
Design for Future Internet Service Infrastructures 

B. Rochwerger1, A. Galis2, D. Breitgand1, E. Levy3, J. A. Cáceres4, I. M. Llorente5, Y. 
Wolfsthal1, M. Wusthoff3, S. Clayman2, C. Chapman2, W. Emmerich2, E. Elmroth6

, R. S. 

Montero5

1IBM Haifa Research Labs - Israel {rochwer, davidbr, wolfstal}@ il.ibm.com
2University College London, U.K. {a.galis, s.clayman}@ee.ucl.ac.uk; {c.chapman, 

w.emmerich}@cs.ucl.ac.uk
3SAP Research – Israel and U.K. {eliezer.levy, mark.wusthoff}@sap.com

4Telefónica I+D - Spain {caceres@tid.es}
5Universidad Complutense de Madrid - Spain {llorente, rubensm}@dacya.ucm.es

6Umeå University- Sweden {elmroth@cs.umu.se}

Abstract. This paper presents current research in the design and integration of 
advance systems, service and management technologies into a new generation 

of Service Infrastructure for Future Internet of Services, which includes Service 
Clouds Computing. These developments are part of the FP7 RESERVOIR 
project and represent a creative mixture of service and network virtualisation, 
service computing, network and service management techniques. 

Keywords: Service Computing, Service and Network Management, 
Virtualisation, Service Infrastructure

1. Background and Motivation

At present a number of fundamental concepts and systems, including: grid and 
service computing, virtualisation, networking, service and network management are 
being developed separately. This paper argues for the integration of such systems into 
a new type of Service Infrastructure for Future Internet of Services. 

Virtualisation has re-emerged as a gripping method for reducing service lifecycle 
costs and for increasing physical resource utilization. The main idea of all 
virtualisation techniques is the introduction of a logical structure between the physical 

resources and the computational processes. Virtualisation itself takes many forms. The 
most commonly known form of virtualization is "System virtualisation", also referred 
to as server virtualisation, is the ability to run multiple heterogeneous operating 
systems on the same physical server. With server virtualisation a control program 
(commonly known as "hypervisor" or "virtual machine monitor") is run on a given 
hardware platform and provides an environment for one or more other computer 
environments (virtual machines). Each of these virtual machines, in turn, runs its 
respective "guest" software, typically an operating system, which runs just as if it were 

installed on the stand-alone hardware platform. Additional forms of virtualisation 
include "storage virtualisation" and "network virtualisation", which give the ability to 
present a logical view of the storage and network resources respectively, which is 
different than the underlying physical resources. 

Towards the Future Internet
G. Tselentis et al. (Eds.)
IOS Press, 2009
© 2009 The authors and IOS Press. All rights reserved.
doi:10.3233/978-1-60750-007-0-227

227



Several research efforts have investigated the use of virtualisation with grid 
environments, and these can be largely classified as either virtual machine 
management on grid or grid-like virtual machine management. When combined with 
grids, virtualisation technologies suffer from several shortcomings. These 
shortcomings include: limitations on where and when a virtual machine can run (e.g., 
a Xen virtual machine cannot run on a VMware hypervisor); when, where, and how a 
virtual machine can be relocated (e.g., relocation can take place within an IP subnet 
and between hosts with shared storage); limitations on the performance of the virtual 

machine; overly-complex administrative interfaces; lack of mechanisms to meet pre-
defined SLAs; and lack of adequate security.

Grid computing [1-4] is a powerful paradigm for running ever-larger workloads 
and services; in grids, many heterogeneous computing, network and storage resources 
are connected across administrative boundaries, and service providers share and 
exploit the infrastructure across nodes to run their services. 

The Service Cloud Computing paradigm for hosting web-based services (i.e. 
Amazon Elastic Compute Cloud (EC2) [5] or Google’s App Engine [6]) aims to 
facilitate the creation of innovative internet scale services without worrying about the 

computational infrastructure needed to support these services. However, these new 
“cloud computing infrastructure providers” have a scalability problem of their own. 
That is, what warranties can a single hosting company give to ensure that resources 
will always be available? In fact, no single hosting company can create a seemingly 
infinite infrastructure capable of serving increasing number of online-services, each 
having massive amounts of users and access at all times from all locations. It is only 
by partnering with each other that infrastructure providers can achieve the economies 
of scale needed to provide a seemingly endless compute utility.

What makes cloud computing [7-10] different is that recent developments in IT 
such as fast adoption of virtualisation technology servers [11-13] , as well as adoption 
of Software as a Service [14-16]as an alternative method for delivering functionality 
to both individuals and companies, has finally created an opportunity for a global 
service computing utility. The provision of Software as a Service, requires businesses 
to monitor the behaviour of these services.

Business Service Management (BSM) is the application of service management 
principles to manage the Service Levels for a business function. The purpose of BSM 
is to ensure that the ICT infrastructure will support the business functions by meeting 

requirements that are set in Service Level Agreements (SLAs). A Service Level 
Agreement is an agreement, or contract, between a service provider and a service 
consumer, in which expectations are set for the level of service to be provided by the 
infrastructure. The SLA is specified with respect to availability, performance, and 
other measurable objectives. Some of the key challenges in BSM involve SLA 
management. 

The combination of these concepts and systems into a new computing paradigm 
called Service-Oriented Computing [17-19] will foster new and advanced services 
presented as software components exposed through network-accessible, platform and 

language independent interfaces. This will enable the composition of complex 
distributed applications from loosely coupled components. Service-Oriented 
Computing (SOC) carries the visionary promise of reducing software complexity, 
reducing costs, expediting time-to-market, improving reliability, and enhancing 
accessibility of consumers to both government and business services. 

B. Rochwerger et al. / Design for Future Internet Service Infrastructures228



The paper is structured as follows: section 1 presents the motivation for a new 

generation of Service Infrastructure, section 2 provides the new model Service 
Oriented Infrastructure (SOI), section 3 describes the main functions and requirements 
envisaged by the SOI and section 4 concludes the paper and gives some further work.

2. Model for Service Oriented Infrastructure

RESERVOIR has a new and unique approach to Service Oriented Computing. In 

the RESERVOIR model, there is a clear separation between service providers and 
infrastructure providers. Service providers are the entities that understand the needs of 
particular business and offer service applications to address those needs. Service 
providers do not need to own the computational resources needed by these service 
applications, instead, they lease resources from an infrastructure provider. The 
infrastructure provider owns and leases a computing cloud, which provides the service 
provider with a seemingly infinite pool of computational resources. The cloud is 
capable of giving resources to many service providers.

Fig. 1 - Service applications are executed by a set of VEEs

This computing cloud is made up of cooperating Reservoir Sites, which own and 

manage the physical infrastructure on which service applications execute. To optimise 
resource utilisation, the computational resources within a site are partitioned by a 
virtualisation layer into virtual execution environments (VEEs). The VEEs are fully 
isolated runtime environments that abstract away the physical characteristics of the 
resource and enable sharing of the physical hardware. The virtualized computational 
resources, alongside with the virtualisation layer and all the management enablement 
components, are referred to as the VEE Host. 

A service is a set of software components, which work collectively to achieve a 
common goal. Each component of a service application executes in a dedicated VEE. 

The running VEEs are placed on the different VEE Hosts within the site. In some 
cases, it can be possible to migrate VEEs to different sites, according to automated 
placement policies that govern the site (see Fig. 1). The VEEs are represented by 
squares in this figure. The VEEs can be seen distributed across the Virtual Execution 
Environment Hosts (VEEHs), which make up the computing cloud. The VEEs for a 
particular service application may all be collocated in the same VEEH (i.e. as in 
service application 1), or may spread across VEEHs within the same site (i.e. as in 

B. Rochwerger et al. / Design for Future Internet Service Infrastructures 229



service application 2), or may even spread across sites (i.e. as in service application 3). 
As long as SLA is maintained, the service is unaware of the actual location of its 
VEEs.

Service providers deploy applications in the computing cloud by passing a service 
definition manifest to a single infrastructure provider. This manifest includes: i) a list 
of the functionally distinct component types that make up the application; ii) The 
functional requirements for each component type, characterized by a reference to a 
master image, which is a self contained software stack (OS, middleware, applications, 

data and configuration) that fully captures the functionality of that component type; 
iii) Component grouping instructions, which are the requirements and constraints 
referring to a group of heterogeneous components so that they are treated as a single 
allocation entity; iv) Component topology instructions, that is how the different 
components types are related to each other and what are their inter-dependencies; v) 
Capacity Requirements, that is how much memory or cpus are needed; vi) Elasticity 
Rules, which are set of rules that express how the application scales. These specify the 
capacity (resource requirements) of each application component instance, as well as 
the number of instances of a particular component type, and how they can be 

dynamically adapted to properly satisfy the requirements of the application, while at 
the same time minimize cost; vii) Service Level Objectives (SLOs), that is the rules to 
ensure the service levels for business function are maintained viii) a Monitoring 
Specification, which specifies which elements of the application can send data for the 
elasticity rules and the SLOs.

Fig. 2 – Reservoir Site Management Stack & Cross Layer Functionality

The layers of the architecture for a RESERVOIR system are presented next.
The Service Manager is responsible for the instantiation of the service application by 
requesting the creation and configuration of VEEs for each service component in the 

manifest. In addition, the Service Manager is responsible for ensuring SLA 
compliance by monitoring the execution of the service applications and executing the 
elasticity rules. That is, adjusting the application capacity either by adding or 
removing service components and/or changing the resource requirements of a 

B. Rochwerger et al. / Design for Future Internet Service Infrastructures230



particular component according to the load and measurable application behaviour.
Within each Reservoir Site, the resource utilization is monitored and the placement of 
VEEs is constantly updated to achieve optimal utilization. Similarly, the execution of 
the service applications is monitored and the capacity is constantly adjusted to meet 
the requirements specified in the manifest. These on-going optimizations are done 
without human intervention by the Reservoir site management stack (see ).

The Virtual Execution Environment Manager (VEEM) is responsible for the 

placement of VEEs into VEE hosts. It receives requests from the Service Manager to 
both create and resize VEEs, and it also finds the best placement for these VEEs in 
order to satisfy a given set of constraints (set by the Service Manager). The VEEM 
optimizes a site total utility function, i.e., VEEM is free to place and move the VEEs 

anywhere, even on remote sites, as long as the placement is done within the 
constraints such as VEE affinity and anti-affinity, security (never place VEEs from 
competitors together), and cost. In addition to serving local requests, the VEEM is the 
component in the system that is responsible for the federation of remote sites. 

The Virtual Execution Environment Host (VEEH) represents a virtualized 

resource that can host a certain type of VEEs. This abstraction is needed to enable the 
separation of the logical algorithmic processing of the system from the actual 
plumbing, i.e., VEEM issues generic commands to manage the lifecycle of VEEs, and 
VEEHs are responsible for translating these commands into commands specific to the 
virtualisation platform abstracted by each VEEH. For example one type of a VEEH 
can be a physical machine with the Xen hypervisor controlling it, whereas another 
type can be a machine with the necessary software to host Virtual Java Service 
Containers (VJSC). In addition to translation functionality VEEHs are responsible for 

adding to the virtualisation platform they encapsulate the necessary hooks to meet the 
advanced requirements of different use cases. 

3. Future Internet Service Infrastructure Functions

This section presents an overview of the main functions of the Reservoir 
Infrastructure that are important for Future Internet Service provision. The functions 
were determined through the analysis of many use-cases and from the general research 

direction set for Service Oriented Computing, for Cloud Computing, and for Future 
Internet of Services. These functions, together as a set, but not necessarily per 
individual requirement, define what distinguishes Reservoir from earlier virtualisation 
technologies and what the Reservoir project brings to the Future Internet efforts.

The main functions for a Future Internet Service Infrastructure are defined as:

Separation between Infrastructure and Services: Reservoir as a virtualisation 

infrastructure for services, enforces a clear separation between service providers and 
infrastructure providers. A Reservoir infrastructure provider will own and manage the 
computational, networking, and storage resources necessary to host arbitrary service 
applications. The infrastructure will provide functions and management facilities, 
which allow dynamic mapping of service components to the physical computational, 
networking and storage resources. In particular, service components should be opaque 

B. Rochwerger et al. / Design for Future Internet Service Infrastructures 231



to the infrastructure providers and the service provider can deliver components that 
could contain virtually arbitrary software stacks. 

Extensibility: At all layers Reservoir would support a minimum set of capabilities, yet 
provide for the extensibility of capabilities using a Plug-and-Pay and Unplug-and-Pay 

fashion. For each layer the capabilities are presented.
• Service Manager (SM) capabilities include: (i) request VEEs for a service; 

(ii) SLA repositories and management; (iii) Monitor SLA commitments at all levels; 
(iv) Monitor Context changes at all levels; (v) maintenance of Service related metrics; 
(vi) trigger and manage migration/ configuration/ contextualisation of service 
components as function of changes in context and/or SLA; same or multiple domains; 
(vii) assurance management; (viii) accounting and billing management; (ix) service 
life-cycle management; (x) performance management; (xi) open interfaces to service 

portals; (xii) open business policies framework for service and infrastructure providers 
relationship management (i.e. pay-per-use business model management).

• Virtual Execution Environment Management (VEEM) capabilities 
include: (i) abstraction of execution environments; (ii) supports the execution of 
services; (iii) Virtual Machines; (iv) service containers; (v) dynamic provisioning, 

supervision and re-allocation of VEEs; (vi) service-driven policy engine; (vii) open 
interfaces to control and monitor VEEs

• Virtual Execution Environment Host (VEEH) capabilities include: (i) 
interface with different virtualisation technologies. Reservoir would provide an 
abstract interface that is agnostic to the virtualisation technology; (ii) partition and 
management of physical resources in VEEs; (iii) open interfaces to VEEMs.

Multi-Site Operation: Reservoir provides the capability of sharing resources for the 

execution of a service application across multiple sites and multiple administrative 
domains (that are operated and managed by the same or different authorities). A 
Reservoir system is actually a federation of sites that cooperate for the optimal 
execution of service applications.

Service Orientation: Reservoir is about efficient provisioning and optimal 

management of service applications. We have determined that:
• a service application may be a complex entity and therefore its provisioning 

should be automated and streamlined.
• a service application is an infinite computation that is characterized by a 

workload that changes (sometimes dramatically) over time. This is in contrast to job 

scheduling in High-Performance Computing where resources are allocated to jobs 
with a finite duration. 

Resources, therefore, should be allocated in reaction and in proportion to the changing 
workload.

Virtualisation Technology Independence: Reservoir should support different VEEH 

virtualisation technologies. Namely, Reservoir would provide an abstract interface 
that is agnostic to the virtualisation technology.

Security: Reservoir should provide a seamless, comprehensive, and flexible security 

scheme that operates consistently across dynamically changing layers. This embedded 
security shall be characterized by: (i) trustworthy operation; (ii) robustness and 
resilience under attack and mishap; (iii) protection and privacy of user and service 

B. Rochwerger et al. / Design for Future Internet Service Infrastructures232



information and assets; (iv) protection and privacy of identity and location and 
accountability; (v) all relevant service information should stay on some specific 
trusted domains; (vi) confidentiality and privacy for services and data (using ciphers) 
will be maintained; (vii) when two or more sites are cooperating, a trust-relationship is 
created. This includes especially data for authentication, authorization and accounting.

Accountability: The mechanisms that enable accountability of the service components 

are encapsulated in the Utility Computing Cost Model. In particular, this should 
provide an efficient, reliable, and secure way to collect and manage accounting data to 
support the different business cases and “pay-per-use” schemes. It should also support 
accounting across multiple sites and manage accounting for migrating components. 
Accountability denotes the need for the various interfaces, that Reservoir supports, to 
be capable of conveying or collecting accounting information. For the purpose of 

accounting and billing, Reservoir provides metering functions of the use of the virtual 
and physical resources. The granularity of the metering must at least reflect the 
information need for producing bills, in accordance with the accountability 
requirements.

3.1 Virtualisation Technology Assumptions

The assumptions regarding the VEEH underlying the virtualisation technologies are 
made explicit so that they can be treated as requirements for providers of virtualisation 
technologies.

Virtualisation Overhead: The underlying assumption is that virtualisation adds an 

overhead of at most 10% to the end-to-end performance of the application. Otherwise, 
the use cases make no sense to begin with. The most stringent consequence is that the 
throughput of a virtualized setup of the application does not degrade by more than 
10% compared to a native setup running on the same hardware, and all this without 

compromising the end user experience.

Migration Performance: Live migration degrades the performance of the migrated 
application as it consumes CPU and I/O resources while preparing for the migration 
(especially for stateful applications). In addition, live migration requires an actual 
downtime of the application during the actual migration. The application relies on 

complex stack that is sensitive to timeouts at different levels (e.g., network, database). 
The performance degradation and the downtime should not have adverse affect in 
terms of too many aborted user transactions.

3.2 VEEM & VEEH Infrastructure Requirements

This section presents the requirements for the VEE Hosts, the VEE Host Interface, 
VEEM and the VMI. These components are largely unaware of the service semantics 
associated with the components they execute and manage.

Adaptive Resource Allocation: Reservoir should enable dynamic changes of the 

physical resources allocated to a VEE in a case the VEE requires additional or 
different capacity (e.g. CPU capacity, Memory capacity, I/O bandwidth etc) provided 
that the underlying physical system is able to serve the requirements for more or 

B. Rochwerger et al. / Design for Future Internet Service Infrastructures 233



different capacity. If the resource consumption in a site is oversized, automatic 
downsize of the consumed resources in order to limit costs should be initiated. These 
dynamic changes should be transparent to the service consumer.

Elastic Arrays of VEEs: Reservoir should support dynamic control of the number of 

identical VEEs for the purpose of adapting this number according to the load, for 
example. The relevant service application manifest must indicate this potential 
elasticity. In particular, all VEEs in the array share the same master image as specified 
in the manifest. The dynamically launched VEE should transparently join its already 
running siblings in the sense of serving some of the workload. It should be possible to 
stop a running VEE that was defined as part of an array without disrupting the service 
of the overall service application. It is the responsibility of the Service Provider to 
implement correctly a service component that is array-enabled.

Warm Images: The execution of a service component may require complex 
preparation steps (e.g. retrieving data from the backend). Rather than doing the 
preparation separately for each dynamically launched component, it should be 
possible to create an image that creates a warm VEE with all its context (e.g., warm 
caches, established connections), configuration and state.

Migration: Reservoir supports live migration of a virtual system to another pool of 
physical resources (i.e. computational, networking and storage resources). The live 
migration is performed of service components while maintaining state (of the 
components itself and also any impending data exchanges). Migration could also be 

performed on a suspend/resume mode with minimal service disruption. The migration 
capability is performed transparently to the service applications, which run on the 
virtual system. Reservoir should support the commonly practiced migration scenarios. 
Namely:

• Migration of groups of VEEs in order to optimise the utilization of physical 
resources in order to save power and to manage power in any period.

• Migration of groups of VEEs in order to facilitate massive lifecycle and 
maintenance scenarios (e.g. install patch, physical resource /driver upgrades, etc). 

• Completion of migration of certain components within a specific time frame.

• Request response time as observed by the end-user must not exceed a limit.
• Seamless migration, without downtime, of groups of virtual systems when 

physical resources or the hypervisor would require maintenance activities to be per-
formed (e.g. install patch, physical resource upgrade, driver upgrades, etc).

The Reservoir-specific dimensions for migration are:

• Migration can be across sites.
• The grouping of migrated VEEs should reflect their membership in and the 

structure of the relevant service applications.
• Migration of groups of virtual systems in order to reduce/optimise the 

number of physical resources or save power or to better manage power in any period.

3.3 Migration and Elasticity Transparency

The following requirements specify that behaviour (as observed externally and 

between its components) of a service application does not change as a result of elastic 
starting and stopping and migration its components. First, the following assumptions 
should be stated explicitly: (1) In most cases, it can be assumed that storage can be 
(logically) shared between the origin and destination hosts of the migration; (2) The 

B. Rochwerger et al. / Design for Future Internet Service Infrastructures234



service application has a built-in elasticity capability. That is, the application is 
capable of dynamically adding and removing components while running. Under these 
assumptions, the relevant requirements are:

• The networking and storage views of VEEs are kept intact when VEEs are 
migrated. That is, if a VEE accessed particular storage device and communicated with 
particular network entity, the same view is preserved in spite of migrations.

• A VEE that is cloned in a VEE array inherits the storage and networking 
view of the other array members.

• The public end-points of the service application are kept intact in spite of 
VEE migration and cloning.

Cost-Based Optimization: The resource allocation optimization should be driven by a 
configurable cost-model. The cost-model should approximate the relative anticipated 

latencies associated with the different allocations options. The cost model, for 
example, should factor the cost of cross-site migrations.

Autonomous Local Optimizations: A VEEM should be able to autonomously
improve and optimize the utilization of the site local resources regardless of the 
service-level monitoring and optimization. That is the VEEM should be able to take 

advantage of opportunities of free local resources on its own right as longs as SLAs 
are not violated.

Management Interface for Standardization: Reservoir should expose a management 
API that hides the details of the virtualisation technology. The goal is to standardize 

this API. It should be possible to compose API primitives in scripts for the 
streamlined automation of more complex tasks in the data centre.

Plug-Ins: The VEEM should expose a plug-in architecture, such that various 
implementations of the API can be created. Moreover, a VEEM should be able to 

manage hosts of different virtualisation technology using the API.

3.4 Service Management Requirements: Service Definition Manifest

A service application may be composed of inter-related components. It is required to 
completely specify the application components and setup using a declarative language 
in the form of a manifest. The manifest should specify, for example, all the images, 

the storage configuration, the database content and the relevant applicative 
configuration. Moreover, the application should be provisioned as a single logical 
unit. The manifest should support the encapsulation of various service components as 
images for the rapid initial provisioning as well as the rapid dynamic adaptation of 
service applications. Moreover, the manifest should enable the automation of 
provisioning and management of the service application.

Template-Based Provisioning: It should be possible to use the service manifest as a 

template for easily provisioning instances of the application. The template must allow 
for instance-specific components due to instance-specific configuration and 
customization. This requirement is important for multi-tenant scenarios where the 
template should be parameterized by tenant.

Flexible Virtualisation Configurations: A virtualisation configuration maps the 

components specified in the service manifest to physical hosts. The manifest should 
support expressing flexible virtualisation configurations of the applications in order to 
satisfy various performance and TCO requirements. In particular, it should be possible 
to specify dependencies and starting order among components. It should be possible to 

B. Rochwerger et al. / Design for Future Internet Service Infrastructures 235



specify sharing of a component by more than a single service application. For 
example, a DBMS service component may be shared by multiple service applications.

Resource Consumption, Management and Enforcement: Reservoir provides 
facilities for monitoring, management and enforcement of physical resource 

consumption. Through isolation the degree of resource consumption can be controlled 
including control of greedy services.

Conflicts Resolution and Avoidance: Service components may require certain 
resources from the system to be allocated statically, e.g. a certain port number. To 

resolve conflicts between different services the service components may be executed 
isolated in virtual systems while sharing physical resources.

4. Conclusions 

RESERVOIR’s research on virtualisation, service computing, network and service 
management both enables and unifies some of the emerging trends in Service Oriented 
Computing and the Future Internet. This paper presents work in progress (Reservoir 

project started work in February 2008) for the definition and integration of such 
systems into a new generation of Service Infrastructure. Full design, realisation, and 
evaluation of the RESERVOIR Infrastructure will be completed in the next 2 years. 

Acknowledgments

This work was undertaken in the context of the Reservoir FP7 project [20], which 
is partially financed by the EU. The Reservoir consortium consists of International 

Business Machines Haifa Research Lab (HRL), Telefónica Investigación y Desarrollo 
(TID), Centre d’excellence en technologies de l’Information et de la communication 
(CETIC), University College of London (UCL), Universidad Complutense de Madrid 
(UCM), Elsag Datamat (ED), Sun Microsystems (Sun), Thales, Università della 
Svizzera Italiana (University of Lugano) (USI), Umeå University (Umeå), SAP 
Research, University of Messina (UniMe), OGF.eeig

References

[1] “The Information Factories” - Wired Magazine, Issue 14.10, October 2006 
http://www.wired.com/wired/archive/14.10/cloudware.html?pg=1&topic=cloudware&topi
c_set=

[2] “Reflections on Cloud Computing” - Irving Wladawsky-Berger’s Blog, March 2008, 
http://blog.irvingwb.com/blog/2008/03/reflections-on.html

[3] “Understanding Cloud Computing” - Wallis Paul, Keystones and Rivets, February 2008, 
http://www.keystonesandrivets.com/kar/2008/02/cloud-computing.html

[4] “The Big Switch – Rewiring the World from Edisson To Google”- Nicholas Carr, 
published by W. W. Norton, January 2008

[5] “Amazon Elastic Compute Cloud” -Amazon EC2 web site,

B. Rochwerger et al. / Design for Future Internet Service Infrastructures236



http://www.amazon.com/gp/browse.html?node=201590011
[6] “What is Google App Engine”

http://code.google.com/appengine/docs/whatisgoogleappengine.html

[7] “The MAC system : The computer utility approach” - R. M. Fano, in IEEE Spectrum, vol.
2, pp. 5644, January 1965.

[8] “What is the Grid? A Three Point Checklist” - Ian Foster, 2002,
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf

[9] “The Globus Toolkit” - http://www.globus.org/toolkit/
[10] “The Open Grid Services Architecture”- http://www.globus.org/ogsa/
[11] “Server Virtualisation: Doing More with Less”- Leon Erlanger, Inforworld Report, Sept 

06, http://www.infoworld.com/article/06/09/11/37FEvirtcaseserv_1.html
[12] “Xen and the Art of Virtualisation” - P. Barham, B. Dragovic, K. Fraser, S. Hand, T. 

Harris, A. Ho, R. Neugebauer, I. Pratt and A. Warfield, in Proceedings of the 19th ACM 

Symposium on Operating Systems Principles, Bolton Landing, NY, USA
[13] “The VMware” Web Site www.vmware.org
[14] “Turning Software into a Service” - Mark Turner, David Budgen, Pearl Brereton, 

Computer, vol. 36, no. 10, pp. 38-44, Oct., 2003

[15] “The Different Faces of IT as Service” I. Foster, S. Tuecke -
www.ggf.org/documents/Diff_Faces_foster.pdf 

[16] “The salesforce” web site http://www.salesforce.com/

[17] “Service Oriented Computing” –A Research Roadmap, M. Papazoglou, P. Traverso, D. 
Schahram, F. Leymann, B. Kraemer, Dagstuhl seminar 2006 
http://drops.dagstuhl.de/opus/volltexte/2006/524/

[18] “Service-Oriented Computing: State of the Art and Research Challenges” -Mike P. 
Papazoglou, Paolo Traverso, Schahram Dustdar, Frank Leymann: IEEE Computer 40(11): 
38-45 (2007)

[19] “Service-Oriented Computing: a Research Roadmap” - Mike P. Papazoglou, Paolo 
Traverso, Schahram Dustdar, Frank Leymann: Int. J. Cooperative Inf. Syst. 17(2): 223-
255 (2008)

[20] “Reservoir project” www.reservoir-fp7.eu

B. Rochwerger et al. / Design for Future Internet Service Infrastructures 237


