
Loosely-coupled Loop Scheduling in Computational Grids ∗

J. Herrera1, E. Huedo2, R.S. Montero1, I.M. Llorente1,2

1 Univ. Complutense de Madrid 2Cent. Astrobioloǵıa (CSIC-INTA)
Dep. Arquitec. de Comp. y Automática Lab. Computación Avanzada
Facultad de Informática 28040, Spain Simulación y Aplicaciones Telemáticas

28850 Torrejón de Ardoz, Spain

Abstract

Loop distribution is one of the most useful techniques
to reduce the execution time of parallel applications.
Traditionally, loop scheduling algorithms are imple-
mented based on parallel programming paradigms such
as MPI. This approximation presents three main disad-
vantages when applied in a Grid environment, namely:
(i) all resources must be simultaneously allocated to be-
gin execution of the application; (ii) it is necessary to
restart the whole application when a resource fails; (iii)
it is not possible to add new resources to a currently
running application. To overcome these limitations, we
propose a new approach to implement loop distribution
schemes in computational Grids. This approach is im-
plemented using the Distributed Resource Management
Application API (DRMAA) standard and the GridWay
meta-scheduling framework. The efficiency of this ap-
proach to solve the Mandelbrot set problem is analyzed
in a Globus-based research testbed.

1 Introduction

Since the end of the eighties, with the introduc-
tion of distributed memory massive parallel systems
(MPPs), a great effort has been invested in exploiting
the potential computing power of these parallel com-
puters. New programming paradigms and performance
theories were developed, and systematically adapted or
extended as new architectures appeared, like symmet-
ric multiprocessors (SMP) or clusters. Traditionally,
for all these parallel architectures, the distribution of
program loops among computing resources has been

∗This research was supported by Ministerio de Ciencia y Tec-
noloǵıa, through the research grant TIC 2003-01321 and 2002-
12422-E, and by Instituto Nacional de Técnica Aeroespacial “Es-
teban Terradas” (INTA) – Centro de Astrobioloǵıa.

proved as an efficient approach to extract the paral-
lelism of applications. Loops constitute an important
source of parallelism in a program, and when there is
no dependencies between iterations (parallel loops) a
high efficiency can be obtained.

In this way, a great research effort has been made
on parallel loop scheduling (self-scheduling). Several
self-scheduling strategies has been devised and success-
fully used in “traditional” parallel systems (MPPs and
SMPs) namely: static scheduling schemes for loops
with iterations with an homogenous workload; and dy-
namic scheduling schemes to prevent load unbalance
in heterogenous workload loops [1]. These simple self-
scheduling schemes (following the notation used in [1])
has been later extended to deal with heterogeneous
cluster architectures, considering processor speeds and
load [2].

Grid computing has emerged in the last decade as
a promising computing platform that can offer a dra-
matic increase in the number of available processing
resources that can be delivered to applications. In rela-
tion to the previous parallel systems, the Grid presents
some genuine characteristics, namely: a high degree
of heterogeneity, high fault rate and dynamic resource
availability. Therefore, an efficient Grid self-scheduling
scheme should consider these characteristics. In this
context, K. Cheng et al. [3] have proposed a two-phase
self-scheduling scheme that only takes into account the
heterogeneity of Grid CPUs.

In this work we propose a loosely-coupled self-
scheduling strategy for Computational Grids. This
new strategy presents some benefits compared with
the traditional approach followed in the literature and
establish the basis to deal with all the Grid charac-
teristics mentioned above. We also assess the impact
of Grid characteristics, which has not been previously
considered in self-scheduling. To this end, we con-
sider the simple self-scheduling schemes to distribute

the Mandelbrot set application on a slightly heteroge-
neous testbed based on the Globus Toolkit.

The organization of the paper is as follows. In Sec-
tion 2 we briefly review the self-scheduling schemes
used in this paper. Section 3 present the computa-
tional Grid environment of our research. Then, Section
4 describes a loosely-coupled implementation of simple
self-scheduling schemes in a Grid environment. In Sec-
tion 5 we present experimental results of the execution
of the Mandelbrot set application on a research testbed.
Finally, we end this paper with some conclusions.

2 Dynamic Self-Scheduling Schemes

In this work, we will focus on dynamic schedulers
because these algorithms are more suitable to heteroge-
neous environments [1]. In particular, we will study the
behavior of simple self-schedulers, also refereed as self-
scheduling loops [2]. In general, self-scheduling tech-
niques are based on the master-worker paradigm. In a
master-worker model, there is a node (master) which
dynamically assigns tasks to the rest of the worker
nodes. When a worker node ends its execution, it sends
the results to the master and requests new tasks.

In the following list we describe the most frequently
used self-scheduling schemes. Let I the total number of
iterations, Ci the iterations assigned to each processor,
and Ri the remaining number of iterations:

• Chunk Self-Scheduling (CSS). The chunk size is
fixed:

Ci = chunk with chunk ≥ 1 and Ri = Ri−1−Ci.
(1)

• Guided Self-Scheduling (GSS). The user can
choose the minimum chunk-size assigned to each
processor. The chunk size is determined by di-
viding the number of remaining iterations by the
number of available processors.

Ci =
⌈

Ri−1

p

⌉
with Ri = Ri−1 − Ci. (2)

• Trapezoid Self-Scheduling (TSS). The chunk size
is linearly decreased a given amount (D), with the
first and last chunk sizes fixed (F,L), N represents
the number of task assigned:

Ci = Ci−1 − D with D =
⌊

(F − L)
(N − 1)

⌋
and

N =
⌈

2I

F + L

⌉
. (3)

The F and L parameters can be defined by the
user or:

F =
I

2p
and L = 1. (4)

• Fixed Increase Self-Scheduling (FISS). Where X
is a user parameter and σ is the number of stages.
B represents chunk increase or ‘bump’:

Ci = Ci−1 + B with C0 =
⌊

I

Xp

⌋
and

B =
⌈

2I(1 − σ/X)
pσ(σ − 1)

⌉
and X = σ + 2 (5)

Table 1 shows the different chunk sizes (Ci) generated
by the previous self-scheduling algorithms for a prob-
lem with 5 nodes (p = 5), and I = 50000.

3 Computational Grid Environment

A Grid is a computational environment that coordi-
nates resources that are not subject to centralized con-
trol, using standard, open, general-purpose protocols
and provides nontrivial qualities of service. In general,
Grid technology is based on four layers, namely: (i)
Grid fabric, Grid resources interconnected by a hetero-
geneous network; (ii) Grid services, in our case it is
provided by Globus ToolKit [4]; (iii) High level tools,
like brokers or meta-schedulers; (iv) Grid applications,
where an API specification, such as SAGA [5] or DR-
MAA [6], is required to ease the application develop-
ment.

The Globus toolkit [4], de facto standard in Grid
technology, provides the services and libraries needed
to enable secure multiple domain operation with differ-
ent resource management systems and access policies.
Globus constitutes the Grid service layer, as it sup-
ports the submission of applications to remote hosts
by providing resource discovery, resource monitoring,
resource allocation, and job control services.

Probably one of the most important high level tools
in a computational Grid is the application scheduler.
In this research we will use the GridW ay framework [7].
GridW ay is a light-weight meta-scheduler that per-
forms job execution management and resource broker-
ing. It allows unattended, reliable, and efficient exe-
cution of jobs on heterogeneous and dynamic Grids,
see [7] for a detailed description.

Finally, MPICH-G2 [8] and DRMAA [6] are the
most used programming paradigms to develop Grid ap-
plications. MPICH-G2 is a complete implementation
of MPI-1 standard that uses the Globus Toolkit to sup-
port Grid operations. MPICH-G2 has been previously

Scheme Chunk size (Ci)

CSS(2000) 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 ...
GSS(1000) 10000 8000 6400 5120 4096 3277 2622 2097 1678 1342 1074 ...
TSS(5000,1000) 5000 4750 4500 4250 4000 3750 3500 3250 3000 2750 2500 ...
FISS 2000 2000 2000 2000 2000 3334 3334 3334 3334 3334 4668 ...

Table 1. Sample chunk sizes with 5 nodes for the CSS, GSS(min.chunk), TSS(first, last), FSS and
FISS algorithms.

used to develop several Grid applications [9, 10, 11].
These applications are generally not scalable, nor re-
liable and do not allow sharing of widely separated
resources. On the other hand, DRMAA is an API
specification to different DRMS (Distributed Resource
Management Systems), in our case GridW ay [12], and
allows to manage job submission, monitoring and con-
trol and retrieval of job status. Moreover, DRMAA
allows to develop loosely-coupled applications (defined
in Section 4) as DRMAA delegates to the DRMS the
responsibility of job execution, fault tolerance and mi-
gration.

4 Loosely-coupled loop scheduling

MPICH-G2 have been previously used to develop
the self-scheduling loops applications in a Grid environ-
ment [3]. However, these applications have three main
disadvantages, namely: all resources must be simulta-
neously allocated to begin execution of the application,
due to an implicit DUROC barrier [8]; it is necessary
to restart the self-scheduling loop when a resource fails
during the execution; and it is no possible to join new
resources to a currently running application. We will
refer these applications as tightly-coupled implementa-
tions.

This work presents the development of a loosely-
coupled approach, that implements master-worker
schema to develop self-scheduling loops. In particular,
we propose a new implementation of these algorithms
that presents the following characteristics:

• Reliability. When a resource fails, the execution
of the whole application continues, because the
worker jobs will be restarted in other resource.

• Dynamic Adaptation. The worker loops can mi-
grate to more suitable resources during the execu-
tion of the application. Furthermore, during the
execution of loosely-coupled self-scheduling loops
new resources can be used to execute the remain-
der worker loops.

• Transparency. The worker loop execution, fault
tolerance capabilities and worker loop migration
are transparent from the developer point of view,
as the implementation with DRMAA delegates
this tasks to the DRMS.

However, the main disadvantage of the DRMAA ap-
proach, compared to the MPICH-G2 socket connec-
tions, is the need for storing the partial results in sec-
ondary storage to distribute these results over Grid re-
sources. This fact may increase the total execution
time in some situations.

Figure 1 shows the method used to implement a
loosely-coupled loop scheduling. Let us considerer two
N × M matrixes, B and C, and their addition A. The
translation from the sequential implementation (dia-
gram 1 of Figure 1) to a loosely-coupled loop schedul-
ing program (diagram 2 and 3), consists of: (i) an ex-
ecutable that implements the worker loops and stores
the partial results in a file (diagram 2); (ii) a master
loop using a specific self-scheduling scheme that dis-
tributes worker loops over the Grid with DRMAA sen-
tences (diagram 3). Finally, this master loop waits for
the end of the worker jobs execution.

5 Experimental Results

In this section we analyze the execution of the
loosely-coupled loop scheduling algorithms described
previously. In particular, we consider an applica-
tion that solves the Mandelbrot set problem [13] on
the domain [−1.7, 0.8] × [−1.0, 1.0] for a window size
60000 × 50000 pixels with 6 bits per pixel (2.1 Gi-
gabytes). In these experiments, the window is di-
vided in different horizontal stripes. The size of each
stripe is defined by the self-scheduling algorithm, with
sizei = 60000 × Ci. The experiments were conducted
in the UCM research testbed, based on the pre-WS
services of the Globus Toolkit 4 [4], briefly described
in Table 2. These machines are slightly heterogeneous
to prove the functionality of self-scheduling methods

int A[N][M], B[N,M], C[N,M];
...
for(i=0; i<=N;i++)
{
 for(j=0; j<=M;j++)
 A[i][j] = B[i][j]+C[i][j]);
 write(A);
}

for(i=0; i<=N;i++)
{
 j=0;
 while(j < M)
 {
 CHUNK=chunk_calculation(self_schedulig);
 setup_job_template(&jt, CHUNK);
 /*Launch the slave loop */
 result = drmaa_run_job(job_id, jt, error);
 if (i >= N_NODES)
 drmaa_wait(DRMAA_JOB_IDS_SESSION_ANY,
 job_id, &stat, &rusage,rror);

j+=CHUNK;
 }
 read(A);
}

1. Classic C code

3. Master loop

 /*The value tstripe, bstripe and i
 are input parameters*/
 read(B);
 read(C);
 for(j=tstripe; j<=bstripe;j++)
 A[i][j] = B[i][j]+C[i][j]);
 write(A);

 2. Worker loop

Figure 1. Translation of a classic C loop to a loosely-coupled loop.

and isolate the effects caused by highly heterogeneous
systems.

The Mandelbrot set implementation is divided in
two tasks. The first task (master process) calculates
the chunk size depending of the self-scheduling scheme
and launch the worker process over the Grid. The sec-
ond task, the worker process, solves the Mandelbrot set
on a given stripe and returns the results to the mas-
ter process. The distribution on the worker processes
is not uniform, as: the chunk size differs in each node
and iteration (with the exception of the CSS scheduler)
see Table 1; and the computational workload of each
loop iteration is not uniform.

Table 3 shows the average CPU time (Tcpu), file
transfer time (Txfr), wait time in the PBS queue
(Tqueue) and the resource utilization (Ui) in the exe-
cution of six experiment sets. The resource utilization
is defined as:

Ur =
T cpu

r

Twall
where r ∈ {hydrus,ursa, cygnus,draco},

where T cpu
r is the total CPU time of all the worker

loops executed in resource r, and Twall is the wall time
of the experiment. Note also that T cpu

r does not include
the wait time (e.g. in a PBS queue) and middleware
overheads. As can be seen, resource utilization ranges
from 70% to 90% in most of the experiments. However,
for 7 nodes and CSS algorithm the resource utilization
of hydrus decreases dramatically. This is due to the

saturation of PBS system, note that the PBS queue
time is 77% of the worker CPU time. Moreover, when
the number of worker jobs is similar to the number of
nodes, and it is not multiple of it, the resource uti-
lization of some nodes also decreases (see Table 3 with
machine cygnus, GSS algorithm and 7 nodes).

The effects of previous consideration can be clearly
seen if we consider the speed-up of the application (Fig-
ure 2).

 1

 2

 3

 4

 5

 6

 7

 2 3 4 5 6 7

S
pe

ed
−

U
p

Grid Nodes

CSS

GSS

TSS

FISS

Optimum

Figure 2. Speed-Up of the loosely-coupled
loop scheduling Algorithms.

Name Model OS Speed Memory Job Mgr.

hydrus 4×Intel P4 Linux 2.6 3.2GHz 512MB PBS
ursa Intel P4 Linux 2.6 3.2GHz 512MB fork
cygnus Intel P4 Linux 2.6 2.5GHz 512MB fork
draco Intel P4 Linux 2.6 3.2GHz 512MB fork

Table 2. Characteristics of the machines in the UCM research testbed.

CPU HOST CSS GSS TSS FISS

2 hydrus 259/24/9/82% 1017/24/2/96% 375/25/3/87% 1118/24/2/96%
draco 243/22/-/86% 747/22/-/94% 385/22/-/90% 890/22/-/76%

3 hydrus (x2) 243/24/2/86% 410/23/2/76% 405/24/2/88% 668/23/2/82%
draco 254/22/-/86% 2364/22/-/98% 338/22/-/89% 678/22/-/83%

4 hydrus (x3) 266/24/6/83% 415/24/3/88% 393/24/2/89% 550/24/2/68%
draco 230/23/-/85% 818/23/-/95% 397/23/-/90% 525/23/-/66%

5 hydrus (x4) 259/25/3/84% 418/24/2/87% 432/24/3/81% 400/25/3/75%
draco 253/22/-/83% 310/22/-/87% 303/22/-/77% 493/24/-/92%

6
hydrus (x4) 247/25/5/81% 430/26/2/89% 419/38/5/73% 370/24/3/72%
draco 260/23/-/82% 255/23/-/86% 412/31/-/85% 414/22/-/91%
ursa 265/23/-/83% 249/24/-/82% 320/32/-/69% 374/24/-/83%

7

hydrus (x4) 1125/28/870/18% 320/27/3/81% 462/25/3/72% 294/26/3/73%
draco 254/23/-/54% 309/25/-/79% 245/24/-/68% 396/25/-/91%
ursa 322/23/-/57% 463/23/-/80% 1387/24/-/97% 287/26/-/66%
cygnus 259/23/-/55% 321/27/-/55% 307/26/-/43% 438/27/-/67%

Table 3. Execution results of the Mandelbrot set problem with different number of nodes and self-
scheduling algorithms: Tcpu / Txfr / Tqueue (sec) / Ui.

In general, the behavior of algorithm is correctly
adapted to the ideal speed-up, except for CSS (PBS
problem) and TSS (wrong chunk distribution of the al-
gorithm) self-scheduling schemes with 7 nodes. During
the experiments, the fault rate was 2%. We will like
to remark that in these cases has not been necessary
to restart the whole application, what would have in-
creased the total CPU time.

6 Conclusions

In this work, we have presented the implementa-
tion of loosely-coupled loop scheduling algorithms in a
Grid environment based on DRMAA standard. The
main advantages of this approach, in comparison with
the tightly-coupled implementations (eg. MPICH-G2)
are: reliability, dynamic adaptation and transparency.
We have also demonstrated how Grid characteristics,
like fault rate and local resource management system
queue time, can degrade the execution time. This fac-
tor has not been previously considered to develop dy-

namic scheduling algorithms.

References

[1] Yang, C.T., Chang, S.C.: A Parallel Loop Self-
Scheduling on Extremely Heterogeneous PC Clus-
ters. In: Proc. of the 2002 Inter. Computer Sym-
posium. (2002)

[2] Chronopoulos, A.T., Andonie, R.: A Class of
Loop Self-Scheduling for Heterogeneus Clusters.
In: Proc. 2001 IEE Int. Conference on Cluster
Computing. (2002)

[3] Cheng, K.W., Yang, C.T., Lai, C.L., Chang,
S.C.: A Parallel Loop Self-Scheduling on Grid
Computer Environments. In: Proc. of the 7th
Int. Symp. Parallel Architectures, Algorithms and
Networks. (2004)

[4] Foster, I., Kesselman, C.: Globus: A Metacom-
puting Infrastructure Toolkit. International Jour-

nal of Supercomputer Applications 11 (1997) 115–
128

[5] Merzky, A.: SAGA Strawman API. Technical
report (2005)

[6] Rajic, H., et al.: Distributed Resource Manage-
ment Application API Specification 1.0. Techni-
cal report, DRMAA Working Group – The Global
Grid Forum (2004)

[7] Huedo, E., Montero, R.S., Llorente, I.M.: A
Framework for Adaptive Execution on Grids. J.
Software – Practice and Experience (2004)

[8] Karonis, N., Toonen, B., Foster, I.: MPICH-G2:
A Grid-Enabled Implementation of the Message
Passing Interface. Parallel and Distributed Com-
puting 63 (2003) 551–563

[9] Chen, J., Taylor, V.: Mesh Partitioning for Dis-
tributed Systems. In: 7th IEEE Symp. on High
Performance Distributed Computing. (1998)

[10] Larsson, O.: Implementation and Performance
Analysis of High-Order CEM Algorithm in Paral-
lel and Distributed Environment. Technical report
(1998)

[11] Mahinthakumar, G.K., Hoffman, F.M., Hargrove,
W.W., Karonis, N.T.: Multivariate Geographic
Clustering in a Metacomputing Environment Us-
ing Globus. (1999)

[12] Herrera, J., Huedo, E., Montero, R.S., Llorente,
I.M.: Developing Grid-Aware Applications with
DRMAA on Globus-based Grids. Lecture Notes
in Computer Science 3149 (2004) 429–435

[13] Mandelbrot, B.B.: Fractal Geometry of Nature.
W.H. Freeman & Co. (1988)

