
Journal of Systems Architecture 52 (2006) 727–736

www.elsevier.com/locate/sysarc
Evaluating the reliability of computational grids
from the end user’s point of view q

Eduardo Huedo *, Rubén S. Montero, Ignacio M. Llorente

Departamento de Arquitectura de Computadores y Automática, Facultad de Informática,
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Abstract

Reliability, in terms of Grid component fault tolerance and minimum quality of service, is an important aspect that has
to be addressed to foster Grid technology adoption. Software reliability is critically important in today’s integrated and
distributed systems, as is often the weak link in system performance. In general, reliability is difficult to measure, and spe-
cially in Grid environments, where evaluation methodologies are novel and controversial matters. This paper describes a
straightforward procedure to analyze the reliability of computational grids from the viewpoint of an end user. The proce-
dure is illustrated in the evaluation of a research Grid infrastructure based on Globus basic services and the GridWay
meta-scheduler. The GridWay support for fault tolerance is also demonstrated in a production-level environment. Results
show that GridWay is a reliable workload management tool for dynamic and faulty Grid environments. Transparently to
the end user, GridWay is able to detect and recover from any of the Grid element failure, outage and saturation conditions
specified by the reliability analysis procedure.
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1. Introduction

The key aspect that differentiates Grid comput-
ing from other distributed computing paradigms is
site autonomy. Grid technology allows the intercon-
nection of resources scattered across several admin-
istrative domains, each with its own security policy
and distributed resource management system. Con-
sequently, site autonomy generates outages of
resource and network elements due to local admin-
istration decisions (e.g. scheduled switch-off to per-
form maintenance tasks). This means that
resources shared within a virtual organization can
.
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be added or removed continuously. Moreover, as
Grid resources belong to different administrative
domains; once a job is submitted, it can be freely
cancelled or suspended by the resource owner.

On the other hand, the performance offered
by Grid infrastructure components may change
dynamically during the run-time of an application.
Grid users access resources that are being exploited
by other Grid users, as well as by internal users.
This fact may cause, where local job managers does
not guarantee exclusive access to compute
resources, that initially idle hosts become saturated,
and vice versa. Moreover, in dedicated batch sys-
tems, the saturation of the resource may increase
the queue wait time to an unacceptable value. We
should also consider that most of Grid infrastruc-
tures use shared public networks, mainly research
and academic networks, to interconnect resources.

Grid component outage (due to site autonomy)
and performance variability (due to resource shar-
ing) are seen by the end user as a failure condition
or a quality of service (QoS) degradation, respec-
tively. These conditions together with real failures,
like system crash or network disconnection, make
failures the rule rather than the exception in Grid
environments. Therefore, one of the most valuable
characteristics of Grid tools, apart from the perfor-
mance they can achieve, is fault resilience. In this
sense, reliability in a grid is considered by the end
user as Grid component fault tolerance and
minimum QoS achievement. We foresee that the
reliability concern will be more and more critical
in the expansion and extended use of Grid technol-
ogy [1].

Evaluation of Grid infrastructures is a novel,
controversial and difficult task. The capabilities of
a computational grid, made up of heterogeneous
components with dynamic characteristics, are usu-
ally provided by three layers [2]: Grid fabric (worker
nodes, operating systems, local schedulers or net-
work links), core Grid middleware (job submission,
resource discovery and monitoring, or data manage-
ment services) and user-level Grid middleware
(meta-schedulers, resource brokers or Grid por-
tals.). Therefore, we must take into account that
the evaluation of a Grid infrastructure should ana-
lyze the coordinated use of all its components to
execute jobs with representative execution profiles.
It is clear that reliability must be a concern in the
development of services on each layer in a Grid
infrastructure. However, outages, failures and per-
formance contract violations are frequent phenom-
ena in spite of the taken precautions. Therefore,
user-level Grid middleware is the final responsi-
ble for providing detection and recovery strategies
to meet the reliability requirements of the end
user.

Several authors have previously addressed reli-
ability in Grids. For example, Hwang et al. [3] pres-
ent a failure handling system based on workflows.
The drawback of their approach is that application
code must be changed to deliver events like task
start/end or the occurrence of user exceptions. Jin
et al. [4] propose a framework for the adaptive
deployment of failure detectors and, based on it, a
policy-based failure handling mechanism to choose
the appropriate failure recovery method. Kola et al.
[5] provide a classification of faults in large distrib-
uted systems (with the main focus on grids). Finally,
Lanferman et al. [6] first introduced migration as a
technique for obtaining fault tolerance in grids.
Other works have proposed solutions for applica-
tions composed of communicating tasks [7–9].

The aim of this paper is, firstly, to present a pro-
cedure which allows the evaluation of the reliability
of a computational Grid environment from the end
user’s point of view; and, secondly, to apply it to
evaluate a Grid environment based on Globus basic
services and the GridWay1 meta-scheduler. In Sec-
tion 2, we describe the reliability analysis procedure.
Then, the functionality of GridWay and its fault tol-
erance features are described in Sections 3 and 4,
respectively. In Section 5, we show the application
of the procedure to evaluate the reliability of a
research testbed, and we present several experiments
performed on a production-level Grid infrastruc-
ture. Finally, Section 6 presents the main conclu-
sions of our work.

2. A procedure to evaluate grid reliability

Computational Grid environments are difficult to
efficiently harness due to their heterogeneous nat-
ure, the unpredictable changing performance and
the frequent failure and outage conditions. Adap-
tive scheduling and execution are some of the tech-
niques proposed in the literature [10–13] to achieve
a reasonable degree of application performance and
fault tolerance.

Therefore, a suitable methodology for reliability
evaluation should help to determine the fault toler-
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ance and dynamic adaptation capabilities of the
Grid environment. However, such functionality is
difficult to measure. To this end, we define a reliable
Grid environment as the one in which a job can,
transparently to the user, continue its execution
(at least from the beginning) in other resource when
each one of the following conditions of failure and
loss of QoS takes place [14]:

• Job related:
– Job cancellation (failure): A Job could be

cancelled for several reasons, for example by
the local resource management system when
it exceeds the wall time limit, or by the system
administrator to preserve system performance.

– Job suspension (QoS loss): Higher priority
jobs continuously entering the system could
prevent the execution of the Grid job. Equally,
the system administrator or the local resource
manager could freely hold a waiting job, pre-
venting its execution.
• System related:
– System crash (failure): Grid resources could

unpredictably fail. These failures comprise
hardware, base software, and Grid middle-
ware components. Moreover, system adminis-
trators are freely to shutdown their resources,
for example, due to local site maintenance.
Moreover, failures in the client system should
be also considered.

– System saturation (QoS loss): Resource load
changes dynamically, since Grid resources
are shared between other Grid and non-Grid
users (possibly with higher priority).
• Network related:
– Network disconnection (failure): Grid connec-

tions could unpredictably fail. Moreover, sys-
tem administrators are freely to disconnect
their resources, for example, due to local site
maintenance.

– Network saturation (QoS loss): Network traf-
fic varies dynamically, since Grid resources are
in general connected through public, non-ded-
icated, networks.

Therefore, the reliability assessment process consists
on artificially generating the six failure conditions
proposed above.

Application-related failures must be handled at
the application level, and therefore they are out
of the scope of this procedure. This failures com-
prise design or coding errors (memory leaks or
numerical exceptions) and other errors caused
by shared access (wrong access permissions, full
disks or memory outages). In this sense, it is
important that the underlying middleware should
provide information about the exit status of each
job.
3. The GridWay meta-scheduler

The Globus Toolkit has become a de facto stan-
dard in Grid computing [15]. Globus services allow
secure and transparent access to resources across
multiple administrative domains, and serve as build-
ing blocks to implement the stages of Grid schedul-
ing [16]. However, the user is responsible for
manually performing all the submission steps in
order to achieve any functionality. Moreover, the
Globus Toolkit does not provide any native support
for job migration and therefore for adaptive execu-

tion, a key aspect to achieve reliability in a grid as
discussed in the previous section.

To overcome these limitations, we have devel-
oped an experimental framework that allows an eas-
ier and more efficient execution of jobs on a
dynamic Grid environment in a ‘‘submit & forget’’
fashion. The core of the GridWay meta-scheduler
[17] is a personal submission agent that performs
all scheduling stages and watches over the correct
and efficient execution of jobs on Globus-based
grids. Adaptation to changing conditions is
achieved by both adaptive scheduling and adaptive

execution. Once the job is initially allocated, it is
rescheduled when one of the following circum-
stances occurs:

(1) Grid related:

• A ‘‘better’’ resource is discovered (opportu-

nistic migration).
• The remote resource or its network connec-

tion fails (fail-over migration).
• The submitted job is cancelled or suspended

by the resource administrator or the local
resource management system.
(2) Application related:

• Performance degradation or performance

contract violation is detected in terms of
application intrinsic metrics (self-monitor-

ing application).
• The resource requirements or preferences

of the application change (self-migrating
application).
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Job execution is performed in three separated
steps by the following modules:

(1) Prolog: It prepares the remote system by creat-
ing a experiment directory and transferring the
input files from the client.

(2) Wrapper: It executes the actual job and
obtains its exit status code.

(3) Epilog: It finalizes the remote system by trans-
ferring the output files back to the client and
cleaning up the experiment directory.

Migration is commonly implemented by restart-
ing the job on the new candidate host, therefore
the job should generate restart files at regular inter-
vals in order to restart execution from a given point.
However, for some application domains the cost of
generating and transferring restart files could be
greater than the saving in compute time due to
checkpointing [18]. Hence, if the checkpointing files
are not provided the job should be restarted from
the beginning.

The rescheduling reason is evaluated to decide if
the migration is feasible and worthwhile. Some rea-
sons, like job cancellation or failure, make the
migration process immediately start, even if the
new host presents lower rank than the current
one. Other reasons, like new resource discovery,
make the migration process start only if the new
selected host presents a higher enough rank. In this
case, the time to finalize and file transfer costs [18]
must be considered to evaluate if the migration is
worthwhile.

When a migration order is finally granted, the
wrapper is cancelled (if it is still running), then the
prolog is submitted to the new candidate resource,
preparing it and transferring all the needed files to
it, including the restart files from the old
resource. After that, the epilog is submitted to the
old resource (if it is still available), but no output file
staging is performed, it only cleans up the remote
system. And finally, the wrapper is submitted to
the new candidate resource.

GridWay fully implements the Distrib-
uted Resource Management Application API
(DRMAA)2 [19] standard proposed by the Global
Grid Forum.3
2 www.drmaa.org
3 www.ggf.org.
4. GridWay support for fault tolerance and

quality of service

GridWay provides the application with the fault
detection capabilities needed in a Grid environment,
by:

• Handling the Globus GRAM (Grid Resource
Allocation and Management) job manager call-
backs [20]. The GRAM callbacks notify sub-
mission failures that include connection,
authentication, authorization, RSL (Resource
Specification Language) parsing, executable or
input staging, credential expiration, among
others.

• Periodically probing the Globus job manager [20].
If the job manager does not respond after a given
number of tries, then a resource or network fail-
ure is assumed.

• Parsing the standard output of the prolog, wrap-
per and epilog executables. In the case of the
wrapper, this is also useful to capture the job exit
code, which is used to determine whether the job
was successfully executed or not. If the job exit
code is not set, the job was prematurely termi-
nated, so it failed or was intentionally cancelled.

When an unrecoverable failure is detected, Grid-
Way retries the submission of prolog, wrapper or
epilog a number of times specified by the user. If
the failure persists, GridWay performs an action
chosen by the user among two possibilities: stop
the job for manually resuming it later, or automat-
ically generate a rescheduling event to migrate the
job.

Application performance slowdown is detected
by GridWay by means of two mechanisms:

• A performance evaluator is periodically executed
at each monitoring interval to evaluate a resched-
uling condition. Different strategies could be
implemented, from the simplest one based on
querying the Grid information system about
workload parameters to more advanced strate-
gies based on detection of performance contract
violations [21]. A mechanism to deal with appli-
cation own metrics is provided since the files pro-
cessed by the performance evaluator could be
dynamically generated by the running job. The
rescheduling condition verified by the perfor-

mance evaluator could be based on the perfor-
mance history using advanced methods like

http://www.drmaa.org
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fuzzy logic, or comparing the performance with
the initial performance attained, or a base
performance.

• A running job could be temporally suspended by
the resource administrator or by the local queue
scheduler on the remote resource. The submis-
sion agent takes count of the overall suspension

time of its job and requests a rescheduling if it
exceeds a given threshold. Notice that the maxi-

mum suspension time threshold is only effective
on queue-based resource managers.

The job exit conditions can be checked through the
drmaa_wif*() routines included in the DRMAA
interface [19], which is fully implemented by
GridWay, and so the appropriate corrective action
can be undertaken if application-related failures
occur. Regarding failures in the client system, Grid-
Way persistently saves the status of each submitted
job and is able to recover each job’s contact and
life-cycle.

5. Experiences

In this section we evaluate the reliability of two
testbeds based on Globus pre-Web Services compo-
nents, according to the criteria described in Section
2. First, we consider a small-scaled, controlled test-
bed, to easily generate failure conditions. Then, we
perform large-scale experiments over a real, produc-
tion-level, testbed.

Both testbeds are based on an ‘‘hourglass’’
model, where clients have access to a wide range
of services provided through a limited and standard-
ized set of protocols and interfaces. In particular,
Grid resources only provide Globus basic services
for security, job allocation, discovery, monitoring,
and data transfer. The workload management func-
tionality is provided by GridWay, acting as user-
level Grid middleware. Note that there is no need
for specific migration or fault tolerance Grid-wide
services. This approach considerably simplifies Grid
deployment and provides a straightforward
resource sharing, as resources are accessed by using
de facto standard protocols and interfaces.

In the first set of experiments, the six failure con-
ditions proposed in Section 2 were artificially gener-
ated as follows:

• Job related:
– Job cancellation (failure): Several running

jobs were cancelled by using the qdel
command on resources managed with PBS
or SGE. GridWay detected the job can-
cellation as the job exit code was not
specified.

– Job suspension (QoS loss): Several running
jobs were suspended by using the qhold com-
mand on resources managed with PBS or
SGE. Job suspension was detected when the
job remained in the SUSPEND state of the
Globus GRAM module longer than the given
threshold specified by the user.
• System related:
– System crash (failure): During the execution of

a job, the resource was shut down. GridWay
was able to detect the failure when the polling
of the job failed.

– System saturation (QoS loss): During the exe-
cution of a job, the resource was saturated
with an artificially generated load. GridWay
was able to detect the performance degrada-
tion suffered by the application through its
performance profile, which reflected a
reduction in the performance metric provided
by the application. This case is described in
more detail below.
• Network related:
– Network disconnection (failure): During the

execution of a job, the resource was discon-
nected from the network by tugging on the
wire. Again, GridWay detected the failure
when the polling of the job failed.

– Network saturation (QoS loss): Network
saturation is only considered if it causes
polling failures, so the behavior would be the
same as in a system crash. Nevertheless,
GridWay uses network status information
to rank resources during the scheduling
process [18].

GridWay transparently handles all the described
failures, resulting, independently on the failure nat-
ure, in the rescheduling of the job to other resource
from the last available checkpoint [17].

In order to better illustrate the procedure
described above, we consider in detail the resource
failure due to a system saturation, which in fact is
the most complex failure condition to handle. The
job is equipped with a monitor to record the overall
system load and the percentage of CPU devoted to
the job itself. This information is used by the perfor-

mance evaluator module to detect performance
slowdowns.



Fig. 1. Execution profile (top) and CPU load on hydrus (bottom) when a migration is performed due to a performance degradation.
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Let us consider two machines of the testbed
hydrus and cygnus. A job is initially submitted to
hydrus and starts executing. At time step 00:14 an
artificial load is introduced in the system, which
reduces the effective performance received by the
job below the minimum established by the user
(50% of total CPU load, time step 00:24). GridWay
detects this QoS loss condition at time step 01:28,
and reschedules the job on cygnus. Fig. 1 shows
the execution profile of this job.

In order to analyze the reliability of the environ-
ment in a real-life situation, we have performed a
large-scale experiment with a Bioinformatics appli-
cation. Each experiment consists of the execution
of a protein structure prediction algorithm over a
family of 80 orthologous proteins (proteins per-
forming the same function in different organisms),
where each protein was analyzed in a separate job
[22].

Five experiments were conducted over a joint
IRISGrid4 and EGEE5 testbed composed of 13
Spanish sites, and a total of 528 CPUs. The testbed
is described in Table 1. All sites were connected by
means of the Spanish Research and Education Net-
work, RedIRIS,6 as seen in Fig. 2. The testbed
results in a very heterogeneous infrastructure, since
it presents several middleware (different versions of
LCG-2 and Globus), architectures (Alpha, Intel

http://www.irisgrid.es
http://www.eu-egee.org
http://www.rediris.es


Table 1
IRISGrid and EGEE resources contributed to the experiment

Testbed Site Resource Processor Speed Nodes RM

IRISGrid RedIRIS heraclito Intel Celeron 700 MHz 1 Fork
platon 2 · Intel PIII 1.4 GHz 1 Fork
descartes Intel P4 2.6 GHz 1 Fork
socrates Intel P4 2.6 GHz 1 Fork

DACYA-UCM aquila Intel PIII 700 MHz 1 Fork
cepheus Intel PIII 600 MHz 1 Fork
cygnus Intel P4 2.5 GHz 1 Fork
hydrus Intel P4 2.5 GHz 1 Fork

LCASAT-CAB babieca Alpha EV67 450 MHz 30 PBS
CESGA bw Intel P4 3.2 GHz 80 PBS
IMEDEA llucalcari AMD Athlon 800 MHz 4 PBS
DIF-UM augusto 4 · Intel Xeon (HT) 2.4 GHz 1 Fork

caligula 4 · Intel Xeon (HT) 2.4 GHz 1 Fork
claudio 4 · Intel Xeon (HT) 2.4 GHz 1 Fork

BIFI-UNIZAR lxsrv1 Intel P4 3.2 GHz 50 SGE

EGEE LCASAT-CAB ce00 Intel P4 2.8 GHz 8 PBS
CNB mallarme 2 · Intel Xeon 2.0 GHz 8 PBS
CIEMAT lcg02 Intel P4 2.8 GHz 6 PBS
FT-UAM grid003 Intel P4 2.6 GHz 49 PBS
IFCA gtbcg12 2 · Intel PIII 1.3 GHz 34 PBS
IFIC lcg2ce AMD Athlon 1.2 GHz 117 PBS
PIC lcgce02 Intel P4 2.8 GHz 69 PBS

Fig. 2. Geographical distribution and interconnection network of sites.
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and AMD), processor speeds (from 450 MHz to
3.2 GHz), resource managers (PBS, SGE and fork),
and network links. In order to not saturate the
whole testbed, only a maximum of four CPUs were
simultaneously used on each resource, so a maxi-
mum of 64 CPUs were used.

During the whole time employed for each exper-
iment, some of the job executions failed or were



Fig. 3. Distribution of total successful executions, failure conditions and QoS loss conditions across sites.
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suspended for a long time. GridWay detected these
failure and QoS loss conditions, and migrated those
jobs to other resources. Fig. 3 shows the distribution
of total successful executions, failure conditions (job
cancellation, system crash or network disconnec-
tion) and QoS loss conditions (job suspension)
across sites.

6. Conclusions

We have proposed a reliability analysis proce-
dure for computational Grid environments from
the end user’s point of view. The procedure is based
on a set of probes, which require the user-level Grid
middleware to incorporate fault tolerance and
dynamic adaptation capabilities. We have illus-
trated the procedure in the evaluation of a research
Grid environment based on Globus basic services
and the GridWay meta-scheduler.

Moreover, we have demonstrated the GridWay
support for fault tolerance in a production-level
environment with a real application. Results show
that a reasonable level of reliability for the end user
can be attained through the GridWay meta-sched-
uler over any Globus-based infrastructure. More-
over, the experiences show that failures and
outages of resources are frequent phenomena, even
in production-level Grid environments.
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