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Abstract—Heterogeneous computing which includes mixed
architectures with multi-core CPUs as well as hardware ac-
celerators such as GPU hardware, is needed to satisfy future
computational needs and energy requirements. Cloud computing
currently offers users whose computational needs vary greatly
over time, a cost-effect way to gain access to resources. While
the current form of cloud-based systems is suitable for many sce-
narios, their evolution into a truly heterogeneous computational
environments is still not fully developed.

This paper describes THOR (Transparent Heterogeneous
Open Resources), our framework for providing seamless access
to HPC systems composed of heterogeneous resources. Our
work focuses on the core module, in particular the policy
engine. To validate our approach, THOR has been implemented
on a scaled-down heterogeneous cluster within a cloud-based
computational environment. Our testing includes an Open CL
encryption/decryption algorithm that was tested for several
use cases. The corresponding computational benchmarks are
provided to validate our approach and gain valuable knowledge
for the policy database.

I. INTRODUCTION

In recent years, high-performance computing (HPC) has
changed dramatically and in many different ways. The petas-
cale computational level has been reached, and exceeded,
successfully mostly thanks to the distinctive combination of
heterogeneous architectures, including multi-core CPUs (Cen-
tral Processing Units) and accelerators, which are in many
cases based on GPU (Graphics Processing Unit) processors
and related GPGPU (General-Purpose computing on GPU
processors) technology. Nevertheless, problems related to the
overall power consumption and associated heat dissipation
issues cannot be solved without seriously impacting peak
performance; in fact they are becoming even more visible and
more demanding. Effectively, maximising power efficiency is
becoming the most important factors for reaching exascale
levels of computation. While the power consuption of high-
end graphical accelerators is two times higher than the power
consumption of high-end server-based CPU processors, the
computational power of these accelerators is compared to
CPU processors higher by factor of 10 to 100, if conditions
related with programming model of these devices are fulfilled.
This means that these accelerators are the ideal computa-
tional source for power-efficient HPC computing. Thus, it
can be speculated that mobile device-like architectures and

corresponding technologies, that were designed with power
efficiency as a key consideration, will play an important role
in future generations of heterogeneous HPC systems. It can be
also assumed that the same trends hold for virtualization and
next generation of cloud systems, so the focus and business
model of commercial cloud providers will also change as these
systems are built as they will be increasingly leased by HPC
customers. As HPC computation will become more of a utility,
new frameworks will be required in order to deal with this new
environment.
One of the biggest HPC related issues that can be found in
research organizations is the difficulties for users in accessing
the required computational resources to solve their problems.
As is the case with computational sciences, the volume and
resolution of applications is constantly increasing and the
capacity of an organization’s resources to solve these problems
quickly becomes insufficient. Typically, capacity is increased
with the purchase of additional physical resources which tend
to be more heterogeneous, scattered and less accessible by
users.
OpenCL [1] is an open, royalty-free standard for cross-and-
multi-platform programming of modern processors found in
personal computers, servers and also embedded devices [2].
With the possibility to address and to program many differ-
ent types of processor, OpenCL is a good candidate to be
used within a future heterogeneous cloud computing environ-
ment [3]. However, in order to obtain a proper utilization of
multiple different resources within a cloud, a pluralistic task
assigning mechanism is required to be developed.

In this paper, we are addressing the necessity of unified
access to HPC systems composed of heterogeneous resources,
specially those based on GPU hardware. A framework is
proposed in order to provide a solution, being its services
described in Section II and its architecture in Section III.
In order to illustrate its features, some general use cases are
explained in Section IV. Section V analyzes the execution of
a specific OpenCL application using different resources and
the expected behavior of the framework. This paper then ends
with some concluding remarks and pointers to future work.
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II. SERVICES PROVIDED

Typical computational problems imply execution of a cer-
tain code or using interactively a machine with specific at-
tributes. In many situations, users simply do not have the
knowledge or time to understand how an organization’s re-
sources are configured, so their harnessing is often not done in
the most optimal fashion. Yet it can also transpire that having
correctly identified the necessary resources, they are then not
available (nor equivalent ones if specified) to meet the deadline
for the users work.

For this reason we have taken the principle of cloud com-
puting into account for the design of THOR, which stands
for Transparent heterogeneous Open Resources, a platform
providing flexible and on-demand services. In this way, a user
will simply specify application requirements, any deadline for
completion and if applicable, maximum (real or notional) cost
and then let an abstraction level resolve the scheduling and
execution of the job.

As it can be deduced, there are two main services offered
by the THOR framework:

1) Access to a collection of pre-existing codes from a wide
variety of research domains. Each code has its minimum
requirements (such as a particular variety of GPU), but
a user may also request execution on a resource with
superior specifications if available. Once the machine is
located, input data supplied by the user will be uploaded
for code execution. When output data is available, the
user is presented with a handle to download it.

2) Interactive access to a machine with required charac-
teristics, the user is provided with a handle to login
credentials.

With both services it may happen that sufficient resources
from the users organization may not be available, so the
framework will be able to provide an outsourced solution to
an external computational grid or commercial cloud provider.

III. FRAMEWORK ARCHITECTURE

The THOR framework is composed of the modules depicted
in Figure 1. This modularized structure allows the framework
to be technology independent, so integration with new devel-
opments is easily facilitated.

The user interacts with the system using either a command
line interface or through an API, and on top of which more
user-friendly interfaces such as web portals can be built [4] [5].
As explained in the previous section, two types of services
are offered, and both the User Interface and the API provide
mechanisms for requesting and interacting with them.

The service offering pre-existing applications functionality
is handled by a module called TrustedApps and is contacted
by the framework core. This module is a repository for the
codes and their associated architectural requirements such as
type or number of cores. Only jobs utilising these trusted
codes can be scheduled to run on scavenged resources (such
as BOINC) available to the framework. The framework core
is responsible for coordinating all the actions within the

framework and bases its decisions on a policies database and
the constant monitoring of all available resources. The policies
refer to both resource provisioning and job scheduling, and
examples of these policies can include the ability to specify
equivalent resources if those requested are not available, or
preferring the use of certain resources in order to meet
pre-defined environmental, power efficiency and economic
requirements [6] [7] [8], and where appropriate to redirect
computational tasks to an external infrastructure [9]. Interac-
tions with the infrastructure are performed by the core via the
MachineNow and OverFlow modules.

A. MachineNow module

The MachineNow module is responsible of harnessing the
local infrastructure. This infrastructure traditionally is com-
posed of heterogeneous resources which may respond to dif-
ferent computing paradigms such as cluster and collaborative
computing. For example, a typical infrastructure may consist
in a dedicated GPU cluster with a batch scheduler such as Sun
Grid Engine [10] and a number of desktop PCs with BOINC
clients [11].

In this context, the MachineNow module becomes an ab-
straction layer allowing the core to interact transparently with
these local resources. To accomplish this, the module relies
on plugins which translate core instructions to implementation
specific commands. This approach has proven to be decisive in
computing paradigms such as grid for coordinated harnessing
of incompatible infrastructures [12].

For this reason, and even if at this moment virtualization
techniques do not yet allow an optimal interaction between
CPU and GPU preventing with the use of virtual infrastructure
managers [13] [14], the MachineNow module is prepared for
when this does becomes available [15]. In the meanwhile,
work has been done on establishing virtualized cloud infras-
tructures without virtualization [16].

B. OverFlow module

There may be situations where local resources cannot
meet requirements coming direct from the user or the
TrustedApps module. The only option was to wait until
required resources become available, but now an alternative
option is to outsource the computational power needed and
this is provided by the OverFlow module.

This module is a special implementation of MachineNow,
where public clouds such as Amazon’s AWS1 can be contacted
for outsourcing computational needs when local resources
are not sufficient, or where core policies dictate otherwise.
Again, different providers can be utilized based on a plugin
architecture similar to MachineNow.

IV. GENERAL USE CASE TYPES

In this section some typical use cases of the framework are
examined. Applications can be submitted to a batch system
or require the resources to be interactive, in the latter case

1http://aws.amazon.com/



Fig. 1. The THOR framework architecture

immediate provisioning of the resources is required, but in
the former this may not be such a constraint.

A. Interactive command line

In this example a user wishes to have interactive access to
the resource, it will be the job of the framework to provide the
user with a login to a resource with the requested capability.
THOR will provide a command line instance either on a
dedicated cluster as provided by the MachineNow module or a
VM from an external cloud provider via the OverFlow module.
The OverFlow module will be available where it is implicitly
assumed that the user is not willing to suffer considerable
delay in getting hold of the resources. If a dedicated cluster
is unable to provide access within an acceptable period –
an accurate start-time can usually be obtained from cluster
management systems such as SGE and torque – then a VM
can usually be provisioned from a cloud provider such as AWS
within seconds by the OverFlow module.

B. Scientific Application

The second application usecase of the THOR Framework
examines a situation where a user wishes to execute an
application with significant input data requirements, one such
application domain is the processing of seismic data typically
found in oil exploration. A typical input dataset of seismic data
can be many gigabytes in size, so will be impractical in some
cases to move the data to the location of the computational
resource, or may be impossible to a resource with insignificant
resources to perform the task i.e. an embedded device with
constrained local storage.

C. Bulk Submission of Applications

Many types of scientist deal with computationally intensive
applications requiring numerous submissions with different
input datasets, termed parameter sweeps, where all instances

are independent and can be executed in parallel. One com-
mon application used in materials research is the LAMMPS
molecular dynamics (MD) application [17]. This application
is available in serial and parallel forms, and in MPI and
GPU versions. As this application is non-interactive it can be
scheduled on any computational resource if the requirements
are met i.e. if parallel version then on the dedicated cluster,
if the GPU version then execution can take place on the
scavenging system, dedicated cluster, and in the case of a serial
non-accelerated version, scheduling can occur on any resource
providing it meets deadline and other scheduling requirements.

D. GPU on demand

In the final use-case we imagine a scenario where a user is
executing an application on a constrained device and requires
the compute resources of one or more accerators/GPUs. Via
the THOR Framework these resources can be made avail-
able transparently to the user using a mechanism such as
rCUDA [18]. rCUDA can be used to provide the user with
a virtual GPU in order to run CUDA computational kernels
where the user may be using a constrained device such as a
mobile device/tablet wgere the resources are reserved for the
local rendering. Implicit requirements of the application would
be a resource providing a suitable GPU.

A similar use may arise when a user wishes to execute
a workflow where only a small percentage of the overall
computational requirements of the job require access to GPU
resources, and proving inefficient to schedule the whole work-
flow to occupy the resources. Here the GPU resources could be
potentially shared among a number of concurrent applications.

V. DEMONSTRATION THROUGH A SPECIFIC USE CASE

In order to better illustrate the frameworks behavior, a
specific application written using the OpenCL standard is
executed in a set of heterogeneous resources, pertaining to
different computing paradigms. The idea is to show which



TABLE I
LOCAL INFRASTRUCTURE COMPONENTS SPECIFICATION

Component GPU Type CUDA Cores Memory Bus Width

TESLA S1050 GT200 240 4096MB 512bit
GTX 470 GF100 448 1280MB 320bit
9800 GTX G92 112 512MB 256bit

TABLE II
CHARACTERISTICS OF THE DIFFERENT AMAZON EC2 MACHINE TYPES

Machine Type Cores C.U. Memory Platform Cost ($/hr)

Standard On-Demand Instances

Small (Default) 1 1 1.7GB 32bit 0.085
Large 2 2 7.5GB 64bit 0.34
Extra Large 4 2 15GB 64bit 0.68

High CPU On-Demand Instances

Medium 2 2.5 1.7GB 32bit 0.17
Extra Large 8 2.5 7GB 64bit 0.68

provisioning and scheduling decisions THOR would take
according to performance and throughput metrics.

Let AESEncryptDecrypt, which comes with the OpenCL
implementation from ATI2, be registered in the TrustedApps
module. AESEncryptDecrypt accepts an 512x512 pixel image
as input and produces an encrypted one using the AES
encryption algorithm after a given number of steps.

A. Infrastructure

As the proof of concept for the THOR framework a reduced
local infrastructure consisting of two types of resources was
tested: a dedicated cluster of NVIDIA Tesla S1070 nodes with
Sun Grid Engine scheduler, and a group of desktop computers
with different generations of graphics accelerators, namely
NVIDIA GeForce 9800 GTX and Fermi based NVIDIA
GeForce GTX 470 cards, as detailed in Table I. Being impossi-
ble to integrate the desktop computers in a cluster due to local
policies, collaborative computing was chosen for harnessing
them so BOINC clients were installed. These local resources
are accessed by the core via the MachineNow module with
the required plugins. On the other hand, the OverFlow module
provides access to the Amazon EC2 public cloud.

The Amazon EC2 public cloud provides users a large
quantity of machine images that can be booted in a number of
different instance types. These types have different characteris-
tics such as number of cores, memory and storage, as detailed
in Table II. As it is a public cloud, resources are provided for
a fee and depending on the infrastructure location, the price
paid for an instance per hour is different. Table II shows the
cost for the USA region, which was the one utilized in this
demonstration. The CU field in the table corresponds to EC2
Compute Units per core, a unit being equivalent to a 1.0-1.2
GHz 2007 AMD Opteron or 2007 Intel Xeon processor. While
only certain EC2 types are suitable for multi-node parallel
MPI class of workloads (the Cluster Compute Instance, not

2http://developer.amd.com/gpu/

shown in Table II), others are adequate for low-core count
shared memory applications and particularly suitable for bulk
submission of serial applications [19].

As it can be seen, the infrastructure accessed by the
framework comprises a set of heterogeneous resources.
These resources correspond to complete different computing
paradigms, offering many possibilities that will be shown next.

B. Behaviour

In this example, the user requests the execution of the
AESEncryptDecrypt application via the UI or the API for
500, 1000 and 1500 steps. The core retrieves all related
information from the TrustedApps module such the minimum
requirements which are required by the application and an
estimation of execution time for each available resource type.
This estimation can be calculated with a regression taking
previous execution times as shown in Figure 2, where times
for the Amazon EC2 Small instance do not appear because of
being out of boundaries.

As highlighted from the results, execution in the local
resources will be the preferred option by the core, where it
will choose the Tesla nodes because as a dedicated resource,
execution starts immediately if free slots are available. On the
other hand, availability of desktop PCs is unpredictable so job
submission to this resource will be prevented in the case where
a deadline was specified in the requirements.

Nevertheless, it may occur that a Tesla cluster node is
not available due to other calculations in progress, and with
deadline specified the OverFlow module will be used to
contact the Amazon EC2 public cloud. The module will start
a virtual machine with a custom image where the OpenCL
library is installed and so CPU cores can be used instead of
GPU ones. Virtual machine allocation and boot sequence do
not take more than 30 seconds.

Depending on the instance type chosen (Table II), execution
times will vary according to the number of cores and core
capability. From Figure 2 it is understood that either XLarge
and HighCPU XLarge instances would be chosen by the core
for executing the application if an urgent deadline is specified
in the requirements.

However, execution time is not the only factor to evaluate
when using commercial cloud resources, as usage cost must be
also taken into consideration. In order to provide a compromise
between execution time and prices from Table II, a metric
called Cost per Performance (C/P), which was explored in
[20], is calculated by the core. From values for this metric
shown in Figure 3 its clear that the core will choose to start
a HighCPU-Medium instance for executing the application.

Where the user requires the execution of the application a
certain number of times different economics come into play.
Throughput can be calculated for each usage hour of Amazon
EC2 resources (Figure 4), so the most appropriate instance can
be started depending the requirements.

But again, usage costs may be considered when evaluating
throughput. For this reason, a Cost per Throughput (C/T )
metric can be used. This metric is similar to C/P and its values
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for the test case are shown in Figure 5. In this case, the core
may choose different machine types depending on the number
of executions required.

Not shown in these results are the execution times where
only half the virtual cores of the Extra Large High-CPU
instance (i.e. 4) where utilised by the OpenCL application.
In this instance, execution time for the application is ap-
proximately 10% more than where all cores are utilised,
i.e. scalability with this particular application is curtailed as
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the core count is increased. Where absolute performance is
important the full complement of cores can be utilised, but
for bulk submission jobs throughput performance is signif-
icantly increased as two jobs can run concurrently on one
instance without oversubscribing the available cores. For a
one-off application run by a user such in-depth knowledge
of the scalability performance would be difficult, but for the
commonly used applications of the TrustedApps module, prior
benchmarking could be performed and optimal scheduling
policies derived for all anticipated scenarios.

Another aspect to take into consideration is that there could
be already started instances, so reuse is an option as public
clouds such as Amazon EC2 charges for every hour of resource
usage, then the core could decide to follow certain policies
whether deploy more instances or wait for the existing ones
to become available.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have outlined a framework for harnessing
all heterogeneous computational resources within an organi-
sation, from the dedicated cluster, a local private cloud or a
cycle scavenging system consisting of desktops withing an
organization and presenting a user with one single access
point. Where insufficient local resources are available the
required resources can be provisioned from external providers
such as a computational grid or commercial public cloud
providers.
A sophisticated policy engine will allow users and system
administrators to decide where and when the jobs are allocated
and allow the consideration of such diverse requirements –
for example where energy costs, or the availability of a spot
market for compute resources, dictate it may be more efficient,
or economical, for an organization to outsource computations.
In order to implement the entire framework different queueing
and collaborating systems can be integrated in MachineNow,
as well as emerging cloud services in OverFlow. However,
special efforts must be focused on the core module, specially
regarding its policy engine. For this reason, a great number
of applications and codes will be tested in order to provide
valuable knowledge for the policy database.



As the proof of concept for the outlined THOR framework
a local infrastructure consisting of two types of resources was
tested.

We understand that GPU computing is driving HPC to
new levels, while on the other hand, Cloud computing has
revolutionized the way services and computing infrastructures
are provided. In the near future, an integration of these two
technologies will occur, and for this reason we have developed
the THOR framework described in this article.
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