
On the use of clouds for grid resource provisioningI

Constantino Vázquez, Eduardo Huedo, Rubén S. Montero, Ignacio M. Llorente

Departamento de Arquitectura de Computadores y Automática
Facultad de Informática

Universidad Complutense de Madrid, Spain
September 27th, 2010

Abstract

Cloud computing is being built on top of established grid technology concepts. On the other hand, it is also true
that cloud computing has much to offer to grid infrastructures. The aim of this paper is to provide the ability to build
arbitrary complex grid infrastructures able to sustain the demand required by any given service, taking advantage of
the pay-per-use model and the seemingly unlimited capacity of the cloud computing paradigm. It addresses mechanisms
that potentially can be used to meet a given quality of service or satisfy peak demands this service may have. These
mechanisms imply the elastic growth of the grid infrastructure making use of cloud providers, regardless of whether
they are commercial, like Amazon EC2 and GoGrid, or scientific, like Globus Nimbus. This technology of dynamic
provisioning is demonstrated in an experiment, aimed to show the overheads caused in the process of offloading jobs to
resources created in the cloud.

Keywords: grid, cloud, adaptable architectures, automation, dynamic provision

1. Introduction

Cloud computing was arguably first popularized in 2006
by Amazon’s Elastic Compute Cloud, which started offer-
ing virtual machines (VMs) for $0.10/hour using both a
simple web interface and a programmer-friendly API. Al-
though not the first to propose a utility computing model,
Amazon EC2 contributed to the popularization of the In-
frastructure as a Service (IaaS) paradigm, which became
closely tied to the notion of cloud computing. An IaaS
cloud enables on-demand provisioning of computational
resources, in the form of VMs deployed in a cloud provider’s
datacenter (such as Amazon’s), minimizing or even elim-
inating associated capital costs for cloud consumers, al-
lowing capacity to be added or removed from their IT in-
frastructure in order to meet peak or fluctuating service
demands, while only paying for the actual capacity used.

Over time, an ecosystem of providers, users, and tech-
nologies has coalesced around this IaaS cloud model. More
IaaS cloud providers, such as GoGrid, FlexiScale, and Elas-
ticHosts have emerged. A growing number of companies

IThis research was supported by Consejeŕıa de Educación de
la Comunidad de Madrid, Fondo Europeo de Desarrollo Regional
(FEDER) and Fondo Social Europeo (FSE), through MEDIANET
Research Program S2009/TIC-1468, by Ministerio de Ciencia e In-
novación, through the research grant TIN2009-07146, and by the
European Union through the research grant RESERVOIR Contract
Number 215605

Email addresses: tinova@fdi.ucm.es (Constantino Vázquez),
ehuedo@fdi.ucm.es (Eduardo Huedo), rubensm@dacya.ucm.es
(Rubén S. Montero), llorente@dacya.ucm.es (Ignacio M. Llorente)

base their IT strategy on cloud-based resources, spending
little or no capital to manage their own IT infrastructure.
Other providers offer products that facilitate working with
IaaS clouds, such as rPath’s rBuilder, which allows dy-
namic creation of software environments to run on a cloud.

In general, an IaaS cloud consists of three main compo-
nents, namely: a virtualization layer on top of the physical
resources including network, storage and compute; the vir-
tual infrastructure manager (VIM) that control and moni-
tor the VMs over the distributed set of physical resources;
and a cloud interface that provides the users with a simple
abstraction to manage VMs. In recent years a constella-
tion of technologies that provide one or more of these com-
ponents have emerged. Therefore, a variety of hypervisors
have been developed and greatly improved, most notably
KVM, Xen and VMWare. Also, several VIM technolo-
gies that cover the functionality outlined above have ap-
peared, like Platform VM Orchestrator, VMware DRS, or
Ovirt. On the other hand, projects like Globus Nimbus1,
Eucalyptus2 or OpenNebula3, or products like VMware
vSphere, that can be termed cloud toolkits, can be used to
transform existing infrastructure into an IaaS cloud with
cloud-like interfaces.

Cloud computing has emerged as a very promising paradigm
to simplify and improve the management of current IT
infrastructures of any kind and, in particular, grid ones.

1http://www.nimbusproject.org
2http://open.eucalyptus.com
3http://opennebula.org

Preprint submitted to Future Generation Computer Systems September 27, 2010

Clouds, in their IaaS form, have opened up avenues in
this area to ease the maintenance, operation and use of
grid sites, and to explore new resource sharing models that
could simplify in some cases the porting and development
of grid applications. The first works about the joint use
of clouds and grids are exploring two main approaches,
namely:

• The use of virtual machines and clouds as an effective
way to provide grid users with custom execution en-
vironments. Therefore the same grid site can easily
support Virtual Organizations (VOs) with different
(or conflicting) configurations.

• The access to grid resources in a cloud-way. So, the
users will access raw computing capacity by-passing
the classical grid middleware stack. This approach
is also being considered as a natural way to attract
business users to our current e-infrastructures.

The problem we are trying to address in this paper is
the necessity to attend fluctuating and peak demands in
high performance computing. For instance, a supercom-
puting center is subject to this needs, since projects can
demand resources punctually for experiments, and they
can do so even simultaneously. Moreover, meeting a Ser-
vice Level Agreement (SLA) defining a Quality of Service
(QoS) with the center’s available resources can be chal-
lenging at certain times. The logical provisioning model
will be to use the local infrastructure to attend all the ex-
isting demand, if possible (i.e., using their enterprise grid).
If that is not enough, the excess load can be delegated to a
partner grid, with which a previous arrangement has been
made. This partner grid does not need to provide the same
interface as the enterprise grid, but still a single point of
access is desirable to the whole federated infrastructure.
If the computing demand still overflows the existing re-
sources, the center will need to use a cloud provider to
perform temporary increase in its computing power. A
unified point of access is even valuable as more heteroge-
nous resources are added to the grid infrastructure.

In this paper will show a framework for monitoring ser-
vice capacity and for growing grid infrastructures when it
comes close to saturation, using cloud providers like Ama-
zon EC24 and GoGrid5 (commercial) or Globus Nimbus6

(scientific); and we will show empirical data on an exper-
iment showing this dynamic growth. This will provide
the necessary components to build a grid infrastructure
with a single point of access that can be adapted as in
the aforementioned though experiment of the supercom-
puting center. One interesting characteristic of using the
virtualization that conform clouds is the ability to provide
resources with certain characteristics, that is, particular

4http://www.amazon.com/ec2
5http://www.gogrid.com
6http://workspace.globus.org

software libraries or specific configuration can be asked for
in the requested virtual machines (VMs) to better fulfill
the demands of the grid infrastructure.

The aim of this paper is to contribute with a solu-
tion to the challenge of the dynamic provision of resources
using cloud providers. The structure of this paper is as
follows. Section 2 references work related to this paper,
while Section 3 unfolds a general architecture of the solu-
tion for the desired adapting grid infrastructure. Section 4
presents a solution to dynamically grow an existing grid in-
frastructure using resources from cloud providers. Finally,
Section 5 states plans for future work and summarizes the
conclusions of this paper.

2. Related Work

In the last decade we have witnessed the consolidation
of several transcontinental grid infrastructures that have
achieved unseen levels of resource sharing. In spite of this
success, current grids suffer from several obstacles that
limit their efficiency, namely:

• An increase in the cost and length of the application
development and porting cycle. New applications
have to be tested in a great variety of environments
where the developers have limited configuration ca-
pabilities.

• A limitation on the effective number of resources
available to each application. Usually different VOs
require different software configurations, so an ap-
plication can be only executed on those sites that
support the associated VO. Moreover, the resources
devoted to each VO within a site are usually static
and cannot be adapted to the VO’s workload.

• An increase in the operational cost of the infrastruc-
ture. The deployment, maintenance and distribution
of different configurations requires specialized, time
consuming and error prone procedures. Even worse,
new organizations joining a grid infrastructure need
to install and configure an ever-growing middleware
stack.

This situation often leads to a struggle between the
users, who need more control on their execution environ-
ments, and grid operators, who want to limit the hetero-
geneity of the infrastructure. As a result several alterna-
tives to reconcile both positions have been explored in the
past. For example, the SoftEnv project7 is a software en-
vironment configuration system that allows the users to
define the applications and libraries they need. Another
common solution is to use a custom software stack on top
of the existing middleware layer, usually referred as pilot-
jobs. For example, the MyCluster Project [1] creates a

7http://www.teragrid.org/userinfo/softenv

2

Condor or Sun Grid Engine (SGE) cluster on top of Tera-
Grid services; and similarly over other middleware we may
cite: DIRAC [2], glideinWMS [3], PanDa8 or the Falkon
system [4]. These approaches essentially shifts the scala-
bility issues from the application to the overlaid software
layer, whereas the proposed solution transparently scales
both the application and the computational cluster.

The idea of a virtual cluster which dynamically adapts
its size to the workload is not new. It can seen being
applied for instance in the cluster management software
called COD (Cluster On Demand) [5], which dynamically
allocates servers from a common pool to multiple virtual
clusters. Although the goal is similar, the approach is com-
pletely different. COD worker nodes employ NFS to mount
different software configurations. Similarly, the VIOclus-
ter [6] project enables dynamically adjusting the capacity
of a computing cluster by sharing resources between peer
domains.

Another area explored nowadays is the use of the exist-
ing grid infrastructure to build autonomic clouds [7]. This
is achieved by creating virtual environments, with their
associated benefits like flexibility and adaptation, across
multiple physical domains, using a decentralized private
overlay network system called IPOP (IP over P2P). In this
fashion, a massive number of grid infrastructure could be
turned into adaptable clouds in a non disruptive manner
for the existing grid services, although they will be suitable
for serving high throughput, high latency tolerant services.

However the most promising technology to provide VO
with custom execution environments is virtualization. The
dramatic performance improvements in hypervisor tech-
nologies made possible to experiment with virtual ma-
chines (VM) as basic building blocks for computational
platforms. Several studies [8, 9] reveal that the virtual-
ization layer has no significant impact on the performance
of memory and CPU-intensive applications for HPC clus-
ters. The first works in this area integrated resource man-
agement systems with VMs to provide custom execution
environments on a per-job basis. For example Dynamic
Virtual Clustering [10] and XGE [11] for MOAB and SGE
job managers respectively. These approaches only over-
come the configuration limitation of physical resources be-
cause VMs are bounded to a given resource and only exist
during job execution. A similar approach has been imple-
mented [12] at the grid level using the Globus GridWay
Metascheduler. GridWay allows the definition of an op-
tional phase before the actual execution phase to perform
advanced job configuration routines. In this phase, the
availability of the requested VM image in the cluster node
is checked, transferring it from a GridFTP repository if
needed. Then, in the execution phase, a script starts or
restores the VM on a worker node and waits for its activa-
tion by periodically probing its services, and executes the
user program after the VM is ready, the program copies

8https://twiki.cern.ch/twiki/bin/view/Atlas/Panda

all the input files needed to the VM, and executes the
user program. This strategy does not require additional
middleware to be deployed and is not tied to a given virtu-
alization technology. However, since the underlying local
resource management system is not aware of the nature of
the job itself, some of the potential benefits offered by the
virtualization technology (e.g.server consolidation) are not
fully exploited.

More general approaches involve the use of virtual ma-
chines as workload units, which implies the change in paradigm
from building grids out of physical resources to virtualized
ones. For example, the VIOLIN [13] project proposes a
novel alternative to application-level overlays based on vir-
tual and isolated networks created on top of an overlay in-
frastructure. Also VMPlant service [14] provides the auto-
mated configuration and creation of VMs that can be sub-
sequently cloned and instantiated to provide homogeneous
execution environments across distributed grid resources.
The InterGrid system uses as well VMs as building blocks
to construct execution environments that span multiple
computing sites [15]. Such environments can be created
by deploying VMs on different types of resources, like lo-
cal data centers, grid infrastructures or cloud providers.
InterGrid uses OpenNebula as a component for deploying
VMs on a local infrastructure. On the other hand, the
In-VIGO [16] project adds some virtualization layers to
the classical grid model, to enable the creation of dynamic
pools of virtual resources for application-specific grid com-
puting. Also in this line of work, several studies have ex-
plored the use of virtual machines to provide custom (VO-
specific) cluster environments for grid computing. In this
case, the clusters are usually completely build up of virtu-
alized resources, as in the Globus Nimbus project [17], or
the Virtual Organization Clusters (VOC) [18]. The latter
allows, by means of real-time monitoring of LRMS queues,
to launch VO-specific instances of Virtual Machines in or-
der to serve the jobs belonging to the Virtual Organiza-
tion that is in need of computing power. Once the jobs are
completed, the Virtual Machines are powered down so the
physical resources can be re-claimed. Aligned with this re-
search direction, our research group has explored a hybrid
model, so the cluster combines physical, virtualized and
cloud resources [19].

It is important to note that the previous works also
highlight that the use of virtualization in grid environ-
ments can greatly improve the efficiency, flexibility and
sustainability of current productions grids. Not only by
extending the classical benefits of VMs for constructing
cluster, e.g. consolidation or rapid provisioning of re-
sources [20, 21]; but also grid-specific benefits, e.g. support
to multiple VOs, isolation of workloads and the encapsu-
lation of services. Some EU projects like StratusLab9 are
studying a cloud-like provisioning model for grid-sites. In
this way, a grid site exposes a typical cloud interface to

9http://www.stratuslab.eu

3

instantiate and control virtual machines. This would al-
low accessing grid computing resources as cloud providers,
complementing the existing grid middleware since the aim
is for the cloud layer to be fully transparent to the layers
above, and thus effectively taking benefit from the adapt-
ability of service provisioning given by clouds applied to
the batch processing goodness of grid infrastructures.

Our approach uses the concept of a dynamically adapt-
ing grid infrastructure, but more aligned with the concept
of a Service Manager like Hedeby10, although using VMs
with specific configurations rather than configuring phys-
ical servers. In this aspect, our solution is similar to that
provided by RightScale11, but it differs from it since it
is not a completely virtualized solution, but rather a way
to extend a physical infrastructure by the punctual use of
virtualized resources.

Not just the ability to fire VMs is enough for grid cloud-
bursting, it is also crucial the ability of the grid infrastruc-
ture to federate with other resources. For this, we used the
GridWay metascheduler to architect this solution. It fea-
tures a modular design, with adapters (Middleware Access
Drivers in GridWay speak) that enables interoperation of
different grid middleware stacks through the metasched-
uler, therefore making federation of grid resources feasi-
ble. This is explored in the work presented in [22], where
adapters are used to access simultaneously grid infrastruc-
tures exposing different flavors of the globus grid middle-
ware (pre Web Services and Web Services).Moreover, it
can integrate resources being run by a local resource man-
agement system (LRMS) to the existing grid infrastructure
cluster or it even has the potential to integrate with single
computers via SSH.

3. Architecture

Dynamic provisioning poses various problems. One
problem in this field is the importance of interoperability,
i.e., being able to grow using any type of given resource,
independently of what interface may be offering. Another
problem is answering the question of when this dynamic
growth is necessary and how to actually perform it. An
even third issue can be the enforcement of a budget on this
decision, taking into account expected CPU and network
usage.

In this section, these problems are addressed by means
of a grid infrastructure that can be flexibly built, that is
aware of its load, featuring a single point of access and that
can incorporate a new resource temporarily in an auto-
matic fashion to satisfy heavy demands. Figure 1 sketches
an architecture of such a solution. We can see that one of
the building blocks is the GridWay metascheduler.

The flexible architecture of this metascheduler allows
the use of adapters. Although sharing the same interfaces

10http://hedeby.sunsource.net
11http://www.rightscale.com

GridWay
Meta-

scheduler

GT
4.0.x gLite

Service
Manager

Node

Node

GT
4.2.x

Node

Node Node

Node

GT
4.2.x

Node

Cloud A

Cloud B

Figure 1: Architecture for an elastic grid infrastructure.

is the ideal way to achieve interoperation, sometimes there
are different middlewares deployed in the sites to be fed-
erated, and it is unfeasible to unify them for a variety of
reasons (politics, time constraints or ongoing migration or
upgrades). This can be seen as the consequence of not hav-
ing an accepted standard, and therefore, lack of interop-
erability. One possible solution to federate these different
sites is to build a portal that uses different components (to
submit jobs, gather information, transfer files, etc) to in-
terface these sites. These components are designed specif-
ically for a particular middleware stack or even version,
and we can call them adapters.

GridWay already has a number of adapters (MADs),
that enable access to different production grid infrastruc-
tures. Moreover, it also provides SSH MADs, so access
to local resources can be achieved with decreased over-
head, avoiding the need to have installed and configured
in the nodes any grid software as, for instance, the Globus
Toolkit.

Having described the federation approach, lets see the
proposed architecture for dynamic provisioning, whose prin-
cipal component is the the Service Manager. This compo-
nent is used to monitor the GridWay metascheduler, and
when the load of the system exceeds a threshold, detected
using heuristics, it is responsible to grow the available grid
infrastructure using specific adapters to access different
cloud providers. This growth can be accomplished in two
ways. The first one is by requesting a number (calculated
with the aid of said heuristics) of single hosts. These need
to have a previously defined software configuration that
will then help them enroll in the available grid infrastruc-
ture. This corresponds to the use of Cloud A in Figure 1.

Another possibility is to deploy a full virtualized clus-
ter, with a front-end controlling a number of slave nodes.

4

This front-end can then enroll itself in the existing grid in-
frastructure, adding its capacity. The GridWay metasched-
uler features mechanisms to dynamically discover new hosts
or sites which can be used for this purpose. This corre-
sponds to the use of Cloud B in the figure.

Therefore, the provisioning model we envision is twofold.
The first mode adds one single computing resource to the
grid infrastructure. This computing resource can be ac-
cessible through a GRAM interface, meaning that the VM
that is going to be awaken needs to have the Globus Toolkit
installed and correctly configured. An even more practical
approach will be to use just SSH access to perform job
execution in this kind of nodes, the GridWay metasched-
uler already has a prototype of such SSH drivers. In this
way, machines from cloud providers can be used out-of-
the-box, with little to no configuration needed, basically
SSH access is the only requirement. On the other hand,
a second mode of growing the existing grid infrastructure
would be to use these cloud providers in a slightly differ-
ent fashion. Negotiation with the cloud provider will grant
access to a virtual cluster, accessible through GRAM and
controlled by a LRMS like for example PBS or SGE. This
cluster will then be added to the federated grid infrastruc-
ture the same way as one of the physical sites we saw in
the last section. Future work is planned to enrich the flex-
ibility of the grid infrastructure by removing the GRAM
layer, enabling GridWay to access the cluster by talking
directly to the LRMS.

Moreover, this solution has another advantage. Not
only it can dynamically increase the size of the grid infras-
tructure, but the added computing nodes can be awoken
with different configurations. In other words, the Service
Manager can be built in such a way that it won’t only con-
cern itself with the need to increase the computing capac-
ity, but it can do so in a service oriented way. If there is one
specific service which is suffering from the peak demand,
the Service Manager can decide to increase the number of
nodes prepared to satisfy such a service. For instance, if
the service is an application that requires specific math-
ematic libraries, virtual machines images containing that
specific libraries be chosen to be awoken as nodes to in-
crease the grid infrastructure capacity.

4. Grid resource provisioning using clouds

A technique to guarantee pre-accorded QoS and, there-
fore, meet SLAs even in cases of high saturation of the grid
infrastructure is presented in this section. Also, it gives
a solution for peak demands that occur without enough
time for planning the extension through federation. This
solution involves the elastic growth of the computing in-
frastructure by means of a cloud provider, being that com-
mercial (Amazon EC2, GoGrid) or scientific (Globus Nim-
bus), being the charge model the only difference between
these two type of cloud providers.

To enable our grid infrastructure to be able to meet
a given QoS and so satisfying predefined SLAs we need

a component that is aware of the load of said infrastruc-
ture. Our solution consists of a Service Manager com-
ponent that monitors the metascheduler in order to find
when it should elastically grow (or, conversely shrink) the
available resources by waking up nodes or entire clusters
(or shutting them down). In short, this component is re-
sponsible for adapting the grid infrastructure to dynamic
computing demands.

This solution takes advantage of the chosen GridWay
metascheduler. It employs a dynamic scheduling system
and therefore it can detect when a new machine has been
added or removed from a grid infrastructure, and redis-
tribute the work load. It also features fault detection and
recovery capabilities. Transparently to the end user, it is
able to detect and recover from any of the grid elements
failure, outage or saturation conditions.

The Service Manager is in charge of monitoring the
metascheduler and to detect and excess of load for the
available resources. In order to detect this excess, a set
of heuristics have to be defined, so they define the thresh-
old of number of pending jobs waiting for resources, and
the load present on the available resources. A second set
of heuristics is needed to decide which cloud provider is
going to be used to elastically grow the cluster. These
heuristics should be based on economics criteria, minimiz-
ing the total cost of CPU and network usage. In this line,
a good starting point would be the work done in budget
constrained cost-time optimization algorithms for schedul-
ing [23].

Optionally, there is even a third set of rules that the
Service Manager need to employ in case that it is aware
of what service demands need to be satisfied. This rules
will be used to decide which type of VM is going to be
awaken to satisfy the excess of demand. For instance, in
the context of a supercomputing center, VMs with a cer-
tain Virtual Organization (VO) configuration can be the
ones chosen to be up, if that VO has suddenly increased
its demand for computing power.

4.1. Description of the Experiment
This experiment is designed to evaluate the overhead

incurred in the management of a new worker node in a vir-
tualized cluster being executed in Globus Nimbus. Hence,
for the purpose of this experiment, the virtual cluster is
already being executed, and we are measuring the over-
heads between the different layers of our architecture in
the process of adding a new worker node, i.e., the over-
heads caused by awaking the worker node, shutting it
down, being it detected by the SGE, the MDS and Grid-
Way, and the processing overhead incurred by this node
since it is virtualized. This experiment is performed on a
local cloud deployed in our laboratory at dsa-research.org,
using Globus Nimbus as the cloud manager.

In order to better understand the chain of events and
where the overheads occur lets see the actions taking place
when the Service Manager decides to add a new worker
node to the grid infrastructure. A graphical depiction of

5

 Node 1

Node 2

 495.88s

308.02s

118.58s

6.22s

6.46s

7.33s

G
lobus N

im
bus Front End

H
YPERVISO

R

0.88s

0.67s

0,78s

145s 158s

SGE Front End

 170s (average)

151s

Deployment Time

SGE Unregistering Time
VM Shutdown Time

MDS4 Registering Time

VM

VM

VM

Globus
Front End

Figure 2: Grid resource provisioning using clouds overhead experi-
ment.

the experiment, with measured times, can be seen in Fig-
ure 2. First, the Service Manager requests a new VM to
Nimbus, which determines the best node to run the virtual
machine, based on the resources requested (e.g memory).
Afterwards, if the VM image (appliance) is not local to
the host system, it accesses the image server via a suitable
protocol (e.g. GridFTP) and obtains a copy. Once the im-
age has been transferred, the physical node’s DHCP server
configuration file is altered in order to establish VM’s IP
and hostname. When these operations conclude, the VM
is booted. When the VM has been deployed and is run-
ning, it registers on LRMS front-end as an execution host.
After a given time, the grid information system (MDS) de-
tects the new node and publishes it. Finally, GridWay the
metascheduler will refresh the information of the available
grid resources, and detect the new worker node. Then,
according to the scheduling policies, it will allocate jobs
on this new resource by interfacing with the grid execu-
tion service (GRAM). The behavior of the previous de-
ployment strategy will be analyzed on a testbed based on
Globus Toolkit 4.0.3 and GridWay 5.2.1.

4.2. Evaluation of Overheads
Several experiments where run in the testbed in order

to analyze the overheads caused by virtualization and the
software layers corresponding to the proposed architecture.

The first overhead considered is caused by the deploy-
ment of a VM under several conditions. The experiment
consisted in the deployment of one, two and three VMs
within the same physical machine. Respectively, total
times of deployment in seconds were 118.58, 308.02, 495.88
(Deployment Time in the figure). We would like to re-
mark that deploying more than 3 VMs simultaneously re-
sulted most of the times in error situations. Also, note
that the overhead induced by the SGE layer is negligible
(the time to register a worker node in the cluster is less
than a 1% of the total deployment time).

In the case of shutting down a VM (Table 1), we have
measured three relevant values. Command received
measures the time passed between the request is made to
the Globus Nimbus front end and its arrival to the under-
lying hypervisor. VM destroyed expresses the time it
takes to completely shutdown a VM since the shutdown
order arrives to the hypervisor. Both times are consoli-
dated in the figure’s VM Shutdown Time. In this case
the time is constant regardless of the number of VMs being
shut down. Overhead introduced by SGE when shutting
down a VM (SGE Unregistering Time in the figure)
can be minimized by reducing the polling time. Default
value is 300 seconds, so it takes an average of 150 seconds
to detect the new situation. Reducing polling time limits
the overhead, although it increments network usage. Sys-
tem administrator must tune this value according to the
number of nodes in the cluster and average VM uptime.

Once the VM is being booted, time is needed until it
is enrolled for use in the original grid infrastructure, and
complementarily, time is also needed to plug the node out

6

Number Command VM SGE Total
Received Destroyed

1 0.78 6.22 145 152
2 0.88 6.46 158 165.33
3 0.67 7.33 151 159

Table 1: Times (in seconds) when a worker node is shut down

of the infrastructure. These overheads can be called grid
integration overheads. The time to start a virtual worker
node (time since the Service Manager requests a worker
node, 114 sec., till it is registered in the LRMS, 2 sec.)
is roughly 2 minutes. The time to register the new slot
in the Grid Information System (MDS4) is about 170 sec-
onds (MDS4 Registering Time in the figure). It is
worth pointing out that MDS publishing time is greater
than the time employed on deploying one VM plus SGE
register time. Therefore, when sequentially deploying sev-
eral VMs both times overlap, producing an additional time
saving. The MDS and GridWay overhead can be limited
by adjusting their refresh polling intervals. When shutting
down, the same steps are accomplished. In this case, the
time until the operation is accomplished at the machine
layer is greatly reduced, from 114 to 7 seconds. How-
ever, time until LRMS detects the lack of the VM is incre-
mented, from 2 to about 150 seconds. It is interesting to
note that the metascheduler could assign jobs to the clus-
ter during the worker node shutting down time. In this
case the metascheduler should be able to re-schedule this
job to another resource.

Virtualization technology imposes a performance penalty
due to an additional layer between the physical hardware
and the guest operating system. This penalty (that we can
call the processing overhead) depends on the hardware, the
virtualization technology and the kind of applications be-
ing run. As some studies suggest [24, 25], Xen performs
extremely well in any kind of tasks, with a performance
loss between 1 and 15%. VMware also achieves near-native
performance for processor-intensive tasks, but experiences
a significant slow-down (up to 88%) on I/O bound tasks.
Nimbus development team measured its performance in
a real-world grid use case [26], a climate science applica-
tion, achieving about a 5% performance loss. Previous
results [12, 27] indicate that, in general, the virtualization
platform has no significant impact on the performance of
memory and CPU-intensive applications for HPC clusters.

5. Conclusions and Future Work

We have shown an architecture to build any type of
arbitrary complex grid infrastructures with a single point
of access, which is able to dynamically adapt its size (and
therefore, capacity) using a cloud provider to react to peak
demands and/or meet SLAs.

This paper opens the path for a number of research
lines to be followed and developments to be done. On one

hand, there is room for the development of new adapters
for the GridWay to access a greater number of different
types of grid infrastructures. On the other hand, the prob-
lem posed by the need to schedule workloads across several
grid infrastructures needs heuristics be developed. Said
heuristics need to be implemented in the metascheduler,
and use information gathered by it to decide which infras-
tructure to send the job to, taking into account their work-
load, their hardware characteristics, job execution history,
and even user or group quotas.

Moreover, there is also work to be done in the heuris-
tics needed to tune the Service Manager. This component
needs to be aware of the characteristics of the service be-
ing offered to correctly adjust its capacity in case of a
demand increase. Based on history, the Service Manager
could even anticipate a peak demand and readies the ser-
vice for it, adding resources to the grid infrastructure. It
is also crucial that the heuristics work upon an economic
model that knows different cloud provider characteristics
to reach a trade off between service efficiency and price.

References

[1] Walker, E., Gardner, J., Litvin, V. and Turner, E.: Creat-
ing Personal Adaptive Clusters for Managing Scientific Jobs in
a Distributed Computing Environment. In Proceedings of the
IEEE Challenges of Large Applications in Distributed Environ-
ments. (2006) 95–103

[2] A. Tsaregorodtsev, V. Garonne, and I. Stokes-Rees: DIRAC: A
Scalable Lightweight Architecture for High Throughput Com-
puting. In Fifth IEEE/ACM International Workshop on Grid
Computing (GRID’04), 2004, pp. 19-25.

[3] I. Sfiligoi: Making science in the Grid world: using glideins to
maximize scientific output. Nuclear Science Symposium Confer-
ence Record, 2007. NSS ’07. IEEE 2, Honolulu, HI, USA, 2007,
pp. 1107-1109.

[4] Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I. and Wilde, M.:
Falkon: a Fast and Light-weight tasK executiON framework.
In Proceedings of the IEEE/ACM SuperComputing, November
2007.

[5] Chase, J., Irwin, D., Grit, L., Moore, J. and Sprenkle, S.: Dy-
namic Virtual Clusters in a Grid Site Manager. In Twelfth
IEEE Symposium on High Performance Distributed Comput-
ing (HPDC), Seattle, Washington, June 2003.

[6] P. Ruth, X. Jiang, D. Xu and S. Goasguen: Virtual Distributed
Environments in a Shared Infrastructure. IEEE Computer, Spe-
cial Issue on Virtualization Technologies, May 2005.

[7] Murphy, Michael and Abraham, Linton and Fenn, Michael and
Goasguen, Sebastien: Autonomic Clouds on the Grid, In Jour-
nal of Grid Computing, Springer Netherlands (1) vol 8, pp 1-18I
(2010)

[8] L. Youseff, R. Wolski, B. Gorda and C. Krintz: Paravirtualiza-
tion for HPC Systems. Workshop on XEN in HPC Cluster and
Grid Computing Environments (XHPC), held in conjunction
with The International Symposium on Parallel and Distributed
Processing and Application (ISPA 2006), December 2006.

[9] L. Youseff, K. Seymour, H. You, J. Dongarra and R. Wolski:
The Impact of Paravirtualized Memory Hierarchy on Linear Al-
gebra Computational Kernels and Software. High Performance
Distributed Computing (HPDC), Boston, June 2008.

[10] W. Emeneker, D. Jackson, J. Butikofer and D. Stanzione: Dy-
namic Virtual Clustering with Xen and Moab. Lecture Notes
in Computer Sience, 2006, 4331 pp. 440-451 Proc. of the Fron-
tiers of High Performance Computing and Networking, ISPA
2006 Workshops.

7

[11] N. Fallenbeck and H.J. Picht and M. Smith and B. Freisleben:
Xen and the Art of Cluster Scheduling. First International
Workshop on Virtualization Technology in Distributed Com-
puting (VTDC), 2006.

[12] Rubio-Montero, A.J., Montero, R.S., Huedo, E. and Llorente,
I.M.: Management of Virtual Machines on Globus Grids Us-
ing GridWay. In Proceedings of the 4th High-Performance Grid
Computing Workshop, in conjunction with 21st IEEE Interna-
tional Parallel and Distributed Processing Symposium, pp 1–7
(2007).

[13] X. Jiang and D. Xu: Violin: Virtual internetworking on overlay
infrastructure. In Proceedings of the 2nd International Sympo-
sium on Parallel and Distributed Processing and Applications,
Dec 2004.

[14] I. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J.
Figueiredo: VM-Plants: Providing and managing virtual ma-
chine execution environments for grid computing. In Proceed-
ings of the 2004 ACM/IEEE Conference on Supercomputing,
2004.

[15] di Costanzo, A. and de Assuncao, M.D. and Buyya, R.: Har-
nessing Cloud Technologies for a Virtualized Distributed Com-
puting Infrastructure, In IEEE Internet Computing (5) vol 13,
pp 24-33 (2009).

[16] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes,
I. Krsul, A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L.
Zhu and X. Zhu: From virtualized resources to virtual comput-
ing grids: the In-VIGO system. Future Generation Computer
Systems, 21(6):pp. 896909, June 2005.

[17] T. Freeman and K. Keahey: Flying Low: Simple Leases with
Workspace Pilot. In Euro-Par, 2008.

[18] Michael A. Murphy and Sebastien Goasguen: Virtual Orga-
nization Clusters: Self-provisioned clouds on the grid, Future
Generation Computer Systems, 26 (8), pp. 1271-1281, February
2010.

[19] I. M. Llorente, R. Moreno-Vozmediano and R. S. Montero:
Cloud Computing for On-Demand Grid Resource Provisioning.
In: Advances in Parallel Computing, Volume 18 (2009): High
Speed and Large Scale Scientific Computing, pp. 177 - 191. IOS
Press, 2009

[20] H. Nishimura, N. Maruyama and S. Matsuoka: Virtual clusters
on the fly - fast, scalable, and flexible installation. In CCGRID
2007, Seventh IEEE International Symposium on Cluster Com-
puting and the Grid, May 2007.

[21] W. Emeneker and D. Stanzione: Dynamic virtual clustering. In
IEEE Cluster 2007,Austin, TX, September 2007

[22] E. Huedo, R.S. Montero and I.M. Llorente: A modular meta-
scheduling architecture for interfacing with pre-WS and WS
Grid resource management services Future Generation Com-
puting Systems 23 (2), pp 252-261 (2007)

[23] R. Buyya, M. Murshed, D. Abramsin and S. Venugopal:
Scheduling Parameter Sweep Application on Global Grids: A
Deadline and Budget Constrained Cost-Time Optimisation Al-
gorithm. International Journal of Software: Practice and Expe-
rience (SPE) 5 (2005) pp 491–512

[24] P. Barham., B. Dragovid, K. Fraser, S. Hand, T. Ahrris, R.A.
Ho, I. Pratt, A. Warfield: Xen and the Art of Virtualization.
In Symposium on Operating Systems Principles. pp 164–177
(October 2003)

[25] Clark, B., Deshane, T., Dow, E., Evanchik, S., Herne, M. and
Matthews, J.: Xen and the Art of Repeated Search. In USENIX
Annual Technical Conference, pp 47–47 (2004).

[26] Foster, I., Freeman, T., Keahy, K., Scheftner, D., Sotomayor,
B., Zhang, X.: Virtual clusters for grid communities. In Pro-
ceedings of the Sixth IEEE International Symposium on Cluster
Computer and the Grid (CCGRID 06), IEEE Computer Society
pp 513–520 (2006).

[27] Rodriguez, M., Tapiador, D., Fontan, J., Huedo, E., Montero,
R.S. and Llorente, I.M.: Dynamic Provisioning of Virtual Clus-
ters for Grid Computing. In Proceedings of the 3rd Workshop
on Virtualization in High-Performance Cluster and Grid Com-
puting (VHPC 08), in conjunction with EuroPar08, 2008.

8

