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Motivation

• GAs are stochastic search methods that have been successfully applied  in
many search, optimization, and machine learning problems.

• PGAs offers many advantages over the traditional GAs (speed, wok in a larger
search space, and less likely to run into a local optimum).

• With the advent of Grid computing, the computational power that can be deliver
to the applications have substantially increased.

• PGAs can potentially benefit from this new Grid technologies.

• Implementation and execution of PGAs in a Grid involve challenging issues.

• Our research: PGA across the Grid using the DRMAA standard API and the
GridWay framework.

• The efficiency and reliability of before schema to solve the One Max problem is
analyzed in a globus-based research testbed.
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The GridWay Framework
GridWay provides an easier and more efficient execution (submit & forget) on
heterogeneous and dynamic Grid.

• Dynamic Scheduler: GridWay
periodically adapts the scheduler to
the available resources

• Resource Selector: Reflects the
applications demands, in terms of
requirements and preferences.

• Adaptive Job Execution: To migrate
running applications to more suitable
resources.

• Fault tolerance (callbacks) and Job
exit codes (Job-manager).

CharacteristicsCharacteristics
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DRMAA

• The DRMAA specification constitutes a homogenous interface to different
DRMS to handle job submission, monitoring and control, and retrieval of finished
job status. Moreover, DRMAA has been developed by DRMAA-WG within the
Global Grid Forum (GGF).

• The DRMAA standard represents a suitable and portable framework to express
this kind of distributed computations.

• Some DRMAA interface routines:
• Initialization and finalization routines: drmaa_init and drmaa_exit.
• Job submission routines: drmaa_run_job and drmaa_run_bulk_jobs.
• Job control and monitoring routines: drmaa_control,
drmaa_synchronize, drmaa_wait and drmaa_job_ps.

• DRMAA interface routines has been implemented within the GridWay
framework.

Distributed Resource Management Application APIDistributed Resource Management Application API
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Development Model 
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Parallel Genetic Algorithms (1/2)

• Usually implemented using a Master/Worker paradigm.
• Can be efficiently used when evaluation function requires a considerable

amount of computational work.
• Main advantage: the search behavior of the sequential GA is not altered.
• Disadvantage: This approach is not well suited for a Grid because of the high

network requirements of its communication patters.

Single Population (Single Population (PanmiticPanmitic GA) GA)

• Only one population and its spatial structure limits the interactions between
individuals.

• This limit can be imposed:
• Chromosome level: each member can only interact with their neighbors
• Population level: only member of the same subpopulation may mate

during crossover.

Single Population (Fine Grain GA)Single Population (Fine Grain GA)
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Parallel Genetic Algorithms (2/2)

• Main population is divided into subpopulations (demes) each one independently
evaluated in a different node.

• Tree possible communication patters:
• Ring model: processes can only interact with their neighbors in a ring

topology
• Master-slave model: slave processes swap best individuals with the master.
• All-to-all model: All processes swap best individuals with the others.

• Disadvantage: Introduce fundamental changes in the implementation of a
simple GA.

• Advantage: It is more tolerant to the high latencies and dynamic bandwidths
that can be expected in the Internet, unlike the single population alternatives.

• In this research we use a modified version of the coarse grain approach, since
this algorithm does not imply a tightly coupled  deme topology

Coarse Grain GACoarse Grain GA
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Algorithm Description

• We use a fully connected multi-deme genetic algorithm, all demes exchange individuals
every generation.

• Not imply any overhead since the population of each deme is used as checkpoint files.

Main CharacteristicsMain Characteristics

• Initial population is uniformity distributed among available number of nodes.
• Sequential GA is locally executed over each subpopulations.
• Worst individuals of each subpopulation are exchanged with the best ones of the rest.
• New population is generated to perform the next iteration.

Algorithm ExecutionAlgorithm Execution

• Previous algorithm may incur in performance losses, since the iteration time is
determined by the slowest machine.

• Solution  Dynamic Connectivity:
• We allow an asynchronous communication pattern between a fixed number of demes.
• Minimum number of demes in each iteration depends on the numerical characteristics

of the problem.

Algorithm OptimizationAlgorithm Optimization
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Algorithm Schema
Algorithm SchemaAlgorithm Schema DRMAA SchemaDRMAA Schema

// Initialize a new DRMAA session.
rc = drmaa_init(contact, error);
// Execute all jobs consecutively
for (i=0; i < ALL_JOBS; i++)
  rc = drmaa_run_job(job_id, jt,
       err_diag);
// Execute GOGA if it doesn’t rise
// objetive_function
while (!this->objetive_function()){
  // Wait for (dynamic conectivity
  // degree) jobs and store results
  for (i=0; i < NUM_JOBS; i++)
    rc = drmaa_wait(job_id, &stat,
         timeout, rusage, err);
  this->store_results();
  // Execute (dynamic connectivity
  // degree) jobs consecutively
  for (i=0; i < NUM_JOBS; i++)
    rc = drmaa_run_job(job_id, jt,
                       err);}
// Finalize DRMAA session.
rc = drmaa_exit(err_diag);
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Experiences (1/5)

Host Model Hz OS Memory Nodes
babieca Alpha DS10 466Mhz Linux 2.2 256MB 5
hydrushydrus Intel Pentium 4Intel Pentium 4 2.5 2.5 GhzGhz Linux 2.4Linux 2.4 512MB512MB 11
cygnuscygnus Intel Pentium 4Intel Pentium 4 2.5 2.5 GhzGhz Linux 2.4Linux 2.4 11
aquila Intel Pentium III 666 Mhz Linux 2.4 128 MB 1

GRAM
PBS
forkfork

fork
forkfork512MB512MB

• We evaluate the functionality and efficiency of the Grid-oriented Genetic
Algorithm, in the solution of the One-Max problem.

• One-Max problem is a classical benchmark problem for genetic algorithm
computations, and it tries to evolve an initial matrix of zeros in a matrix of ones.

TestbedTestbed description description

ObjectivesObjectives
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Experiences (2/5)

• We will consider an initial population of 1000 individuals each one a 20x100
zero matrix.

• Sequential GA:
• Iterations: 50
• Mutation Probability: 0.1%
• Crossover Probability: 60%

• The exchange probability of best individuals between demes is 10%
• Final score must be a 1800 ones matrix.

Experience descriptionExperience description

• Execution profile of 4 generations of the GOGA, with a 5-way dynamic
connectivity.

• 5 different executions of GOGA, with different degrees of dynamic
connectivity: 2-way, 3-way, 5-way, 6-way and 8-way.

Two experimentsTwo experiments



 J. Herrera, E. Huedo, R. S. Montero and I. M. Llorente EGC 2005www.gridway.org

Experiences (3/5)
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Experiences (4/5)
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Experiences (5/5)
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Conclusions

• We have presented an efficient Grid-oriented genetic algorithm.

• Our approach uses a fully connected multi-deme GA, with a dynamic
connectivity between subpopulations to deal with the heterogeneity of the
Grid.

• The optimum degree connectivity depends on:

• The computational characteristics of the Grid nodes.
• The computational problem.

• The GOGA has been developed taking advantage of the GridWay framework
features and the DRMAA API.

• It have been shown that DRMAA can aid the rapid development and
distribution across the Grid of typical genetic algorithm strategies.
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