers and 
detect the job completion. As the workers complete 
their jobs, the master must collect all the output files. 
In our particular problem, each job computes N/T 
different portfolio values, where N is the overall 
number of simulations.  
The master uses the GridWay interface to submit the 
array of T subtasks to the Grid, trying to maximize 
some optimization criterion specified by the user. 
The GridWay framework interacts with Globus to 
resource discovering, selecting resources for job 
execution, transmitting job files, and monitoring and 
controlling job progress.  
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Fig. 3. The master-worker paradigm 

 
The submission of each subtask involves three 
stages: 
- Prolog: the application binary file and the input 

data files are transmitted to the worker. 
- Execution: the worker performs the number of 

simulations specified by the master. 
- Epilog: the worker sends back the output file to the 

master 
When all the sub-tasks are completed, the master 
merges the output files and computes the portfolio 
VaR with confidence c.  
It is important to note that a grid is a heterogeneous 
environment, where workers can exhibit different 
characteristics and performance. This fact differs 
from other parallel environments, like a 
multiprocessor system or a workstation cluster, 
where all the processors usually have similar 
features. Consequently, in a grid context, job 
scheduling becomes an important challenge [10], 
since the overall execution time is enforced by the 
slowest worker. 

 
 

3   Results 
To evaluate the proposed high throughput approach 
for Monte Carlo VaR, we have chosen a 76-asset 
portfolio1, and a time horizon of 10 days. In order to 
reduce the relative convergence error under 2%, we 
have performed 4 million price-path simulations 
using a one day time-step. If we run a serial version 
of the algorithm on the master computer, a Pentium 
III at 600Mhz, the 4 million simulations take around 
25 minutes in executing.  
In order to reduce this time we have implemented a 
master-worker version of the algorithm, which run 
on the distributed resources of our heterogeneous 
                                                           
1 The composition of the portfolio has been taken from the 
Citiequity Euroland Fund Euro, managed by Citibank. 

grid testbed. The main features of these resources are 
summarized on Table 1.  A multiplicative lagged 
Fibonacci generator has been used for parallel 
random number generation. 
 

Host Processor
model 

CPU 
Clock 
(MHz) 

Mem. 
(MB) 

OS Peak 
Perform. 

(GFLOPS) 
Master PC P-III 600 256 Linux 0,6 
Worker #1 PC P-IV 2400 512 Linux 2,4 
Worker #2 PC P-IV 2400 512 Linux 2,4 
Worker #3 Sun Blade 

100 
502 256 Solaris 1,0 

Worker #4 Sun 
Enterp. 
250 

250 x 2 
CPUs  

256 Solaris 1,0 

Table 1. Main features of grid resources 
 
We have divided the problem in 40 identical 
subtasks, each one performing 100,000 simulations, 
and we have achieved different experiments, whose 
results are summarized in Fig. 42. 
In the experiment #1, all the 40 subtasks are 
submitted to the Worker #1 (PC Pentium IV 2,4 
Ghz). Although there is an important time reduction 
with respect to completion time in the master (6,5 
minutes against 25 minutes), thanks to the higher 
performance of the worker, it is important to note 
that the prolog and epilog times are very significant 
(23% of the overall time, in average), and cannot be 
ignored. This fact is evidenced by the experiment #2, 
where the subtasks are distributed between workers 
#1 and #2 (20 subtasks each). However, even tough 
both workers are identical machines, the completion 
time reduction does not reach a 30%, since the 
prolog and epilog times do not diminish in the same 
proportion than the execution time. 
Experiments #3 and #4 highlight the relevance of 
scheduling in a heterogeneous environment. In the 
experiment #3, scheduling is done without regarding 
to the worker performance, so that the same number 
of tasks are distributed among all the four workers 
(10 subtasks each one). With this sub-optimal 
scheduling the completion time get worse than the 
previous experiments, since it is dominated by the 
slowest workers. In such an environment, it is 
important to distribute the tasks in proportion to the 
performance of each worker, as done in the 
experiment #4, where workers #1 and #2 execute 15 
subtasks each one, while workers #3 and #4 execute 
5 subtasks each one. As we can observe, this 
scheduling improves the execution time with regard 
to the previous experiments. 
 

                                                           
2 All the experiments have been performed assuming  
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Experiment #2
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Experiment #3
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Experiment #4
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Fig. 4. Experimental results 

 
 
4   Conclusion and future work 
In this paper we have shown how modern grid 
technologies can be used to provide high-throughput 
solutions for classical finance problems, like Monte 
Carlo VaR estimation. The exploitation of the idle 
periods of the existing computational resources 

brings new opportunities for solving compute-
intensive finance problems at a low-cost. 
Several important issues will be explored in future 
works: adapting the scheduling to dynamic and 
changing grid conditions, like variations in the 
workload of the workers, which can reduce their 
effective performance, or variations in the file 
transmission times (prolog and epilog periods) due 
to different network bandwidths, improving fault 
tolerance under unexpected worker fails, etc. 
 
 
References: 
[1] S. A. Zenios, High-Performance Computing in 
Finance: The las 10 years and the next, Parallel 
Computing, No. 25, 1999, pp. 2149-2157.   
[2] Foster, I., Kesselman, C., The Grid: Blueprint for 
a New Computing Infrastructure, Morgan 
Kaufmann, 1998. 
[3] R. Buyya, Economic-based Distributed Resource 
Management and Scheduling for Grid Computing, 
PhD thesis, Monash University (Melbourne – 
Australia), 2002, chapter 2, pp. 9-23. 
[4] I. Foster, C. Kesselman, The Globus Project: A 
Status Report. In Proc. Heterogeneous Computing 
Workshop, IEEE Press, 1998, pp. 4-18. 
[5] E. Huedo, R.S. Montero, I.M. Llorente, An 
Experimental Framework For Executing 
Applications in Dynamic Grid Environments, 
NASA-ICASE Technical Report 2002-43. 
[6] P. Jorion, Value at Risk: The New Benchmark for 
Managing Financial Risk, McGraw-Hill (2nd 
edition), 2000. 
[7] P. Glasserman, P. Heidelberger, P. Shahabuddin, 
Variance Reduction Techniques for Estimating 
Value-at-Risk, Management Science, Vol. 46, 
October 2000, pp. 1349-1364. 
[8] J. Basney, R. Raman, M. Livny, High 
Throughput Monte Carlo. Proc. of the Ninth SIAM 
Conference on Parallel Processing for Scientific 
Computing, San Antonio, Texas, March 1999. 
[9] M. Mascagni, A. Srinivasan, Algorithm 806: 
SPRNG: a scalable library for pseudorandom 
number generation. ACM Transactions on 
Mathematical Software (TOMS), Vol. 26, No. 3, 
September, 2000, pp. 436-461. 
[10] R. Moreno, Job Scheduling and Resource 
Management Techniques in Dynamic Grid 
Environments, Proc. of the 1st European Across 
Grids Conference (published in CD-ROM), 2003. 
 
 


